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A THEORETICAL AND EXPERIMENTAL STUDY OF THE
SYMMETRIC RANK-ONE UPDATE*

H. FAYEZ KHALFANYt, R. H. BYRD%, aND R. B. SCHNABEL?

Abstract. This paper first discusses computational experience using the SR1 update in conventional
line search and trust region algorithms for unconstrained optimization. The experiments show that the SR1
is very competitive with the widely used BFGS method. They also indicate two interesting features: the final
Hessian approximations produced by the SR1 method are not generally appreciably better than those
produced by the BFGS, and the sequences of steps produced by the SR1 do not usually seem to have the
“uniform linear independence” property that is assumed in recent convergence analysis. This paper presents
a new analysis that shows that the SR1 method with a line search is (n +1)-step g-superlinearly convergent
without the assumption of linearly independent iterates. This analysis assumes that the Hessian approxima-
tions are positive definite and bounded asymptotically, which, from computational experience, are reasonable
assumptions.
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1. Introduction. This paper is concerned with secant (quasi-Newton) methods for
finding a local minimum of the unconstrained optimization problem
(1.1) min f(x).
xeR"
We assume that f(x) is at least twice continuously differentiable, and that the number
of variables n is sufficiently small to permit storage of an n x n matrix, and O(n?) or
possibly O(n?) arithmetic operations per iteration.

Algorithms for solving (1.1) are iterative, and the basic framework of an iteration
of a secant method is:

Given the current iterate x., f (x.), Vf(x.), or finite difference approximation, and
B.e R™" symmetric (a secant approximation to V>f(x,)):
Select the new iterate x, by a line search or trust region method based on
the quadratic model m(x.+d)=f(x.)+Vf(x.)"d +3d "B.d.
Update B, to B, such that B, is symmetric and satisfies the secant equation
B.s.=y., where s, =x,—x, and y.=Vf(x,)—-Vf(x.).

In this paper, we consider the symmetric rank-one (SR1) update for the Hessian
approximation

(yc - Bcsc)(yc - Bcsc)T
s;r(yc - Bcsc)

and, for purpose of comparison, the BFGS update

T T

B.s.sTB

(1.3) B, =B +2dc P30 T
yive  siye

(1.2) B,=B.+
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For background on these updates and others, see Fletcher (1980), Gill, Murray, and
Wright (1981), and Dennis and Schnabel (1983).

The BFGS update has been the most commonly used secant update for many
years. It makes a symmetric, rank-two change to the previous Hessian approximation
B., and if B, is positive definite and s;y.> 0, then B, is positive definite.

The BFGS method has been shown by Broyden, Dennis, and Moré (1973) to be
locally g-superlinearly convergent provided that the initial Hessian approximation is
sufficiently accurate. Powell (1976) proved a global superlinear convergence result for
the BFGS method when applied to strictly convex functions and used in conjunction
with line searches that satisfy Wolfe conditions. The BFGS update has been used
successfully in many production codes for unconstrained optimization.

The SR1 formula, on the other hand, makes a symmetric rank-one change to the
previous Hessian approximation B.. Compared with other secant updates, the SR1
update is simpler and may require less computation per iteration when unfactored
forms of updates are used. (Factored updates are those in which a decomposition of
B, is updated at each iteration.) A basic disadvantage of the SR1 update, however, is
the fact that its denominator may be zero or nearly zero, which causes numerical
instability. A simple remedy to this problem is to set B, = B, whenever this difficulty
arises, but this may prevent fast convergence. Another problem is that the SR1 update
may not preserve positive definiteness even if this is possible, i.e., when B, is positive
definite and sy, > 0.

Fiacco and McCormick (1968) showed that if the SR1 update is applied to a
positive definite quadratic function in a line search method, then, provided that the
updates are all well defined, the solution is reached in at most n+1 iterations.
Furthermore, if n+1 iterations are required, then the final Hessian approximation is
the actual Hessian at the solution. This result is not generally true for the BFGS update
or other members of the Broyden family, unless exact line searches are used.

For nonquadratic functions, however, convergence of the SR1 is not as well
understood as convergence of the BFGS method. In fact, Broyden, Dennis, and Moré
(1973) have shown that under their assumptions the SR1 update can be undefined,
and thus their convergence analysis cannot be applied in this case. Also, no global
convergence result similar to that for the BFGS method given by Powell (1976) exists,
so far, for the SR1 method when applied to a nonquadratic function.

Recent work by Conn, Gould, and Toint (1988a, 1988b, 1991) has sparked renewed
interest in the SR1 update. Conn, Gould, and Toint (1991) proved that the sequence
of matrices generated by the SR1 formula converges to the actual Hessian at the
solution V°f(x,), provided that the steps taken are uniformly linearly independent,
that the SR1 update denominator is always sufficiently different from zero, and that
the iterates converge to a finite limit. (Using this result it is simple to prove that the
rate of convergence is g-superlinear.) On the other hand, for the BFGS method Ge
and Powell (1983) proved, under a different set of assumptions, that the sequence of
generated matrices converges, but not necessarily to V>f (x4).

The numerical experiments of Conn, Gould, and Toint (1988b) indicate that
minimization algorithms based on the SR1 update may be competitive computationally
with methods using the BFGS formula. The algorithm used by Conn, Gould, and Toint
(1988b) is designed to solve problems with simple bound constraints, i.e., [ =x; = u;,
i=1,2,...,n The bound constraints are incorporated into a box constrained trust
region strategy for calculating global steps, in which an inexact Newton’s method
oriented towards large-scale problems is used. This method uses a conjugate gradient
method to approximately solve the trust region problem at each iteration, and also
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incorporates a new procedure that allows the set of active bound constraints to change
substantially at each iteration. In this context, Conn, Gould, and Toint (1988b) conclude
that the SR1 performance is generally somewhat better than the BFGS in terms of
iterations and function evaluations on their test problems. They point out that the use
of a trust region removes a main disadvantage of SR1 methods by allowing a meaningful
step to be taken even when the approximation is indefinite. They also point out that
the skipping technique used when the SR1 denominator is nearly zero was almost
never used in their tests. They attribute part of the success of the SR1 to the possible
convergence of the updates to the true second derivatives, as discussed above. Conn,
Gould, and Toint (1991) tested this convergence using random search directions. These
tests showed that, in comparison with other updates such as the BFGS and the DFP,
the SR1 generates more accurate Hessian approximations, and that, although the PSB
has the potential to give accurate Hessian approximations, the convergence is sometimes
so slow as to be almost unobservable.

The purpose of this paper is to better understand the computational and theoretical
properties of the SR1 update in the context of basic line search and trust region methods
for unconstrained optimization. In the next section, we present computational results
we obtained for the SR1 and the BFGS methods using standard line search and trust
region algorithms for small to medium sized unconstrained optimization problems.
We also report on tests of the convergence of the sequence of Hessian approximation
matrices { B, }, generated by the SR1 and BFGS formulas, and on tests of the condition
of uniform linear independence of the sequence of steps which is required by the
theory of Conn, Gould, and Toint (1991). These results indicate that this assumption
may not be satisfied for many problems. Therefore, in § 3, we prove a new convergence
result without the assumption of uniform linear independence of steps. Instead, it
requires the assumption of boundedness and positive definiteness of the Hessian
approximation. In § 4, we present computational results regarding the positive definite-
ness of the SR1 update and an interesting example. Finally, in § 5 we make some brief
conclusions and comments regarding future research.

2. Computational results and algorithms. In this section, we present and discuss
some numerical experiments that were conducted in order to test the performance of
secant methods for unconstrained optimization using the SR1 formula against those
using the BFGS update.

The algorithms we used are from the UNCMIN unconstrained optimization
software package (Schnabel, Koontz, and Weiss (1985)), which provides the options
of both line search and trust region strategies for calculating global steps. The line
search is based on backtracking, using a quadratic or cubic modeling of f(x) in the
direction of search, and the trust region step is determined using the “hook step”
method to approximately minimize the quadratic model within the trust region. The
frameworks of these algorithms are given below.

ALGorIiTHM 2.1. Quasi-Newton method (line search).

Step 0. Given an initial point X,, an initial positive definite matrix B,, and a =107*,
set k (iteration number) =0.

Step 1. If a convergence criterion is achieved, then stop.

Step 2. Compute a quasi-Newton direction

Pe=—(Bi+ md) 7'V (x),
where u, is a nonnegative scalar such that u, =0 if B, is safely positive
definite, else u; >0 is such that B, +u, [ is safely positive definite.



Step 3.

Step 4.
Step S.
Step 6.
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{Using a backtracking line search, find an acceptable steplength.}

(3.1) Set Ae=1.

(3.2) If f(xps1) =f (%) + aA VS (xi) Tpr, then go to Step 4.

(3.3) If first backtrack, then select the new A, such that x,,,(Ax) is the
local minimizer of the one-dimensional quadratic interpolating
f(x0), Vf(x) pe, and f(x+ pi), but constrain the new A, to be
=0.1, else select the new A, such that x,,(A,) is the local minimizer
of the one-dimensional cubic interpolating f(x:), Vf(xc) px,
S (Xi1(Aprev))s and f(xx+1(Azprev)) but constrain the new A, to be in
(0.1 prevs 0.5 prer].

(%+1(A) = %, + Apy and Aprey, Azprey = previous two steplengths.)

(3.4) Go to (3.2).

Set X1 = X + AP

Compute the next Hessian approximation Bj.,.

Set k=k+1, and go to Step 1.

ALGORITHM 2.2. Quasi-Newton method (trust region).

Step 0.

Step 1.
Step 2.

Step 3.

Step 4.
Step S.

Step 6.

Step 7.
Step 8.

Given an initial point x,, an initial positive definite matrix B,, an initial
trust region radius Ay, 7,€(0, 1), and n,=1, set k=0.
If a convergence criterion is achieved, then stop.
If B, is not positive definite, set I§k=Bk+p,kI where u, is such that
B, = B, + u, I is safely positive definite, else set ék = B,.
{Compute trust region step by hook step approximation.}
Find an approximate solution to
min Vf(x.) s +4s"Bis  subject to ||s]| = A,

seR"

by selecting
sk =—(Be+ ) 7'Vf (%), =0
such that ||s, || €[0.75A,, 1.5A,], or

sc=—Be'Vf(x),

if |Bi'VSf (x| =1.54,.

Set ared, = f(x;, + s;.) —f (xi).

If ared, = 107*Vf (x) sy, then

(5.1) Set Xy =x,+5x;

(5.2) Calculate pred, = Vf (x;) s, +3s7 Bisy ;

(5.3) If (ared,/pred,)<O0.1, then set A, ; = A,/2, else if (ared,/pred,) >
0.75, then set A, =2A,, otherwise A, ;=A;

(5.4) Go to Step 7;

Else

(6.1) If the relative steplength is too small, then stop; else calculate the
A, for which x;+Ags, is the minimizer of the one-dimensional
quadratic interpolating f (x), f (x, + si), and V£ (x) "s. ; set the new
A = A|s]|, but constrain the new A, to be between 0.1 and 0.5
times the current A,.

(6.2) Go to Step 3.

Compute the next Hessian approximation, B, ;.

Set k=k+1, and go to Step 1.
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Procedures for updating A, in Step 3 of Algorithm 2.1 are found in Algorithm
A6.3.1 of Dennis and Schnabel (1983). While a steplength A, > 1 is not considered in
the reported results, in our experience permitting A, > 1 makes very little difference
on these test problems. Procedures for finding v, in Step 3 of the trust region algorithm
are found in Algorithm A6.4.2 of Dennis and Schnabel (1983), and are based on
Hebden (1973) and Moré (1977). In both algorithms, the procedure for selecting u,
in Step 2 is found in Gill, Murray, and Wright (1981). (They give an algorithm for
finding a diagonal matrix D, such that B, + D is safely positive definite. If D =0, then
Wi is set to 0, else an upper bound b, on u, is calculated using the Gerschgorin circle
theorem, and u, is set to min{b,, b,} where b,=max {{D];, 1=i=n}.) In our
experience, when By is indefinite, w, is quite close to the most negative eigenvalue of
By, so that the algorithm usually finds an approximate minimizer of the quadratic
model subject to the trust region constraint.

Both algorithms terminate if one of the following stopping criteria is met.

(1) The number of iterations exceeds a given upper limit.

(2) The relative gradient,

max {1077 ) e (el 1,

max {| f (X1, 1}

is less than a given gradient tolerance.
(3) The relative step,

{max {Ixxs1]i = [xk]il}}
2ax ’

max {|[x,.11, 1}

is less than a given step tolerance.
All the algorithms used By = I

2.1. Comparison of the SR1 and the BFGS methods. Using the above-outlined
algorithms, we tested the SR1 method and the BFGS method on a variety of test
problems selected from Moré, Garbow, and Hillstrom (1981) and from Conn, Gould,
and Toint (1988b) (see Table Al in the Appendix). First derivatives were approximated
using finite differences. The gradient stopping tolerance used was 10>, and the step
tolerance was (machine epsilon)'/?. The upper bound used on the number of iterations

was 500. As was done in Conn, Gould, and Toint (1988b), we skipped the SR1 update
if either

sk (v = Bisi)l < rllsicll 1y = Bisell,

where r=10"%, or || B, — Bi|| > 10°. The BFGS update was skipped if s{ y, < (machine
epsilon)"’?||sc || ||y«|l. All experiments were run using double precision arithmetic on a
Pyramid P90 computer that has a machine epsilon of order 107'°.

For each test function, Tables A2 and A3 in the Appendix report the performance
of the SR1 and BFGS methods using the line search and trust region algorithm,
respectively. The tables contain the number of the function as given in the original
source (see Table Al), the dimension of the problem (n), the number of iterations
required to solve the problem (itrn.), the number of function evaluations (f-eval.)
required to solve the problem (which includes n for each finite difference gradient
evaluation), and the relative gradient at the solution (rgx). The last column (sp)

indicates whether the starting point used is x,, 10x,, or 100x,, where x, is the standard
starting point.
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In order to compare the performance of the two methods with respect to the
number of iterations and the number of function evaluations required to solve these
problems, we consider problems solved by both methods and calculate the ratio of
the mean of the number of iterations (or function evaluations) required to solve these
problems by the SR1 method to the corresponding mean for the BFGS method. Table
1 below reports the ratios of these means, using both arithmetic mean and geometric
mean. These numbers indicate that on the set of test problems we used, the SR1 is 10
percent to 15 percent faster and cheaper than the BFGS method.

TABLE 1
Ratio of SR1 cost to BFGS cost.

Line search Trust region
Mean Itrn. Function evaluations Itrn. Function evaluations
Arithmetic 0.82 0.83 0.84 0.88
Geometric 0.83 0.85 0.84 0.92

Table 2 gives the number of problems where the SR1 method requires at least 5,
10, 20, 30, 40, and 50 iterations less than the BFGS method, and vice versa. This table,
which is based on numbers from Table A2, also indicates the superiority of the SR1
on these problems.

TABLE 2
Comparisons of iterations.

Line search Trust region
Iterations different 5 10 20 30 40 50 5 10 20 30 40 50
SR1 better 26 20 13 10 7 3 27 20 11 9 5 1
BFGS better 7 5 2 2 1 1 8 6 3 1 1 1

2.2. Error in the Hessian approximation and uniform linear independence. In an
attempt to understand the difference between the SR1 and the BFGS, we tested how
closely the final Hessian approximations produced by the line search and trust region
SR1 and BFGS algorithms come to the exact Hessians at the final iterates. Recall that
the Hessian error for the SR1 is analyzed by Conn, Gould, and Toint (1991) under
the assumption of uniform linear independence which we redefine here.

DEFINITION. A sequence of vectors {s,} in R" is said to be uniformly linearly
independent if there exist (>0, k,, and m = n such that, for each k= k,, one can
choose n distinct indices k=k,<---<k,=k+m such that the minimum singular
value of the matrix Sy = [si./ sk, -, 8¢,/ |5k, |11s =&

Using this definition, Theorem 2 of Conn, Gould, and Toint (1991) proves the
following.

THEOREM 2.1 (Conn, Gould, and Toint (1991)). Suppose that f(x) is twice con-
tinuously differentiable everywhere, and that V>f (x) is bounded and Lipschitz continuous,
that is, there exist constants M >0 and y> 0 such that for all x, ye R",

IVif () =M and [[V2f(x)=Vf (W)= v]x -yl

Let x4 = x; + s, where {s,} is a uniformly linearly independent sequence of steps, and
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suppose that lim, . {x,} = x, for some x, € R". Let { B;} be generated by the SR1 formula

(¥ = Bisi) (v — Bksk)T
SZ(J’k —Bisi)

where B, is symmetric, and suppose that for all k=0, y, and s, satisfy

(2.1) Is{(yk—Bksk)lg '"Sk” "J’k_Bksk",

for some fixed re (0, 1). Then lim,_« || B, — V2f(x,)|| =0.

We now present some computational tests to determine to what extent such Hessian
convergence occurs in practice. For these tests we used analytic gradients and a gradient
stopping tolerance of 107'® and computed the quantity

||B, —sz(xx)||/||V2f(xz)I|,

where x; is the solution obtained by the algorithm, and B, is the Hessian approximation
at x;. These results are reported in Tables A4 and AS in the Appendix and summarized
in Tables 3 and 4. Tables 3 and 4 list, for each method, the number of problems for
which ||B,—Vf(x,)||/||V?f (x;)|| lies in a given range.

While the SR1 seems to produce slightly better final approximations than the
BFGS, there is no evidence from Tables 3 and 4 that it significantly outperforms the
BFGS with respect to convergence to the actual Hessian at the solution. Also, in a
good number of cases, neither method comes close to the correct Hessian.

By =B+

TABLE 3
Number of problems with || B, —V2f(x)||/|V?f(x,)|| in indicated range (line search methods).

=107 [1074,107%)  [107%,1072)  [1072,107')  [107.,1) =1

SR1 4 3 2 8 3
BFGS 3 0 1 10 6

oo oo

The lack of convergence of the SR1 Hessian approximations to the correct value
in many of these problems may appear to conflict with the analysis of Conn, Gould,
and Toint (1991) given in Theorem 2.1. In fact, there are two possible explanations
for this apparent conflict: either the algorithm has not converged closely enough for
the final convergence of the matrices to be apparent (this is hard to test in finite
precision arithmetic) or an assumption of Theorem 2.1 must be violated. The two
assumptions of Theorem 2.1 that could possibly be invalid are (1) that the denominator
of the SR1 is not too small (2.1), and (2) the uniform linear independence condition.
In our experiments, (2.1) was violated at most once for each test problem, and so this
assumption does not appear to be a problem in the SR1 method. Thus we decided to
test whether the uniform linear independence condition is satisfied for these problems.

Since the uniform linear independence condition would be very hard to test due
to the freedom to choose m and ¢ in the definition of uniform linear independence,

TABLE 4
Number of problems with ||B,—Vf (x;)|l/|V?f (x,)|| in indicated range (trust region methods).

=10 [107%,1073) [1073,1072) [1072,107") [10/,1) =1

SR1 5 0 4 5 4 10
BFGS 0 0 5 7 7 9
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we have tested a weaker condition. Foreach value 7=10"",i=1,2, ..., 8, we computed
the number of steps (say m) required so that the smallest singular value of the matrix,
S,f, composed of the final normalized m steps of the algorithm, is greater than 7
(S =si/lIstlls si=i/Nsi=alls - - -5 Si—m-1y/ I S1—(m—1)||], where m=n). Tables A6 and A7
contain the results of these experiments, which are summarized in Tables 5 and 6. A
“x” entry in Tables A6 and A7 means that the smallest singular value is less than 7
even if all the iterates are used.

These results indicate that the uniform linear independence assumption does not
seem to hold for all problems, especially those with large dimensions. Therefore, in
the next section we develop a convergence result for the SR1 method that does not
make this assumption.

TABLE 5
Number of problems where a,,;.(S,,) > 7 for m/n in indicated range
(line search SR1 method).

m/n in
T [1,2) [2,3) [3-4) [4-5) [5-10) Never
107! 7 1 3 3 6 8
1072 12 1 0 3 5 7
1078 12 1 0 4 4 7
TABLE 6

Number of problems where amin(ﬁm)> 7 for m/n in indicated range
(trust region SR1 method).

m/n in
T [1,2) [2,3) [3—-4) [4-5 [5-10) Never
107! 4 3 0 3 6 12
1072 12 1 0 3 5 7
1078 13 0 0 3 5 7

3. Convergence rate of the SR1 without uniform linear independence. As was indi-
cated at the end of the previous section, the condition of uniform linear independence
of the sequence {s,} under which Conn, Gould, and Toint (1991) analyze the perform-
ance of the SR1 method may be too strong in practice. Therefore, in this section we
consider the convergence rate of the SR1 method without this condition. We will show
that if we drop the condition of uniform linear independence of {s,} but add instead
the assumption that the sequence {B,} remains positive definite and bounded, then
the line search algorithm, Algorithm 2.1, generates at least p g-superlinear steps out
of every n+ p steps. This will enable us to prove that convergence is 2n-step g-quadratic.

The basic idea behind our proof is that, if any step falls close enough to a subspace
spanned by m = n recent steps, then the Hessian approximation must be quite accurate
in this subspace. Thus, if in addition the step is the full secant step —By'Vf(x,), it
should be a superlinear step. But in a line search method, for the step to be the full
secant step, B, must be positive definite, which accounts for the new assumption of
positive definiteness of B, at the good steps. In §4 we will show that empirically this
assumption seems very sound, although counterexamples are possible.
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Throughout this section the following assumptions will frequently be made.

AssumPTION 3.1. The function f has a local minimizer at a point x, such that
V?f(x,) is positive definite, and its Hessian V>f(x) is Lipschitz continuous near x,,
that is, there exists a constant y > 0 such that for all x, y in some neighborhood of x,,

IV2£ () =V (W = vllx = yll.

AssumpPTION 3.2. The sequence {x,} converges to the local minimizer x,,.

We first state the following result, due to Conn, Gould, and Toint (1991), which
does not assume linear independence of the step directions and which will be used in
the proof of the next lemma.

LeEmMMA 3.1. Let {x,} be a sequence of iterates defined by x;,,= x; + s;. Suppose
that Assumptions 3.1 and 3.2 hold, that the sequence of matrices { B} is generated from
{x,} by the SR1 update, and that for each iteration

(3.1) sk (¥ = Bisi)| = rl| sic|| |y — Bisill,

where r is a constant € (0, 1). Then, for each j, ||y, — Bj..s;|| =0, and
v (2 i—j—2
(2) =Bl =X (21) gl

for all iz j+2, where n,; =max {||x, — x| |j = s=p=i}, and vy is the Lipschitz constant
from Assumption 3.1.

Actually, it is apparent from the proof of Lemma 3.1 by Conn, Gould, and Toint
(1991), that if the update is skipped whenever (3.1) is violated, then (3.2) still holds
for all j for which (3.1) is true.

In the lemma below, we show that if the sequence of steps generated by an iterative
process using the SR1 update satisfies (3.1), and the sequence of matrices is bounded,
then out of any set of n+1 steps, at least one is very good. As in the previous lemma,
condition (3.1) actually must only hold at this set of n+1 steps, as long as the update
is not made when that condition fails.

LemMA 3.2. Suppose the assumptions of Lemma 3.1 are satisfied for the sequences
{xx} and {B.\} and that in addition there exists an M for which | B,|| = M for all k. Then
there exists a K =0 such that for any set of n+1 steps, ¥ ={s;;: K=k, ="+ =ku1.},
there exists an index k,, with me{2,3,..., n+1} such that '

||(Bk,,, _sz(x*))skm ||

<éey",
Ik, |
where
b7 = 1§I§1§a}+1 {”xk’ - x*”}
and

—k,~2

2 kn+l
E=4[7+«/_Z(—+1>
2\r
Proof. Given ¥, for j=1,2,...,n+1 define
s.=[ Sa_ S ]
T Lllsill sl Il

We will first show that there exists m € [2, n+1] such that s, /|| s || = Sy — W, Sy
has full column rank and is well conditioned, and ||w|| is very small. (In essence, either

+M+||V2f(x*)||]-
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m=n+1, S,,_, spans n-space well, and w=0, or m<n+1, S,,_, has full rank and is
well conditioned, and s, is nearly in the space spanned by S,,_;.) Then, using the
fact that (B, —V>f(x,))S,._, is small due to the Hessian approximating properties of
the SR1 update given in Lemma 3.1 above, and that w is small by this construction,
we will have the desired result.

For je{l,..., n}, let 7; be the smallest singular value of S; and define 7,,,=0.
Note that

1=71§7'2' ..ng+l=O'

Let m be the smallest integer for which

(3.3) Tm_ g,

Tm-1
Then since m=n+1 and 7, =1,
T Tm— _ _
(34) Tm—1= 71(—2> e (m_l) > 82;” 2)/"> eg’l 1)/"'
Ty Tm—2

Since x; - x,,, we may assume without loss of generality that &4 € (0, (3)") for all
k. Now we choose z€ R™ such that

(3.5) ”SmZ” =Tm ”Z“

and
[“]
zZ= N
-1

where u€ R™ ™. (The last component of z is nonzero due to (3.3).) Let w = S,,z. Then,
from the definition of S,, and z,

Sk,
I sk,

Since 7,,_, is the smallest singular value of S,,_; we have that

(3.6)

= Sm_lu_ w.

Sk,

el

IIWI|+1

1
(3.7) Nl = NSl =

m-—1

By (3.4) this implies that

w]l+1
(3.8) "“” <€(n—1)/n'
¥

Also, using (3.5) and (3.7), we have that

2
||w||2=us,..zu2=rfn||zn2=r%n<1+||u||2>ér%n+(—lf"—) (lwl+1)2
Tm—-l
Therefore, since (3.3) implies that 7,, <&4", using (3.3),
(3.9) ||w||2 < 82/” 2/"(Ilwll + 1)2<4sz/”(||w|| +1)%

This implies that
[wil(1—2e¥™) <2e¥",



STUDY OF THE SYMMETRIC RANK-ONE UPDATE 11
and hence ||w|| <1, since &4 < (3)". Therefore, (3.8) and (3.9) imply that

2
(3.10) [lull <£(n—1)/n’

(3.11) lwl|<4eg".

This gives the desired result that w is small, as well as a necessary bound on |u|.
Now we show that ||(By, —V°f(x,))S;_1ll, j€[2, n+1], is small. Note that this
result is independent of the choice of j. By Lemma 3.1 we have that

2 kj—i—Z
I=Besd =2 (3+1) " s

2 Ky =k =2
gzl(—ﬂ) e s
r \r

for all ie{k,, ks, ..., ki_;}. Also, letting

(3.12)

1
G,' = J sz(x,» + tsi) dt,
0

we have

Gisi= Jl V2 (xi+ ts))s; dt = Vf (Xi01) =V (%) =y,

0

and by the Lipschitz continuity of V>f(x),
lly: _sz(x*)si” =|(G; _sz(x*))si"

II (V2 (i 1) — V2 () 5 “
(3.13) <s:| j 192 (x,+ 15) = V21 ()| dit

1
=vlls| J [lx; + ts; — x| dt
0

= ’YHSIII €,

where vy is the Lipschitz constant. Therefore, using the triangle inequality and (3.12)
and (3.13), we have

”(Bk LI " ”(y' Bo) sl ” ”(y' Ay

=Qc+y)ey,

k . —k—2
Y 2 n+1" <1
=2(=+1 ,
¢ 2<r )

and hence for any je[2, n+1],
(3.14) (B, = V2f (x,))S;-1l =Vn(2¢ + y) &g

where
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Finally, using (3.6) and (3.14) with j =m, (3.11), and (3.10) we have that

_ 2
[|( By, |‘|7sf(ux*))sk,,, I_ I(Be. = V2£ (x,))(Spe_ytt — w)]|
km

= [1(Bi, = VS () Smoall ]| + [ B, = V2F Ce) I wl
= |ullVn e+ y)es + w1 By, |+ IV2f (x0)1)

2
< <—£(n~1)/n>‘/" QQc+y)eg+ae" (M + ||V2f(x*)|l)
&

<AlVn(e+y)+M+|Vf(x,)les”
=Ceg". 0

In order to use this lemma to establish a rate of convergence we need the following
result which is closely related to the well-known superlinear convergence characteriz-
ation of Dennis and Moré (1974).

LEMMA 3.3. Suppose the function f satisfies Assumption 3.1. If the quantities

(B = V2f (x4)) il
[l sl

&= |x—x| and

are sufficiently small, and if Bis, =—Vf(x;), then

B, —V?
|2 + s — x| = "sz(x*)_l”[z (B ”sfl(lx*))Skll e +%’eij|.
Kk

Proof. By the definition of s,

sz(x*)sk = (sz(x*) —By) sk —Vf(x),
so that

(3.15) s =—(x = x,) + V21 (x4) '[(V?f (x4) — Bi)si — Vf (i) + V2 (x,) (% — x) ]

Therefore, using Taylor’s theorem and Assumption 3.1,
- Y
(3.16) It xa sl = 1971 17 )= Bs+ 2 |

Now it follows from (3.15) that if ||[V>f(x,)~"|| [|(Bx — V2 (x,))sc |l /|| si]l =3, then by
Taylor’s theorem,

3 1 2
Il =3 =5l 19 01 ] =20 5,0

if e, is sufficiently small. Using this inequality together with (3.16) gives the result. 0

Using these two lemmas one can show that for any p>n, Algorithm 2.1 will
generate at least p — n superlinear steps every p iterations, provided that By is safely
positive definite, which implies that B, is not perturbed in Step 2 and wu, =0. In the
following theorem, this is proved and used to establish a rate of convergence for
Algorithm 2.1 under the assumption that the sequence { B, } becomes, and stays, positive
definite. In a corollary we show that this implies that the rate of convergence for
Algorithm 2.1 is 2n-step g-quadratic. As we will see in the next section, our test results
show that the positive definiteness condition is generally satisfied in practice. We are
assuming here that if B, is positive definite, then it is not perturbed in Step 2, i.e., we
are assuming that ‘“‘safely positive definite” just means positive definite.



STUDY OF THE SYMMETRIC RANK-ONE UPDATE 13

THEOREM 3.1. Consider Algorithm 2.1 and suppose that Assumptions 3.1 and 3.2
hold. Assume also that for all k=0,

sk (v = Bisi)l = rl| sl | yie — Bisiel

Sor a fixed re (0, 1), and that there exists M for which || B.|| = M for all k. Then, if there
exists a K, such that B, is positive definite for all k= K,,, then for any p=n+1 there
exists a K, such that for all k= K,

3.17) eip=ael/",

where a is a constant and e; is defined as | x; —x,|.

Proof. Since V*f(x,) is positive definite, there exists a K,, 8,>0 and 8,> 0 such
that

(3.18) BiLf (i) = f ()12 = |3 = x4 || = Bol f (i) = f (x4)1?

for all k= K, . Therefore, since we have a descent method, for all I> k> K,,
B
[l = x| =2 [[% = x|
B

Now, given k> K, we apply Lemma 3.2 to the set {sy, Sii1,---., Sk+n}.- Thus there
exists ,e{k+1,..., k+n} such that

I(By =V (xy)si -(& )“"
(3.19) s A\ e)

(If there is more than one such index I, we choose the smallest.) Equation (3.19)
implies that for ||x, — x| sufficiently small, by Theorem 6.4 of Dennis and Moré (1977),
Algorithm 2.1 will choose A, =1 so that x ,, = x;, + 5, . This fact, together with Lemma
3.3 and (3.19), implies that if e, is sufficiently small, then

(3.20) e, =ae)"e,
for some constant &. Now we can apply Lemma 3.2 to the set
{Sis Sk1s + -+« s Sktns Sktns1) _{SI,}

to get l,. Repeating this n—p times we get a set of integers I, <l,<---<I,_,, with
l,>k and I,_,<k+p such that

(3.21) e1=dey e,

for each I;. Now letting h; =[ f(x;) -f(x*)]1/2, since we have a descent method,

(3'22) hj+1 é hj,
and using (3.18) we have that for our arbitrary k= K,

1 a . ap i
(3.23) ht,+1§E 1,-+1§”B—1 e e’iéﬁ_lz e h,

for i=1,2,..., p—n. Therefore, using (3.22) and (3.23) we have that
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which, by (3.18), implies that

B2 (4B, P
ek+p§23—1 'E';-e}(/" ey.

Therefore,

B p—n+1
ap—nf 2 p/n
Gip=a ( ) ey,

B

and 3.17 follows. 0
CoROLLARY 3.1. Under the assumptions of Theorem 3.1 the sequence {x,.} generated
by Algorithm 2.1 is n+ 1-step g-superlinear, i.e.,

ek+n+1_)0
b
€x

and is 2n-step q-quadratic, i.e.,

lim sup ek+22" =00,
k>0 €y

Proof. Let p=n+1 and p=2n in Theorem 3.1. 0

Note that a 2n-step g-quadratically convergent sequence has an r-order of (v2)"/".
Since the integer p in the theorem is arbitrary, an interesting, purely theoretical question
is what value of p will prove the highest r-convergence order for the sequence. It is
not hard to show that, by choosing p to be an integer close to en, the r-order approaches
e'/“"~1.44"" for n sufficiently large, and that this value is optimal for this technique
of analysis.

4. Positive definiteness of the SR1 update. One of the requirements in Theorem
3.1 for the rate of convergence to be p-step g-superlinear is that the sequence {By}
generated by the SR1 method be positive definite. Actually, the proof of Theorem 3.1
only requires positive definiteness of B, at the p —n out of p ““good iterations.” In this
section, we present computational results to confirm that, in practice, the SR1 method
generally satisfies this requirement.

In Table A8 in the Appendix, in the fourth column, we report for each iteration
whether B, is positive definite or not. The fifth column reports the percentage of iterates
at which the SR1 update is positive definite, and the sixth column contains the largest
number j for which all of B,_(;_,), ..., B; are positive definite, where B, is the Hessian
approximation at the final iterate. The results of Table A8 are summarized in Table
7, which indicates that the SR1 formula was positive definite at least 70 percent of the
time on every one of our test problems. In light of this, and since Theorem 3.1 really
only requires positive definiteness at the ‘““good steps” (at other steps all that is needed
is that f be reduced), the chances that superlinear steps will be taken at least every n
steps by the algorithm seem good. Another way of viewing this is the following. We
know from Theorem 3.1 that out of every 2n steps at least n will be “good steps™ as
long as B, is positive definite at these iterations. Thus if, for example, By is positive

TABLE 7
Percentage of iterations with By positive definite.

Percentage =70 [70,90) [80,90) [90,100) 100
Problems 0 5 12 6 5
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definite at 80 percent of these 2n steps, at least 30 percent of the 2n iterates must be
“good steps.”
We also tested the denominator condition that

(4.1) sk (i = Bisi)| = 7l sicll ||y — Bisi|

where r=107® using standard initial points. The last column in Table A8, which reports
the number of times this condition was violated, indicates that this condition is rarely
violated in practice. This finding is consistent with the results of Conn, Gould, and
Toint (1988b).

Finally we present an example that shows that it is possible for a line search SR1
algorithm to fail to have B, positive definite at all iterations, and to converge linearly
to the minimizer x,. This shows that the assumptions of Theorem 3.1 cannot be
guaranteed to hold. We then consider the same example in a trust region SR1 algorithm,
and show that it does not suffer from the same problems. This leads us to feel that it
may not be necessary to assume {B,} positive definite in order to prove superlinear
convergence for a trust region SR1 method.

Example 4.1. Let

21 4 e |1 o
f(x)_zx X, xo—“[o], and BO_[O 0_]9

where o <0. At the first iteration, the algorithm will compute

1+6, 0 7! 8o
— —_ V =
1= Yo [ 0 a'+60] S (Xo) =15 %o

for some §,> —o, and accept this point as the next iterate. The SR1 update will produce

Yo— Boso=0, so that B, = B,. The remaining iterates proceed analogously, so that for
each k, B, = B, and

23

X =X
k+1 1+8k k

for some &, > —o, meaning that the rate of convergence is not better than linear with
constant |a|/(1+|d]).

It is interesting to consider the behavior on the same problem of a trust region
SR1 algorithm that exactly solves the problem

(4.2) min Vf(x,)"s+3s"Bis subjectto ||s|| = A,

seR"

at each iteration. If there exists u, such that By+ uol is positive definite and ||(Bo+
wol)'Vf(x0)|| = Ao, then as in the line search method,

X xo and B;=B,.

_ Mo
1+ po

Since ared, = pred,, the trust region radius is not decreased. Thus eventually at some
iterate k, we must have ||( By + wd) "'Vf (x;)|| < Ai for all w, > —A,, where A, <0 is the
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smallest eigenvalue of B,. In this case the solution to (4.2) is the step

Xir1 =X — (B — )\kI)+Vf(xk) — Ve

1
=xk_<_)xk_ ve,
1-o

fora v # 0 that makes | s, || = A,. (Here e, = (0, 1) is the eigenvector of B, corresponding
to the negative eigenvalue.) It is then straightforward to verify that y, — Bys, =
v(c—1)e,, Biyy=1=V*f(x), and x4, = x,.

A practical trust region algorithm will not solve (4.2) exactly, but any algorithm
that deals with the ‘“hard case” (when [(B,—AJd)'Vf(x)||<A,) well, such as
algorithms of Moré and Sorenson (1983), will have the same effect. That is, at some
point it will set

Xir1 =X — (Bi + ,ukI)_IVf(xk) — Uk,

where v, is a negative curvature direction for By. This implies that v, e, # 0, which in
turn leads to By, =1 and x4, = x,. Thus the trust region method has the ability, for
this example, to correct negative eigenvalues in the Hessian approximation. This
indicates that it may be possible to establish superlinear convergence of a trust region
SR1 algorithm without assuming a priori either strong linear independence of the
iterates or positive definiteness of {B,}. This issue is currently under investigation.

5. Conclusions and future research. In this paper, we have attempted to investigate
theoretical and numerical aspects of quasi-Newton methods that are based on the SR1
formula for the Hessian approximation. We considered both line search and trust
region algorithms.

We tested the SR1 method on a fairly large number of standard test problems
from Moré, Garbow, and Hillstrom (1981), and Conn, Gould, and Toint (1988b). Our
test results show that on the set of problems we tried, the SR1 method, on the average,
requires somewhat fewer iterations and function evaluations than the BFGS method
in both line search and trust region algorithms. Although there is no result for the
BFGS method concerning the convergence of the sequence of approximating matrices
to the correct Hessian like the one given by Conn, Gould, and Toint (1991) for the
SR1, numerical tests do not show that the SR1 method is more accurate than the BFGS
method in this regard. One reason for this, as indicated by our numerical experiments,
is that the requirement of uniform linear independence that is needed by the theory
of Conn, Gould, and Toint (1991) often fails to be satisfied in practice.

Under conditions that do not assume uniform linear independence of the generated
steps, but do assume positive definiteness and boundedness of the Hessian approxima-
tions, we were able to prove n+ 1-step g-superlinear convergence, and 2n-step quad-
ratic convergence, of a line search SR1 method. We also gave numerical evidence that
the SR1 update is positive definite most of the time, and that one of the potential
problems of the formula, that of the denominator being zero, is rarely encountered in
practice.

An interesting topic for future research that was mentioned in §4 is the convergence
analysis of a trust region SR1 method, again without the assumption of uniform linear
independence of steps. It is possible that the assumption of the positive definiteness
of the Hessian approximations, which we showed is necessary and sufficient to prove
superlinear convergence in the line search SR1 method, may not be necessary to prove
superlinear convergence for a properly chosen trust region SR1 algorithm.
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Appendix.
TABLE Al
List of test functions, numbers, and names.
Number Dimension =~ Name
MGHO05 2 Beale function
MGHO07 2 Helical valley function
MGH09 3 Gaussian function
MGH]12 3 Box three-dimensional function
MGH14 3 Wood function
MGH16 4 Brown and Dennis function
MGH18 4 Biggs Exp6 function
MGH20 6 Watson function
MGH21 9 Extended Rosenbrock function
MGH?22 10 Extended Powell singular function
MGH23 10 Penalty function 1
MGH24 10 Penalty function II
MGH?25 10 Variably dimensioned function
MGH?26 10 Trigonometric function
MGH35 9 Chebyquad function
CGTO1 8 Generalized Rosenbrock function
CGTO02 25 Chained Rosenbrock function
CGT04 20 Generalized singular function
CGTO5 20 Chained singular function
CGTO07 8 Generalized Wood function
CGTO08 8 Chained Wood function
CGT10 30 A generalized Broyden tridiagonal function
CGT11 30 Another generalized Broyden tridiagonal function
CGT12 30 Generalized Broyden banded function
CGT14 30 Toint’s seven-diagonal generalization of Broyden tridiagonal
function

CGT16 30 Trigonometric function
CGT17 8 A generalized Cragg and Levy function
CGT21 30 A generalized Brown function

MGH: problems from Moré, Garbow, and Hillstrom (1981).
CGT: problems from Conn, Gould, and Toint (1988b).

TABLE A2

Iterations and function evaluations—line search.

BFGS SR1
Function n itrn. f-eval rgx itrn. f-eval rgx sp
MGHO05 2 16 58 0.7E - 06 14 52 0.1E—-05 1
MGHO07 3 26 141 0.4E—05 30 142 0.4E - 06 1
MGHO09 3 5 34 0.3E-05 3 26 0.2E-07 1
MGHI12 3 35 157 0.5E—06 21 99 0.6E —06 1
MGH14 4 32 186 0.7E-05 26 160 0.5E—05 1
MGH16 4 31 183 0.1E—05 21 133 0.3E—-07 1
MGHI18 6 43 336 0.2E-05 37 302 0.6E — 06 1
MGH20 9 95 1020 0.2E-05 46 532 0.8E—05 1
MGH21 10 34 461 0.9E - 05 34 462 0.3E-05 1
MGH?22 8 45 464 0.7E—-05 36 382 0.4E —05 1
MGH23 10 135 1604 0.9E - 05 204 2377 0.6E — 05 1
MGH24 10 25 358 0.7E—-05 25 362 0.8E—05 1

17
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TABLE A2 (continued).

BFGS SR1
Function n itrn. f-eval rgx itrn. f-eval rgx sp
MGH25 10 16 259 0.7E-06 16 259 0.7E—-06 1
MGH26 10 27 374 0.3E-05 27 375 0.2E-05 1
MGH35 9 25 320 0.2E—-05 25 320 0.3E-06 1
MGHO05 2 47 154 0.3E-07 41 139 0.1E—-06 10
MGHO07 3 29 136 0.6E —06 38 175 0.4E—-07 10
MGHO09 3 20 98 0.1E-05 17 102 0.3E—06 10
MGH12 3 66 286 0.5E—05 55 259 0.5E-05 10
MGH14 4 58 316 0.6E —05 69 379 0.1E—06 10
MGH16 4 59 322 0.3E-05 37 212 0.1E-05 10
MGH18 6 45 361 0.3E-05 46 369 0.1E-05 10
MGH20 9 95 1020 0.2E-05 46 532 0.8E —05 10
MGH21 10 57 775 0.3E-05 60 813 0.4E—-07 10
MGH?22 8 88 977 0.9E-05 67 793 0.3E-05 10
MGH?23 10 177 2080 0.9E - 05 192 2235 0.9E —-05 10
MGH25 10 41 535 0.3E—-05 23 337 0.3E-05 10
MGH26 10 72 876 0.7E - 05 43 560 0.9E—06 10
MGHO07 3 31 174 0.4E —-06 23 113 0.6E-07 100
MGH14 4 118 625 0.5E—06 104 567 0.5E-05 100
MGH16 4 89 472 0.2E-05 55 303 03E—-06 100
MGH20 9 95 1020 0.2E-05 46 532 0.8E—-05 100
MGH21 10 158 2185 0.8E—05 154 1906 0.5E—-06 100
MGH22 8 129 1227 0.4E —05 90 875 09E-05 100
MGH25 10 472 5276 0.1E—-04 335 3769 0.1E-04 100
CGTO1 8 71 707 0.5E 05 81 843 0.4E—06 1
CGTO02 25 36 1315 0.7E - 05 43 1505 0.6E—05 1
CGTO04 20 85 2049 0.9E - 05 49 1291 0.5E—05 1
CGTO05 20 311 6797 0.8E—05 180 4055 0.9E - 05 1
CGTO07 8 129 1273 0.3E-05 116 1132 0.4E—06 1
CGTO8 8 141 1348 0.5E—05 140 1347 0.1E-05 1
CGT10 30 58 2328 0.9E - 05 40 1770 0.7E—-05 1
CGT11 30 37 1686 03E-05 32 1526 0.8E—05 1
CGT12 30 264 8734 0.6E—05 199 6734 0.5E—05 1
CGT14 30 70 2699 0.5E-05 100 3640 0.9E—05 1
CGT16 10 11 203 0.4E—-05 11 204 0.2E-05 1
CGT17 8 134 1269 0.8E—05 92 892 0.3E-05 1
CGT21 20 12 504 0.2E-05 11 483 0.3E-09 1
TABLE A3
Iterations and function evaluations—trust region.
BFGS SR1
Function n itrn. f-eval rgx itrn. f-eval rgx sp
MGHO05 2 15 57 0.3E—-06 16 68 0.5E—05 1
MGHO07 3 27 133 0.1E-05 29 150 0.4E - 06 1
MGHO09 3 5 38 0.3E-05 3 31 0.2E-07 1
MGH12 3 32 150 0.3E—05 26 146 0.8E—05 1
MGH14 4 46 265 0.4E-07 34 247 0.5E-05 1
MGH16 4 33 188 0.1E-05 20 138 0.7E - 05 1
MGH18 6 43 341 0.9E—05 40 344 0.8E—05 1
MGH20 9 88 957 0.3E—05 46 584 0.3E-05 1
MGH21 10 42 555 0.2E-05 49 671 0.2E-06 1
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TABLE A3 (continued).

BFGS SR1
Function n itrn. f-eval Igx itrn. f-eval rgx sp
MGH22 8 41 428 0.6E —05 26 294 0.8E—05 1
MGH24 10 24 344 0.2E-05 24 357 0.8E—05 1
MGH25 10 14 236 0.6E —05 14 236 0.6E —05 1
MGH26 10 27 373 0.2E-05 24 349 0.1E-05 1
MGH35 9 24 308 0.4E-05 21 285 0.3E-05 1
MGHO05 2 45 160 0.9E—-05 36 147 0.9E—-06 10
MGHO07 3 29 141 0.1E—-05 33 171 0.4E—05 10
MGHO09 3 21 112 0.8E—05 15 84 0.9E - 05 10
MGH12 3 62 292 0.9E-06 19 122 0.7E - 05 10
MGH14 4 82 443 0.6E —06 74 467 0.8E—-06 10
MGH16 4 59 324 0.5E—-06 35 222 0.8E-07 10
MGHI18 6 39 323 0.SE-05 51 437 0.6E — 07 10
MGH20 9 88 957 0.3E—-05 46 584 0.3E—-05 10
MGH21 10 63 788 0.3E-05 58 800 0.2E-05 10
MGH?22 8 94 913 0.5E—05 56 575 0.8E —-05 10
MGH23 10 22 337 0.4E-05 113 1335 0.8E—05 10
MGH24 10 224 2609 0.1E—04 253 3140 0.1E-04 10
MGH25 10 36 488 0.7E-05 25 371 0.3E-05 10
MGH26 10 87 1040 0.7E—05 48 650 0.1E-05 10
MGHO07 3 34 158 0.2E-05 22 118 0.2E-05 100
MGH14 4 85 471 0.1E—-05 69 426 0.3E—-05 100
MGH16 4 89 472 0.4E—-06 52 311 0.1E-04 100
MGH20 9 88 957 0.3E-05 46 584 03E-05 100
MGH21 10 165 1941 0.2E-05 149 2139 03E—-06 100
MGH22 8 116 1127 0.8E—05 80 840 0.2E—05 100
CGTO1 8 58 584 0.7E—05 80 848 0.8E —05 1
CGTO02 25 45 1550 0.4E-05 46 1597 0.2E—-05 1
CGTo04 20 110 2579 0.3E—05 89 2195 0.5E—-05 1
CGTOS5 20 323 7048 0.5E—05 156 3645 0.8E—-05 1
CGTO07 8 123 1190 0.4E—-05 139 1429 0.3E—-06 1
CGTO08 8 130 1255 0.9E—05 146 1524 0.SE-05 1
CGT10 30 58 2326 0.9E—-05 42 1832 0.7E—-05 1
CGT11 30 35 1619 0.3E—05 31 1493 0.5E—05 1
CGTi12 30 62 2454 0.8E—05 44 1916 0.5E—-05 1
CGT14 30 34 1582 0.8E—05 29 1452 0.5E-05 1
CGT16 10 11 204 0.4E-05 11 206 0.3E—-05 1
CGT17 8 83 818 0.9E—05 74 802 0.8E—05 1
CGT21 20 12 504 0.2E-05 11 485 0.3E—-09 1
TABLE A4
Testing convergence of {B,} to V*f (x4 )—line search.
BFGS SR1

Function n itr | H, = By|l/ I H I itr 1 H, = B|l/ | H |

MGHO05 2 19 0.458E—04 16 0.686E — 05

MGHO07 3 28 0.274E - 04 33 0.175E - 06

MGHO09 3 9 0.918E+00 4 0.918E+00

MGH12 3 38 0.545E - 04 24 0.147E-03

MGH14 4 35 0.830E —02 29 0.154E — 04

MGH16 4 34 0.928E—-01 23 0.348E—-04

MGH18 6 47 0.234E+01 40 0.234E+01

19
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TABLE A4 (continued).

BFGS SR1
Function no i IH-BIIHL e [H B/
MGH20 9 175 0.105E+00 100 0.264E —02
MGH21 10 35 0.804E - 01 34 0.645E - 01
MGH22 8 74 0.161E+01 49 0.160E+01
MGH23 10 178 0.167E+ 04 215 0.167E+ 04
MGH24 10 348 0.177E-01 330 0.140E - 03
MGH25 10 16 0.748E + 04 16 0.748E + 04
MGH26 10 31 0.689E — 01 31 0.468E — 01
MGH35 9 28 0.834E+00 26 0.833E+00
CGTO1 8 73 0.393E-01 83 0.144E - 01
CGTO02 25 43 0.570E - 01 50 0.317E-01
CGTO04 20 500 0.133E+04 500 0.133E+04
CGTO5 20 500 0.582E+03 500 0.503E+03
CGTO07 8 138 0.691E-01 124 0.111E-01
CGTO08 8 147 0.425E - 01 146 0.492E - 02
CGT10 30 150 0.134E+03 84 0.185E+03
CGT11 30 44 0.781E-01 37 0.448E —01
CGT12 30 273 0.384E + 00 210 0.691E - 01
CGT14 30 86 0.279E + 00 107 0.303E+00
CGT16 10 18 0.466E —01 16 0.385E—-03
CGT17 8 216 0.462E + 00 125 0.566E —01
CGT21 20 16 0.124E+01 12 0.120E+01
TABLE AS
Testing convergence of {B,} to V*f (x4 )—trust region.
BFGS SR1
Function n itr | H, = B/||/ || H,] itr |H,—B/|l/| H,|
MGHO05 2 17 0.235E-02 18 0.102E-05
MGHO07 3 30 0.400E —02 31 0.172E-05
MGHO09 3 9 0.918E+00 4 0.918E+00
MGH12 3 36 0.396E —02 30 0.473E-02
MGH14 4 47 0.216E—02 41 0.290E - 05
MGH16 4 36 0.809E - 01 22 0.369E — 04
MGH18 6 47 0.234E+01 40 0.234E+01
MGH20 9 157 0.261E—01 99 0.176E —02
MGH21 10 47 0.999E + 00 51 0.999E +00
MGH22 8 77 0.277E+01 43 0.276E+01
MGH23 10 500 0.154E+04 149 0.218E+04
MGH24 10 287 0.391E-02 202 0.173E+02
MGH25 10 15 0.103E+05 15 0.103E+05
MGH26 10 31 0.906E —01 28 0.234E - 01
MGH35 9 28 0.880E + 00 23 0.880E+ 00
CGTO1 8 61 0.110E+ 00 81 0.275E-01
CGT02 25 51 0.228E+ 00 50 0.107E+ 00
CGT04 20 500 0.314E+04 500 0.248E+ 04
CGTO5 20 500 0.104E+ 04 500 0.671E+03
CGT07 8 122 0.354E-01 138 0.579E —-02
CGTO08 8 138 0.532E-01 139 0.405E — 04
CGT10 30 115 0.109E+03 82 0.112E+03
CGT11 30 40 0.982E—-01 34 0.690E - 01
CGT12 30 97 0.770E+03 66 0.756E+03
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BFGS SR1

Function n itr I H, = By|l/ | Hyl itr Il H, = By||/ | H |

CGT14 30 46 0.220E+00 40 0.160E - 01

CGT16 10 16 0.523E-01 15 0.298E—02

CGT17 8 200 0.250E+00 123 0.117E-01

CGT21 20 16 0.124E+01 12 0.120E+01

TABLE A6
Testing uniform linear independence of {s,}—line search.
No. of steps so that o;, (§m)*>
f(x) n itr 107" 1072 107 10 107  10° 1077 107°
MGHO05 2 16 3 2 2 2 2 2 2 2
MGHO07 3 33 4 3 3 3 3 3 3 3
MGHO09 3 4 * * * * * * * *
MGH12 3 24 14 5 3 3 3 3 3 3
MGH14 4 29 10 5 5 4 4 4 4 4
MGH16 4 23 6 4 4 4 4 4 4 4
MGH18 6 40 * * * * * * * *
MGH20 9 100 74 70 67 64 63 62 61 60
MGH21 10 34 * * * * * * * *
MGH22 8 49 * * * * * * * *
MGH23 10 215 77 77 77 77 71 77 77 71
MGH24 10 330 79 79 79 79 79 79 79 79
MGH25 10 16 * * * * * * * *
MGH26 10 31 30 16 10 10 10 10 10 10
MGH35 9 26 * * * * * * * *
CGTO1 8 83 26 15 13 13 13 13 13 13
CGTO02 25 50 47 28 25 25 25 25 25 25
CGTo04 20 500 87 87 87 87 87 87 87 87
CGTO5 20 500 87 87 87 87 87 87 87 87
CGTO07 8 124 76 76 76 42 34 34 34 34
CGTO08 8 146 45 45 45 45 45 45 45 45
CGT10 30 84 * * 60 34 30 30 30 30
CGT11 30 37 35 33 30 30 30 30 30 30
CGT12 30 210 98 98 88 88 88 88 88 88
CGT14 30 107 59 36 36 36 36 36 36 36
CGT16 10 16 11 10 10 10 10 10 10 10
CGT17 8 125 67 45 42 34 34 34 34 34
CGT21 20 12 * * * * * * * *
* gm =Ls/Msill, s/ Nsizalls - - -5 Si—m/ Isi-mll], Where mz=n.
TABLE A7
Testing uniform linear independence of {s, }—trust region.
No. of steps so that o,,;,(5,,)*>
f(x) n itr 107" 1072 102 10* 10° 10° 1077 107®

MGHO05 2 18 3 2 2 2 2 2 2 2
MGHO07 3 31 S 3 3 3 3 3 3 3
MGHO09 3 4 * * * * * * * *
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TABLE A7 (continued).

No. of steps so that o, (S,,)*>

f(x) n itr 107! 1072 1073 107 1073 10°¢ 1077 1078
MGH12 3 30 7 6 5 3 3 3 3 3
MGH14 4 41 8 5 4 4 4 4 4 4
MGH16 4 22 5 4 4 4 4 4 4 4
MGH18 6 40 * * * * * * * *
MGH20 9 99 75 64 63 62 62 61 61 61
MGH21 10 51 * * * * * * * *
MGH22 8 43 * ® * *
MGH23 10 149 77 77 77 77 77 77 77 77
MGH24 10 202 79 79 79 74 74 74 74 74
MGH25 10 15 * * * * * * * *
MGH26 10 28 26 18 10 10 10 10 10 10
MGH35 9 23 * * * * * * * *
CGTO1 8 81 32 17 13 12 12 12 12 12
CGTO02 25 50 * 29 26 25 25 25 25 25
CGT04 20 500 88 88 88 88 88 88 88 88
CGTO5 20 500 88 87 87 87 87 87 87 87
CGTO07 8 138 76 76 50 43 41 41 41 41
CGTO08 8 139 41 41 41 41 41 41 41 41
CGT10 30 82 ® * 59 36 32 30 30 30
CGT11 30 34 * 31 30 30 30 30 30 30
CGTI12 30 66 * * * 60 40 31 30 30
CGT14 30 40 * 33 30 30 30 30 30 30
CGT16 10 15 12 10 10 10 10 10 10 10
CGT17 8 123 73 49 39 34 33 33 33 33
CGT21 20 12 * * * * * * * *

* ‘§m = [SI/IISIIL sl—l/"sl~1"’ B sl—m/"sl-—m"], where m=n.

TABLE A8
Testing positive definiteness—line search.

f(x) n itr  0: Indefinite; 1: Positive definite %pd 1* 2%
MGHO05 2 14 1111111111111 1.00 13 1
MGHO07 3 30 11111101111011110111111111111 0.90 12 1
MGH09 3 311 1.00 2 1
MGH12 3 21 11111111111111111111 1.00 20 1
MGH14 4 26 1111111101111110111110111 0.88 3 1
MGH16 4 21 10111111111111111111 0.95 18 1
MGH18 6 37 111111100111111111111111011111111111 0.92 11 1
MGH20 9 46 1111011111111111011111011101101111110

11111011 0.84 2 1
MGH21 10 34 111011111110111101001111111111111 0.85 13 1
MGH?22 8 36 11111101011111111111111110111111111 0.91 9 1
MGH23 10 204 111111111111111111101111111111101111

111011101101101001101001111011110111

111111011010001111100111111101110011

111101011111101111010100110101111110

111101101111111010011011101111011001

11111011111101111110111 0.77 3 0
MGH24 10 25  111111101110111110111111 0.88 6 1
MGH25 10 16 111111111111111 1.00 15 0
MGH26 10 27 11101110111011101101110111 0.77 3 1
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TABLE A8 (continued).

f(x) n itr  0: Indefinite; 1: Positive definite %pd 1* 2%
MGH35 9 25 111110110111110111111111 0.88 9 1
CGTO1 8 81 111111110011010011110101101111110100

110111111011011101100110111011111011

11111111 0.75 10 1
CGTO02 25 43 111111110011111110011011011011011111

111111 0.81 11 1
CGT04 20 49 111111111101111111011111101111111111

111111111111 0.94 22 1
CGTO05 20 180 111111111011111011111111111101110111

111111111111111010111101111111110111
111111110111011010001110111111101111
111111111010111111011011111001110111
11111111111110111111111111111111111 0.87 21 1
CGTo7 8 116  111111111111111110111111101000011011
010010011111101011010011011101111011
011111111111111101111011110110111111
1111111 0.78 13 1
CGTO8 8 140 111111110110111110111011111101101101
111110011011111101101110011011110100
110110000000011110111111001110100111

1110110011010011011111010111111 0.70 6 1
CGT10 30 40 111111111111111111111111101111111111

001 0.92 1 1
CGT11 30 32 1111011101111111110111011111111 0.87 8 1
CGT12 30 199 111111111110111111110110111101111111

111110110111110111011101110111110111
011111111110111011111101100111111010
110011111111111010101101111111101011
101111110011111011111110110011011111

110101011101111101 0.80 1 1
CTG14 30 100 111010111110111011101110011110110111

111111101110111101101111111010101111

111111111111110111111111111 0.83 12 1
CGT16 10 11 1111111111 1.00 10 1
CGT17 8 92 111111011111111101111110111101101111

011111100111111111101111101111111101

1111111110111111111 0.87 9 1
CGT21 20 11 1110101111 0.80 4 1

1*: Number of consecutive iterations where B, was positive definite immediately prior to the termination
of the algorithm.

2*: Number of iterations where the SR1 update is skipped because condition (4.1) was violated.
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A CUTTING PLANE APPROACH TO THE SEQUENTIAL ORDERING
PROBLEM (WITH APPLICATIONS TO JOB SCHEDULING
IN MANUFACTURING)*

N. ASCHEUERf, L. F. ESCUDERO%, M. GROTSCHELt, AND M. STOERf

Abstract. The sequential ordering problem (SOP) finds a minimum cost Hamiltonian path subject to
certain precedence constraints. The SOP has a number of practical applications and arises, for instance, in
production planning for flexible manufacturing systems. This paper presents several 0-1 models of the SOP
and reports the authors’ computational experience in finding lower bounds of the optimal solution value
of several real-life instances of SOP. One of the most successful approaches is a cutting plane procedure
that is based on polynomial time separation algorithms for large classes of valid inequalities for the associated
polyhedron.

Key words. traveling salesman problem, sequential ordering problem, linear ordering problem, pre-
cedence constraints, cutting plane algorithm, separation algorithm, polyhedral combinatorics
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1. Introduction and problem definition. Problems for the flexible manufacturing
systems we are considering (see, e.g., [6]) can be phrased in graph theoretical ter-
minology in the following way. We are given a directed or undirected graph where an
arc or edge represents the possibility of performing two tasks consecutively and where
a (e.g., transportation or set-up) cost is incurred by changing from one task to another.
In addition, some precedence relations are given that specify that some tasks have to
be executed before certain others. The problem is to schedule all jobs at minimum
cost, i.e., to find a feasible Hamiltonian path, say # of minimum cost, where 3 is
called feasible if it does not violate the precedence constraints.

In this paper (and in the real application that motivated this work) the given
graph is the complete directed graph D, =(V, A,) on n nodes. (An application, where
the given graph is undirected, can be found in [22].) We denote an arc going from
some node i to another node j by (i, j) and the associated cost by c;. The precedence
constraints are given by a digraph P =(V, R), on the same node set V as D,, where
an arc (i,j)€ R means that task i has to be performed before task j. Clearly, this
precedence digraph P has to be acyclic (i.e., may not contain a directed cycle). Moreover,
if (i,j), (j, k) € R then k cannot be performed before i; in other words, we can also
assume that P is transitively closed.

So the precedence constraints are given by an acyclic and transitively closed
digraph P =(V, R). Using this notation we call a Hamiltonian path in D, feasible if
(J, i) 2 R holds for all i <j, where i <j means that there is a directed path from node
i to node j in the Hamiltonian path.

Now we can state the sequential ordering problem (SOP) formally. Given a complete
digraph D, =(V, A,) with costs ¢; for all (i, j)€ A, and a transitively closed acyclic
digraph P =(V, R), find a feasible Hamiltonian path 5 in D, that has minimum cost.

If the precedence digraph P = (V, R) has empty arc set, the SOP reduces to finding
a minimum cost Hamiltonian path in D,. This is an NP-hard problem and so is the
SOP. Our main concern here, though, is not an algorithm for the “‘pure’” Hamiltonian
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1991.
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path problem (or, equivalently, the asymmetric traveling salesman problem, ATSP)
but a method that deals with precedences.

This paper is organized as follows. In § 2 we present three different 0-1 models
of the SOP, in particular, some classes of inequalities valid for the associated polyhedra.
Polynomial time separation algorithms for some of these classes are described in § 3.
Further classes of valid inequalities are discussed in §4. In § 5 we present some
preprocessing procedures for our cutting plane algorithm that help reduce the instance
sizes. The implementations of the cutting plane algorithm are outlined in § 6; our
computational results are reported in § 7.

2. 0-1 Models. The SOP, in the form stated here, seems to have been formulated
for the first time in [4]. The aim of [4] and the subsequent paper [5] was the design
of a heuristic that performs well in practice with respect to running time and solution
quality. It was decided, however, to analyze the quality performance of the heuristic
before using its implementation in a production planning system.

Before describing the 0-1 model of the SOP introduced in [4], we introduce the
following notation.

Let D,=(V, A,) be the complete digraph of n nodes and let P=(V,R) be a
transitively closed, acyclic subdigraph of D,. We set

(2.1a) R={(j,i)e Vx V|(i,j) € R},
(2.1b) R={(i, k) e Vx V|3j with (i, ), (j, k) € R},
(2.1¢) A=A\RUR).

Note that a feasible Hamiltonian path can contain neither an arc from R nor an arc
from R, while for each arc in A there is some feasible Hamiltonian path containing
this arc. We thus call A the feasible arc set and D =(V, A) the feasible subdigraph of
D, . Furthermore, set

(2.2a) a,=1+|{i|(i, k) € R}|, keV,
(2.2b) Be=n—|{jl(kj)eR}, keV.

It is clear that a, —1 (respectively, n— ;) is the minimum number of predecessor
(respectively, successor) nodes for node k in any feasible Hamiltonian path.

Let us introduce the following two types of variables. For each arc (i, j) € A, x;
is a 0-1 variable that indicates whether (i, j) is in the Hamiltonian path (i.e., x; =1)
or not. (We do not need variables for the arcs from A,\ A.) The second type are 0-1
variables &, for k, h € V, which are auxiliary variables that help to model the precedence
constraints, such that &, =1 means that node k is to be sequenced at level h for
a = h = B, and, otherwise, zero.

To obtain a compact formulation we introduce further terminology. If F is a
subset of A we abbreviate the sum Y ycr X; by x(F). If W is a subset of V then
A(W)={(i,j)e Ali,je W}. If je V then 8" (j)={(j, k) A} and 8 (j)={(i, j) € A},
and if, moreover, W< V\{j} then (j:W)={(j,k)eAlke W} and (W:j)=
{(i,j) € A|ie W}. Let us now assume that, in addition to D, =(V, A,) and P=(V, R),
costs c; €R for all (i,j) € A are given.

The model introduced in [4] is as follows.

(2.3) A*=min c¢'x subject to
(1) x(A)=n-1,
2) x(87(j))=1 foralljeV,
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3) x(67(j))=1 foralljeV,

4) x; =0 forall (i, j) € A,

(5) x(A(W))=|W|-1 forall WV, 2=|W|=n-1,
(6) x;€1{0; 1} for all (i, j) € A,

7N Y &n=1 forall heV,
k|og=h=By

(8) Y &n=1 forallkeV,
ar=h=p

) Y  h&n,+1= Y hg, forall (i,j)e R\R,
a;=h;=B; a;=h;=g; ’

(10) Ent+ & =1 forall(i,j)e A\A, max{a; a;—1}=h=min{B, B;—1},
(11) fkhE{O; 1} for all ke ‘/, akéhéﬁk,
(12) Ent+ & =1+x; forall(i,j)e A, max{a;a;—1}=h=min{B, B;—1}.

We briefly indicate the logic of the model. In analogy to the well-known 0-1 model
of the ATSP, constraints (1)-(6) provide an IP-formulation of the Hamiltonian path
problem in D =(V, A). Inequalities (5) are called, as usual, subtour elimination con-
straints (SECs).

Constraints (7)-(12) ensure that the given precedence constraints are observed.
Constraints (7) (respectively, constraints (8)) force one node (respectively, level) per
level (respectively, node). Constraints (9) prevent reverse sequencing for pairs of nodes
that are linked by direct precedence relationships. Constraints (10) prevent illegal
immediate sequencings. Finally, constraints (12) are the so-called linking constraints
that integrate submodels (1)-(6) and (7)-(11).

Clearly, there are a number of model improvements possible, e.g., turning some
of the inequalities into equalities, etc., but we state here only the basic model.

The computational experience with this model reported in [4] and [5] was unsatis-
factory with respect to the integrality gap, i.e., in a number of cases the relative deviation
(MY —A1r)/ALr Was rather large, where A gives the cost of the solution found by the
heuristic algorithm, and A, is the lower bound of the optimal value A* obtained from
the (restricted) Lagrangian relaxation of model (2.3) used in [4]. Such a gap has one
of the following causes. Either A" or A g, or both, are far away from A*. The belief
was that A" was good and A g poor. This belief motivated the introduction and
investigation of further 0-1 models of the SOP, which is the subject of the rest of the
paper.

The first new model requires two types of variables. The first type are 0-1 variables
x; with the same meaning as before. The second type are real variables y; for all
(i, j) € A,, which are auxiliary variables that help to model the precedence constraints.

Our first new model of the SOP is as follows.

(2.4) A*=min c'x subject to x satisfies (2.3) (1)-(6) and
@) y; =1 forall (i,j)eR,
(8) yit+yi=1 forall (i,j)e A,
9) Vityxtya=2 forallijkeV, i#j#k,
(10) y; 20 for all (i,j)e A,
(11) x;—y; =0 for all (i, j) € A
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If we add integrality constraints to (8)-(10), we obtain a well-known 0-1 formulation
of the linear ordering problem; see [10]. In our case, integrality stipulations for the
y;’s are not needed, since integrality of the x;’s implies integrality of the y;’s via (11).
Constraints (7)-(11) ensure that the given precedence constraints are observed. Clearly,
there are a number of model improvements possible, e.g., we can also skip some of
the variables y;;’s, turn some of the inequalities to equalities (see § 5), etc. These obvious
modifications have been done in our implementation. We state here only the basic
model for notational ease.

A nice feature of model (2.4) is that it combines two well-known combinatorial
optimization problems in a natural way. Looking at this model we can say that the
SOP is the Hamiltonian path problem plus the linear ordering problem integrated
through the linking constraints (11). An obvious disadvantage of this model is the use
of the auxiliary variables y;’s. In fact, we can get rid of these by replacing (7)-(11)
by a new class of constraints of size exponential in n.

Our second new model of the SOP is as follows.

(2.5) A*=min ¢'x subject to x satisfies (1)-(6) and
(12)  x((: W) +x(A(W) +x((W: i) =|W|
for all (i,j)e R and all @# W< V\{j,j}.

We call the inequalities (12) precedence forcing constraints (PFCs). It is obvious that
every feasible solution of (1)-(6) and (12) is the incidence vector of a feasible
Hamiltonian path and vice versa.

Although model (2.4) provides a nice interpretation of the SOP as a combination
of two other well-known problems, our computational experience (see below) shows
that model (2.5) is a more natural setting for the SOP, given the type of separation
algorithms that we propose.

Both models give rise to polyhedra associated with the SOP. We only introduce
here the one arising from (2.5). Let D, =(V, A,) be the complete digraph on n nodes,
let P=(V, R) be a transitively closed acyclic subdigraph of D,, A:= A,\(RU R), and
set

(2.6) SOP (n, P) = conv {x € R*|x satisfies (1)-(6), (12)}.

SOP (n, P) is called the sequential ordering polytope associated with D, and P, since
every point that satisfies (1)-(6) and (12) is an incidence vector of a feasible Hamiltonian
path, i.e., a feasible solution of the SOP. The study of the structure of this polytope
(dimensions, facets, etc.) is of course of particular interest for the solution of the SOP.
It is clearly closely related to the study of the ATSP polytope; see [16]. The scope of
the present paper is, however, computational and there is no space here to discuss
even some of the basic polyhedral facts about SOP (n, P).

3. Separation algorithms. The cutting plane algorithms we are going to describe
follow the standard scheme described in, e.g., [3], [8]-[10], [13], [16], [20], and [21].
One of the main ingredients of such an algorithm are routines that check whether a
given point (usually the optimum solution of the last LP relaxation solved) satisfies
all inequalities of some given class of constraints and, if not, output at least one
inequality of this class violated by the given point.

Such procedures are called separation algorithms; see [11] for some theory behind
this approach. Of course, we are interested in separation algorithms that run in
polynomial time.
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In this section we describe polynomial time separation algorithms for the subtour
elimination constraints (SECs) (2.3) (5) and the precedence forcing constraint (PFCs)
(2.5) (12); see also [1]. Note that both classes contain a number of inequalities that
is exponential in n. (Note also that constraints (1)-(6) of model (2.3) are inherited by
models (2.4) and (2.5).)

We begin with the SECs. The input of our separation algorithm is a point z € Q*.
We assume that z; =0 for all (i, j) € A; we do not require that z satisfies constraints
(1)-(3) of (2.3), i.e., our algorithm will handle more general situations than those
arising in models (2.3), (2.4), and (2.5). The output of the algorithm provides either
the statement that z satisfies all inequalities

(3.1) x(A(W))=|W|-1 forall WeV, 2=|W|=n,

or it provides a node set W < V,2=|W/|= n such that z(A(W))>|W|—1. In fact (this
will be clear from the description of the algorithm), we can even find a node set W
such that z(A(W))—|W|+1 is as large as possible, i.e., a most violated SEC can be
identified.

For this purpose we construct a (first) auxiliary digraph D, = (V,, A,) as follows.

(3.2a) Vo=V U{0}, where 0 is a new node,
(3.2b) A*={(i,j) e A|z;>0},
(3.2¢) Ayi=A"U{(0,v)|ve VIU{(j, i)|(i,j) € A% and (j, i) £ A7}.

In other words, we make D’ = (V, A*) symmetric by reversing arcs and add a source
zero that is linked to all nodes in D* We solve the separation problem for the SECs
(5) by reducing it to a sequence of min-cut problems. To do this we introduce (auxiliary)
capacities c?j for the arcs of D, in the following way. First, we set

(3.3) {=12(87(j)+z(87(j)) foralljeV

and we define the capacities cj, by

(3.4) co;=1-3;+M foralljeV,

where M is a positive number chosen such that cg,. =0 for all j € V. Furthermore, we set
(3.5) Y=Y =3(z;+z;) forall (i,j) e A~

(In case (j, i)2 A® for some (i,j)€ A® we assume z; to have value zero.)

Now we introduce n further auxiliary digraphs that are slight modifications of
D, as follows. For every ke V we define a digraph D, = (V,, A,) with capacities cﬂ}
by setting

(3.62) V=V,

(3.6b) A= A,UB, where B, ={(v,k)|ve V\{k}},
(3.6¢) ck=1cy forall (i,j) € A,

(3.6d) ch=M for all (v, k)€ By.

(In (b) above U means disjoint union, i.e., if A, contains an arc from B,, we add a
parallel one.)

(3.7) SEPARATION ALGORITHM FOR THE SUBTOUR ELIMINATION CONSTRAINTS.

Input. A point z€ Q" satisfying z; = 0.

Output. At least one node set of cardinality between 2 and n, such that the
corresponding SEC is violated by z, or the information that no such node set exists.
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For each ke V do:

1. Construct the digraph D, = (V,, A,) with capacities cf;- as outlined before; see
(3.6).

2. Use a max-flow algorithm to determine a (0, k)-cut 6 (W,) in D, (i.e., a cut
separating 0 and k such that ke W,, 0¢ W,), so that its capacity ¢*(8 (W,))
is as small as possible.

3. If *(87(W,)) <nM +1 then x(A(W,))=|W,|—1 is a SEC violated by z.

End For

If the above procedure does not output a violated constraint then z satisfies all SECs.

LemMmA 3.8. If, for all ke V, the minimum capacity of a (0, k)-cut in D, is not
smaller than nM + 1, then z satisfies all inequalities z(A(W)) =|W|—1, We V,2=|W|=
n. If, for some k € V, there is a (0, k)-cut 8 (Wy), W, < V,2=|W,| = nwith c* (6 (W,)) <
nM +1, then z(A(W,))>|Wi|—1.

Proof. The capacity ¢*(87(W,)) of any cut 8 (W,) in D, with 0¢ W, ke W, is
nothing but |Wk| —z(A(W,))+ nM. This can be seen as follows.

ET(W))= X cut X 2 Cowt X Cok

we Wy ve VAW, we W|(v,w)e Ay ve VAW, |(v,k)e By

=Y cut Y Y Cow+ Y i

we W ve VAW, we Wi|(v,w)e Ay ve V\ W, |(v,k)e By

1 1
=(kal_5 Z §w+Mkal)+5 2 (va+zwv)+|V\Wk|M

we Wy (v,w)ed (W)

oMW F a2 T ()

(v,w)ed (W) (v,w)e A(Wy)

1
+_ Z_ (ZUW+ZWU)
2 (v,w)es (W)

=| W, |- z(A(W,)) + nM.

Therefore, z(A(W,))=|W,|—1 holds if and only if c*(6 (W,))=1+nM holds.

If there is a cut 8 (W,) with ¢*(8"(W,))<1+nM we still have to show that
| W,.| = 2. But this is obvious. Since k € W, |W,|= 1. If W, = {k}then c*(6 (k)) =1+ nM.
And therefore, ¢*(6°(W,)) <1+ nM implies | W,| = 2. Finally, note that by construction
W, =V is a possible solution. 0

Remark 3.9. The separation algorithm for the SEC (3.7) (plus nonnegativity
constraints) can be solved by calling n times a max-flow algorithm and is thus solvable
in polynomial time.

For the best running time of max-flow algorithms currently known, consult the
survey article [2].

Algorithm (3.7) handles a more general situation than we need in the present
application. If we assume that the given vector z € Q" satisfies the cardinality constraint
(2.3) (1) in addition to the nonnegativity constraints (2.3) (4) then the node set whose
related SEC is violated is such that |W,|=n—1. To see this, note that c*(§7(V))=
|V|-2(A(V))+nM =1+nM and so W, < V from Lemma 3.8.

Conversely, if we assume that the given vector z € Q* satisfies the star constraints
(2.3) (2) and (3) we can reduce the separation problem to a min-cut problem in an
undirected graph (see [1]) and therefore apply the Gomory-Hu algorithm or any other
efficient algorithm to compute a minimum capacity cut. We outline this further reduction
briefly. Note that if z satisfies (2.3) (2) and (3), then {; =2 (see (3.3)) for all je V and
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thus the number M needed in (3.4) can be chosen as zero. This implies that the arc
sets By introduced in (3.6) and thus the auxili~ary grapbs D,, ke V, are not needed.
Moreover, we can symmetrize D, to a digraph D = (V,, A) with capacities ¢; by setting

(3.10a) A= A,U{(v,0)|ve V},
(3.10b) &= Ci=cy=cp=3(z;+z;) forall (i,j)€ A,
(3.10¢) Cpo:=Cy, forall ve V.

Let G=(V,, E) be the undirected graph underlying 15=(V0, A) with capacities ¢;
defined by

(3.11a) E ={ij|(i, j) € A},
(3.11b) é=¢,=¢, forallijeE.

G has the property that &(8(W))=¢E(8 (W))=¢(8"(W)) for any W<V, where
8" (W)=86"(V\W). Thus a cut §( W) in G with capacity ¢(8§( W)) as small as possible
corresponds to a minimum capacity cut 8 (W) in D and vice versa.

This construction shows that the separation problem for the SECs—under the
assumption that the given point satisfies (2.3) (2)-(4)—can be solved by any algorithm
that determines a minimum capacity cut in an undirected graph.

Although the worst case complexity of algorithm (3.7) and the method outlined
above are about the same, the latter approach works much better in practice, at least
if one uses the method described in [18], as we did.

Let us now turn our attention to the precedence forcing constraints, the PFCs,

(3.12) x((j: W) +x(AW))+x(W:i))=|W|
for all (i,j)e R and all @# W< V\{j,j}.

As above, we reduce the separation problem for (3.12) to a series of min-cut problems.

We assume that a point ze Q* satisfying z; =0 for all (i, j)€ A is given and we
want to find an inequality of (3.12) that is violated by z, if one exists. We do this by
constructing, for each arc (i, j) € R, a min-cut problem that proves whether or not (3.12)
is satisfied for all @# W< V\{j,j}.

For every arc (i, j) € R of the precedence digraph P =(V, R), we introduce a new
digraph D, = (V;, A;) with capacities d” as follows.
(3.13a) Vi =(V\{i,jh) U{v;} where v; is a new node,
(3.13b) A*={(i,j) € A|z;> 0},
(3.13¢c)  Ay={(k D|(k 1) e A% k 1 {i,j}}U{(vy, D|(j, 1) € A% 12 {i, j}}

U {(k’ Uij) | (ka l) € Azs ke {l’j}}s

(3.13d) dil=z, forall (k,])e A;N A"
(3.13¢) d} =z, forall (j,I)e A%,
(3.13f) di,,=zq forall (k i)e A"
See Fig. 1 for an illustration. Observe that D;; is obtained from D* = (V, A%) by deleting
all arcs directed into j, all arcs leaving i, all arcs between i and j, and by identifying

the nodes i and j. The capacities are just the values of the (positive) components
of z

The PFCs concerning (i, j)€ R and D,
(3.14) x((G: W)+ x(A(W))+x(W:i))=|W|,
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2

F1G. 1. Original and shrinking graphs of precedence relationships.

can be written using this transformation in the form
(3.15) X(A(WU{v,) =|W|=|WU{v,}| -1

with respect to the digraph D;;. In other words, to check the PFCs concerning (i, j) € R,
we have to determine whether the SECs

(3.16)  x(A(W))=|W|-1 forall W V,,v,e W and 2=|W|=n-1

for D; are satisfied by z. (Recall n=|V| and then n—1=|V;|.) If we can determine a
node set W< V,; with v;e W, 2=|W|=n-1, such that z(A( W))>|W|-1 then, for
W= W\{v;}, 2((j: W)+ z(A(W))+z((W: z))>|W| obviously holds. If no such W
exists, all inequalities (3.14) concerning (i, j) € R are satisfied.

By repeating this procedure for all (i, j) € R we can solve the separation problem
for (3.12).

Our task now is to solve the separation problem for (3.15). This can be done by
a simplified version of algorithm (3.7). Let o= v;. Normally, we only have to construct
in step 1 of (3.7) the auxiliary digraph D, =(V,, A,) with capacities ¢’ (associated
with the shrunk node o) from digraph D;; = (V;, A;) with capacities d”, and perform
steps 2 and 3 for this case. If in step ¢ of (3.7) a node set WcV, withoe W, 0¢ W
is identified with ¢” (8~ (W))<1+(n—1)M then

(3.17) 2(A(W))>|W]-1

holds and thus the associated precedence forcing constraint is violated. Otherwise,
these constraints are satisfied by z. We still have to check whether IWI> 2 holds. But
this is obvious since o € W and ¢?(87(0)) =1+ (n—1)M. This shows that the separation
problem for precedence forcing constraints can be solved in polynomial time for any
zeQ? (with z=0). (Note that W = V; is allowed in (3.16) and, then, W = V\(4,j) is
also allowed.)

If we require that the given z e Q* satisfies (2.3) (2) and (3) in addition—as is
the case in our application—we can set the number M equal to zero. This, in fact,
simplifies the algorithm a little.

The overall running time of our separation routine for the precedence forcing
constraints is at most O(|R|t), where ¢ is the running time for the max-flow algorithm
used in step 2 of (3.7). We use the algorithm given in [7].

4. Further inequalities. We note that the sequential ordering problem is closely
related to the ATSP and that any inequality valid for the ATSP polytope P% can be
brought into a form that is valid for the SOP polytope SOP(n, P) and valid for the set
of solutions of (2.3), (2.4), or (2.5).
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The classes of valid and facet-defining inequalities for P (known by 1985) have
been surveyed in [16]. In recent years further classes of valid and facet-defining
inequalities for PT have been discovered by Balas, Chopra, Fischetti, and Rinaldi,
among others. Surveying these achievements here is beyond the scope of this paper.
We simply mention those (few) classes of inequalities that we considered in our
computations.

The first class consists of the so-called T,-inequalities (most of them facet defining
for P7) introduced in [8]. They are defined as follows. Let k=2 and let W< V be a
node set such that |W|=k, we W, and i, je V\ W. Then, the inequality

(4.1) Xij + Xi + X + X(A(W)) = | W]

is called a T,-inequality. Using algorithm (3.7) for the separation problem of the SECs
one can easily design a polynomial time algorithm for T,-inequalities for all k. We
did not implement this procedure but used a heuristic to check this type of inequality
for k=2,3,4.

Other classes of inequalities, facet defining for PT, can be derived by lifting cycle
constraints (see [8],[12], and [16]); we use two of these. They are as follows.

For any ordered set of nodes {i,, i>,..., i} V,3=k=n-1,

k-1 -1 k—1 g—1
(4'2) Z xlglg+| + xxkn + 2 z xlgl| + 23 hz xr gip = k 1
g= g —

is called a Dy -inequality and

-1
4.3) N X2 z X+ z gz X, Sk-1
P

is called a Dy -inequality. All D - and Dy -inequalities are valid with respect to P’r.

We do not know how to solve the separation problem for D - or Dj-inequalities
in polynomial time unless we fix k and enumerate. This is a ridiculous procedure for
large k, but we implemented it for k= {3, 4}.

There are two more liftings of four-cycle inequalities that are facet defining for

T and that we checked by enumeration. These inequalities are of the following types.

Again let i, i,, i3, i, be four nodes of V; then the inequalities

+ x,~4,~3 = 3,

ii)

3
(4~4) z xigig+| 1411 + 2x1211 1214 +X;
g=1

3
(4.5) 21 Xiipn T Xigi, T 2%, 2%, =3
Pt

are valid for SOP (n, P). Clearly, they are only useful if all arcs used in (4.4) or (4.5)
occur in A.

We are aware of the fact that there are more valid and facet-defining inequalities
for P7 that might be of interest for solving the sequential ordering problem. For
instance, the class of two-matching inequalities (in their asymmetric version) could
also be considered, in particular, since a polynomial time separation routine is available
that is a straightforward adaptation of the method of Padberg and Rao [17] designed
for the symmetric case. Moreover, comb and clique tree inequalities could be used in
their asymmetric form since they turned out to be very useful for solving the symmetric
TSP in practice (see [9], [19], and [20]). In our case, however, the scope was more
limited towards finding good lower bounds for not too large problem instances and,
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due to the requirements from practice, no attempt was made to solve the given problems
to optimality. Clearly, if one intends to attack truly large scale SOP instances all these
classes of inequalities have to be considered.

We should also mention that the idea to separate by enumeration the ‘“small
inequalities” listed above was motivated by studying fractional solutions that could
not be cut off by SECs or PFCs. The ‘“small inequalities” frequently did the job.

Let us remark, moreover, that most of the inequalities for P% can be extended to
take care of precedences in the same way as the SECs were extended to PFCs. To give
an example, take the inequality (facet defining for P7T)

(4.6) Xiyiy T Xipiy T Xiyi, T 2X;

iz = 2.

Assume that (i, j) belongs to R and that the node v; obtained by identifying nodes i
and j (see (3.13)) is the node i;; then the inequality

4.7) x

iy & X0, F X H2x,, =2

is valid for SOP (n, P). This type of SOP extension can be made in various ways. We

have implemented separation routines for a few of them but do not want to discuss
the simple but rather technical details.

5. Preprocessing. A (usually important) part of a cutting plane procedure consists
of analyzing the given problem instance in order to discover some structure that helps
to decompose the instance, to reduce its size, or to tighten the IP-formulation by
turning some inequalities into equations, fixing certain variables, etc.

We do not want to elaborate on all preprocessing routines that we have imple-
mented; we simply list a few of the straightforward cases. We concentrate here on the
IP-formulation (2.5) of the SOP. Suppose the complete digraph D, = (V, A,) with cost
¢; forall (i, j) € A, and the acyclic and transitively closed precedence digraph P =(V, R)
are given. In a first step we determine the node sets V™ and V" as follows:

(5.1a) V ={ve V|3(i v)eR,i#v},
(5.1b) V*={ve V|3(v,j)eR,j# v},

i.e., V™ is the set of nodes that have predecessors in P, and V" is the set of nodes that
have successors in P. It is obvious that the inequalities (2) and (3) of (2.3) can be
transformed into

2" x(67(j))=1 forallje V™,
2) x(67(j))=1 forall je V\V",
(3" x(87(j))=1 forall je V",
3) x(67(j))=1 forall je V\V*.

Since we drop all variables corresponding to arcs in A,\A it may happen that by
logical implication some of the inequalities (2) or (3) can also be turned into equations.
This type of analysis is made not only in the preprocessing phase but also in all later
steps when certain variables can be fixed to zero or 1 due to reduced cost criteria.
Again, we do not want to discuss the obvious and well-known details of this technique.

Another preprocessing step that is based on an analysis of the precedence digraph
P and the cost values c; turned out to be quite useful in solving some of our cases,
due to their special cost matrix structure. It sometimes happens that, for two nodes i
and j that are unrelated for the given precedences, an “artificial” precedence, say (i, j),
can be introduced (by analyzing the cost matrix) in such a way that the optimum value
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of the SOP before and after introducing the relation (i, j) is the same. In such a case
we can repeat the other preprocessing steps such as variable fixing and inequality
tightening, and start the whole process anew.

To show how an “artificial” precedence can be created we consider a small example
on seven nodes. The cost matrix is shown in Table 1. The precedence digraph P =(V, R)
is given by R ={(1,j)|j=4,5,6,7}U{(i,5)|i=1, 4,6, 7}. Nodes 2 and 3 are not related
to any other node.

Consider the two unrelated nodes 2 and 7. We observe that ¢,; = ¢;, =0. Moreover,
Gk =c¢y and ¢ = ¢, hold for all ke V\{2,7}. In addition, we can observe that
Cup = Cunt ¢, for all u, ve V\{2, 7}, u # v. Since node 2 is not related to any other node
in P we can either add the arc (2,7) or the arc (7, 2) to P, and we can also set x,; =1
or x;, =1, without changing the objective function (cost) value of the optimal solution.

It is easy to see how to generalize this observation. If there are two nodes i, je V
such that

(5.2a)  (5)), (G, ) £R,

(52b)  ¢;=c;=0,

(5.2¢) cx=cyp and cu=c¢y forall ke V\{i,j},

(5.2d) cw=cytc, foralluve V\{ij}, u#uo,

(5.2¢) j2(V U V") (i.e.,j has neither a predecessor nor a successor in P),

then either (i, j) or (j, i) can be added to R, and either x; or x; can be set to 1, such
that at least one optimum solution of the original SOP instance is still optimum for
the new case.

It turned out that this “precedence addition rule” helped in some cases to
substantially reduce the problem size and to increase the lower bound from the LP
relaxation.

6. Outline of the implementations. We have made three new implementations of
cutting plane algorithms that compute lower bounds for the SOP. Two algorithms use
model (2.5) and one uses model (2.4). Moreover, we compared this with the algorithm
for the LP relaxation of model (2.3) described in [4].

Implementation A is based on model (2.4) and implementation B is based on
model (2.5). Both were coded in FORTRAN, used Marsten’s simplex-based LP solver
XMP (see [15]), and were implemented and executed on a SIEMENS PC MX-2 (a
0.7 MIPS personal computer with UNIX operating system).

TABLE 1
Cost coefficients.
J
i 1 2 3 4 5 6 7
1 — 1.00 2.00 0.75 0.00 3.00 1.00
2 4.00 — 5.00 3.25 4.00 6.00 0.00
3 7.00 8.00 — 5.50 7.00 9.00 8.00
4 2.75 2.50 2.25 e 2.75 5.25 2.50
5 0.00 1.00 2.00 0.75 . 3.00 1.00
6 10.00 11.00 12.00 10.75 10.00 — 11.00
7 4.00 0.00 5.00 3.25 4.00 6.00 —ee
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Implementation C is based on model (2.5). It was coded in PL/I version 1.5, used
the algorithmic tools of the LP-solver MPSX (see [14]), and was implemented and
executed on an IBM 4381 (a 7.7 MIPS computer with VM/CMS operating system).

Implementations A and B were meant to determine which of the two models (2.4)
and (2.5) are superior from a computational point of view. We also wanted to see
whether or not SOP instances of the size coming up in practice (up to about 100 nodes
and 280 precedence relationships) can be solved in reasonable time on a PC.

We now briefly outline the basics of our cutting plane approach. We concentrate
mainly on the codes B and C that solve the LP relaxations of model (2.5).

The algorithm receives an n X n cost matrix and an acyclic digraph of precedences
as input. We may assume that all cost coefficients are integral (for expository purposes).
In a first step we compute the transitive hull of this digraph to obtain the initial
precedence subdigraph. In a second step we try to add precedence relations by analyzing
the cost matrix as described in § 5. If we add a precedence, we recompute the transitive
hull and repeat until no further precedence can be added. We denote the final
precedence subdigraph by P =(V, R).

Then we compute the arc set A=A,\(RU R) (see (2.1)) and we try to find out
whether further arcs can be deleted from A (or fixed) by analyzing logical implications.

Now we set up the initial LP consisting of (2.3) (1)-(4), taking care that (as
outlined in § 5) some of the inequalities can be turned into equations.

To solve model (2.4) we also set up (7), (8), (10), and (11). In this case we project
away half of the variables y;’s using (8) and we fix some of the variables y;’s
appropriately according to the previous fixing of variables x;’s.

We now run the heuristic described in [4] and [5] to find a “good” feasible
Hamiltonian path. Let A" denote its cost. We use it to set up an initial basis for the
LP-solver.

We solve the present LP and obtain an optimum solution z with value A, p. If z
is the incidence vector of a feasible Hamiltonian path we are done. We are also done
if A" —A_p <1.In this case the heuristically found feasible Hamiltonian path is optimal.

Otherwise we enter the separation process. We first check whether z satisfies the
SECs and then the PFCs using the separation algorithms described in § 3. We add all
inequalities found this way to the current LP. If z satisfies all SECs and all PFCs then
we call the separation algorithms for the further inequalities mentioned in § 4. Again
we add all inequalities found to the current LP.

If the second stage of separation routines fails, we finish the cutting plane algorithm
reporting the lower bound A, p.

Otherwise we continue, but before resolving the augmented LP, we do the well-
known reduced cost fixing of variables. If some of the variables can be fixed, we
determine the logical implications in order to fix further variables. Moreover, we call
the preprocessing routines to tighten the current LP further. In addition, we delete
redundant constraints. After these preparations we call the LP solver using the modified
LP and the old (dually feasible) basis.

When solving model (2.4), we additionally check the triangle inequalities (9) by
enumeration and add all inequalities found to the present LP.

This finishes the outline of our implementations. There are many technical details
that we think are important, but it is impossible to report all of them here. The codes
B and C, although following the same ideas, do not always produce the same value
ALp, since they were written by different people, and some differences in the order of
performing certain steps, setting tolerances, etc., caused variations in the running times
and the LP values. In particular, implementation C does not use the T,-inequalities
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(4.1), nor the mechanism for generating ‘‘artificial” precedences based on the cost
matrix structure (see § 5). On the other hand, the Dj- and Dj-inequalities (4.2) and
(4.3) as well as the other further inequalities were only used at selected LP problems,
where a given analysis of the point z may suggest a potential violation of the constraints;
of course, there is no guarantee that all violations were investigated. Additionally,
implementation C temporarily declares ‘‘neutral” certain currently nonactive
inequalities based on counting the number of previous consecutive LPs where they
have been nonactive.

For illustrative purposes let us consider the case described in § 5; see also Table
1. The heuristic gives the feasible solution 1-4->2->7-6-5-3. The total cost is
AH =2125. The optimal value of the LP model (2.3) (1)-(4) is A, p = 1800; it gives the
solution 1-4-6->5-3 and 2 7-2. By using our separation algorithm for model
(2.5) but without considering the cost matrix structure, the optimal solution of the
augmented LP is A p =2075 (then the gap is 2.40 percent). By exploiting the cost
structure as described in § 5 we force the precedence (2,7)€ R and then update

A= A\{(7,2), (5,2),(2,5)}. It turns out that the optimal value of the new LP is precisely
Ap =2125.

7. Computational results. We now report some computational experiences with
the three implementations of the cutting plane algorithms outlined in § 6 and compare
these with the heuristic described in [4] and [5] and the lower bounding algorithm
described in [4].

The report covers 16 instances of the SOP where the number n of tasks ranges
from 7 to 98 and the number |R| of precedence relationships from 0 to 283. Six of
these cases are real-life and came up in a scheduling system for manufacturing. Four
further cases (P1, P1A, P4, and P9) were created (artificially) to test certain aspects
of the cut generation, mainly the performance of exploiting the cost structure. The
remaining six cases are obtained from the real-life cases by dropping all precedence
relationships. So these are, in fact, “‘pure”” Hamiltonian path problems.

The artificial cases were constructed as follows. Cases P4 and P9 are created by
replicating case P1 p=2 and 14 times, respectively. (Case P1 is described in §5.)
Node i in P1 has the counterparts nj=i+7(j—1) for i=1,2,...,7 in cases P4 and
P9, j=1,2 in P4 and j=1,2,...,14 in P9. The sets of nodes {i=1,2,...,7} and
{nj=38,9,...,14} in case P4 have the same internal precedence relationships as the
set of nodes in P1 have;, on the other hand, none of the nodes from one set has
precedence relationships with the nodes from the other set. The cost matrix has the
following structure for P4: ¢, 447= Cpi7.4 = Cpi7,9+7= Cpq» Cpg fOr p,q=1,2,...,7,p#q
as in P1, and the other elements are zero. (A similar construction is used for P9.) The
optimal solution is N1-> N4> N2> N7-> N6 N5- N3 with A*=2125, where, e.g.,
N6 denotes any sequencing of the node set {6,13, ..., k} for k=6+7(p—1). Note
that, naturally, the optimal value of the LP relaxation (2.3) (1)-(4) is zero for P4 and
P9. By exploiting the cost matrix structure as in § 5 (see (5.2)), implementation B gets
the optimal solution without adding any further cut. Additionally, we also analyze the
performance of our separation algorithm when the cost matrix structure is not exploited.

Table 2 reports some results on the performance of our algorithm. It gives
information about the objective function value and the gap between the best-known
upper bound (frequently, the optimal solution value) and the lower bounds obtained
by our implementations. The headings are as follows. H refers to the heuristic described
in [4] and [5]. E refers to the algorithm described in [4] for obtaining a lower bound
of the optimal solution value A* in model (2.3). Finally, A, B, and C refer to our three
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TABLE 2
Performance of our cutting separation implementations.
Objective function value Gap in objective function

Case n |R| H E A B C E A B C

P1 7 7 2125 1950 2125 2125 2075 897  0.00 0.00 2.40
P1A 7 0 550 450 550 550 550 2222 0.00 0.00 0.00
p2 11 5 2075 2021 2075 2075 2075 270  0.00 0.00 0.00
P2A 11 0 1866 1763 1866 1866 1843 5.80  0.00 0.00 1.25
P3 12 11 1675 1417 1598 1597 1535 18.20  4.82 4.88 9.12
P3A 12 0 1472 1386 1472 1472 1459 6.20  0.00 0.00 0.89
P4 14 14 2125 1525 2125 2125 2075 39.34  0.00 0.00 2.40
P5 25 11 1684 1518 1588 1577 1584 1090  6.05 6.79 6.31
PSA 25 0 1145 1041 1134 1141 1118 10.00  0.97 0.35 2.42
P6 47 32 1288 1199 1219 1218 1219 740  5.66 5.75 5.66
P6A 47 0 915 856 872 872 871 6.09 493 493 5.05
P7 63 | 233 63 63 62 62 63 0.00 1.61 1.61 0.00
P7A 63 0 45 45 45 45 45 0.00 0.00 0.00 0.00
P8 78 | 283 18480 18205 18205 18205 18205 1.51 1.51 1.51 1.51
P8A 78 0 1845 1410 1305 1845 1712 30.85 41.37 0.00 7.76
P9 98 98 2125 1525 2125 2125 2075 39.34  0.00 0.00 2.40

implementations A, B, and C (see § 6). The first part of Table 2 reports the cost, say
A" of the heuristic solution (except for P8A; see below) as well as the lower bound,
say A,, obtained by implementation a for a =A, B, C, and E. It is worth noting that
the heuristic gives 2325 as the cost value for P8A, but one of our implementations
found the (optimal) value 1845. The gap as reported in Table 2 is 100(A" —A,)/A,.
Note that frequently the gap is zero (i.e., implementations A, B, and C prove the
optimality of the heuristic solution). We should mention that the gap for P1, P4, and

TABLE 3
CPU time of our cutting separation implementations.

H E A B C
Case n |R| (sec.) (sec.) (min.)  (min.) (sec.)
P1 7 7 0.08 0.10 0.14 0.10 0.05
P1A 7 0 0.13 0.24 0.18 0.10 0.05
P2 11 5 0.26 0.55 0.17 0.20 0.04
P2A 11 0 0.22 0.55 1.05 0.15 0.09
P3 12 11 0.16 0.36 9.59 1.27 0.89
P3A 12 0 0.25 0.56 1.06 0.18 0.21
P4 14 14 0.31 1.10 0.17 0.10 0.71
P5 25 11 1.17 1.19 23.34 0.43 0.55
P5A 25 0 0.35 1.28 13.25 0.46 0.45
P6 47 32 3.05 4.78 87.39 4.51 1.14
P6A 47 0 1.98 3.85 100.10 1.20 1.08
P7 63 233 4.35 3.38 340.43 27.27 5.63
P7A 63 0 0.06 3.47 109.37 1.42 4.08
P8 78 283 27.62 12.93 443.13 153.01 12.05
P8A 78 0 8.93 6.94 250.52 9.36 18.41
P9 98 98 28.47 25.01 0.23 0.20 6.20
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P9 is 2.40 percent when the cost matrix structure is not exploited (as with implementa-
tion C) and it is zero when it is exploited.

We should remark at this point that implementation A (using the largest number
of variables) was not able to finish all runs due to space limitations on the PC. (We
could not store all inequalities found.) In this case we report in Table 2 the lower
bound obtained before termination. (Further cutting plane steps might have led to
better lower bounds.)

Table 3 reports the CPU time required by the implementations. Implementations
H, E, and C were run on an IBM 4381 and the time is given in seconds. Implementations
A and B were run on a SIEMENS PC MX-2 and the time is given in minutes. All
times reported include input-output operations. Note that the PC-implementation B
solves the cases in less than 25 CPU hours. The mainframe version does this in a few
seconds.

Tables 4-6 report the dimensions of the instances and number of cuts that have
been generated by each of the three implementations. The headings are as follows.
F01 indicates the number of variables x; that are (permanently) fixed by reduced cost
fixing and logical implications. (Note that |A| gives the set of variables x;’s in the
model and, then, |A|—FO1 is the number of x;’s in the last LP problem.) NAP is the
number of constraints (2.3) (1)-(3) (i.e., number of constraints in the initial LP
relaxation) in implementations B and C; NAP is the number of constraints (2.4) (1)-(3),
(7), and (8) in implementation A; NLP is the number of cutting plane separation steps
(i.e., number of LP problems); NSEC is the number of subtour elimination constraints
(2.3) (5) that have been generated; NYSC is the number of y-related constraints (2.4)
(9) that have been generated in implementation A; NPFC is the number of precedence
forcing constraints (2.5) (12) that have been generated in implementations B and C;
NLC is the number of further cuts generated from the class of inequalities described
in § 4; NC is the total number of cuts that have been generated. One can observe that
the total number of constraints in any LP is rather small. By comparing NLP and NC
we can see the average number of cuts that are appended to the LP model at each
iteration.

TABLE 4
Problem dimensions and cut generation. Implementation A.

Case n |R| R |A| FO1 NAP NLP NSEC NYSC NLC NC
P1 7 7 1 35 10 39 2 1 10 0 11
P1A 7 0 0 63 26 57 1 0 0 0 0
P2 11 5 2 153 80 123 4 2 56 6 64
P2A 11 0 0 165 89 133 3 2 49 0 51
P3 12 11 4 172 53 135 7 4 64 29 97
P3A 12 0 0 198 98 157 2 2 41 0 43
P4 14 14 2 35 10 39 2 1 10 0 11
P5 25 11 2 876 496 629 8 4 667 11 682
PSA 25 0 0 900 0 651 6 3 434 0 437
P6 47 32 22 3157 1890 2199 15 2 1502 0 1504
P6A 47 0 0 3243 1949 2257 5 5 1800 0 1805
P7 63 233 138 5255 2134 3567 4 10 1800 13 1823
P7A 63 0 0 5859 2957 4033 1 0 0 0 0
P8 78 283 206 8237 2079 5597 3 12 600 8 612
P8A 78 0 0 9009 0 6163 1 1 200 8 209
P9 98 98 14 35 12 39 2 1 10 0 11
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TABLE 5
Problem dimensions and cut generation. Implementation B.

Case n |Rl R |Al FO1 NAP NLP NSEC NPFC NLC NC
Pi 7 7 1 23 10 15 2 1 1 0 2
P1A 7 0 0 42 28 15 2 1 0 0 1
P2 11 5 2 103 80 23 4 4 9 0 13
P2A 11 0 0 110 89 23 4 3 0 0 3
P3 12 11 4 117 53 25 12 9 6 22 37
P3A 12 0 0 132 98 25 3 10 0 0 10
P4 14 14 2 166 10 29 2 1 1 0 2
P5 25 11 2 587 498 51 3 5 12 0 17
PSA 25 0 0 600 550 51 4 5 0 0 5
Pé6 47 32 22 2108 1870 95 4 7 7 0 14
P6A 47 0 0 2162 1956 95 4 8 0 0 8
P7 63 233 138 3535 2802 127 7 8 63 65 136
P7A 63 0 0 3906 2957 127 1 0 0 0 0
P8 78 283 206 5517 2079 157 15 11 65 66 142
P8A 78 0 0 6006 1547 157 18 31 0 16 47
P9 98 98 14 9492 — 197 2 1 1 0 2
TABLE 6
Problem dimensions and cut generation. Implementation C.

Case n |R| R |A] FO1 NAP NLP NSEC NPFC NLC NC

P1 7 7 1 23 14 15 2 2 2 3 7

P1A 7 0 0 42 31 15 2 2 0 0 2

P2 11 5 2 103 78 23 5 4 12 6 22

P2A 11 0 0 110 83 23 5 3 0 0 3

P3 12 11 4 117 25 25 11 9 6 12 27

P3A 12 0 0 132 74 25 3 9 0 0 9

P4 14 14 2 166 20 29 2 3 6 2 11

P5 25 11 2 587 469 51 3 S 9 0 14

PSA 25 0 0 600 505 51 4 4 0 0 4

P6 47 32 22 2108 1842 95 7 7 6 0 13

P6A 47 0 0 2162 1925 95 4 7 0 0 7

P7 63 233 138 3535 3227 127 7 9 0 0 9

P7A 63 0 0 3906 2603 127 3 4 0 0 4

P38 78 283 206 5517 4748 147 17 15 72 16 103

P8A 78 0 0 6006 2079 157 9 28 0 13 41

P9 98 98 14 9492 4723 197 2 3 11 3 17

Table 7 reports the gap reduction on the objective function value obtained by our
implementations. The headings are as follows. H is the best known upper bound of
A*. ALB is the objective function value of the LP relaxation (2.3) (1)-(3). A-GAP=
(H—-ALB)/ALB percent. KLB is our best-known lower bound on A* (i.e., the objective
function value of the last LP). K-GAP=(H-KLB)/KLB percent and RK=
(KLB—-ALB)/(H—-ALB) percent.

The first analysis that we can draw from the results shown in Table 7 is the
observance of a big discrepancy in the value of A-GAP between the results reported
in the literature for randomly generated cases and our experience with real-life cases.
It is reported for ATSP cases that the value of ALB was found on the average to be
99.5 percent of the optimal value. We have obtained the optimal value in more than
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TABLE 7
Gap reduction on the objective function value.

Case n |R| H ALB A-GAP KLB K-GAP RK
P1 7 7 2125 1800 18.06 2125 0.00 100.00
P1A 7 0 550 225 100.00 550 0.00 100.00
P2 11 5 2075 1946 6.63 2075 0.00 100.00
P2A 11 0 1866 1763 5.84 1866 0.00 100.00
pP3 12 11 1675 1293 29.54 1598 4.88 79.58
P3A 12 0 1472 1240 18.71 1472 0.00 100.00
P4 14 14 2125 0 * 2125 0.00 100.00
Ps 25 11 1684 1518 10.94 1588 6.05 42.16
P5SA 25 0 1145 1041 9.99 1141 0.35 96.15
pPo6 47 32 1288 1199 7.42 1219 5.66 22.47
P6A 47 0 915 856 6.89 872 493 27.11
P7 63 233 63 62 1.61 63 0.00 100.00
P7A 63 0 45 45 0.00 45 0.00 *
pPg 78 283 18480 18204 1.52 18205 1.51 0.36
P8A 78 0 1845 1305 41.37 1845 0.00 100.00
P9 98 98 2125 0 * 2175 0.00 100.00

50 percent of the cases and we have at hand the lower bound KLB for the other subset;
we have to report a big difference between H and ALB and even KLB and ALB.

We should point out the effectiveness of the separation algorithm for identifying
subtour elimination constraints that are violated by the current LP solution. See column
RK in Table 7 for the ATSP cases (i.e., cases with |R|=0). It gives the gap reduction
obtained by appending violated SECs to the current LP model. On the other hand,
we may observe the performance of the preprocessing procedure based on (2.1) (|A,\ A|
variables x;;’s are fixed to zero) for tightening the lower bound ALB for the cases with
precedence relationships (i.e., cases with |[R|> 0). Note also how effective the reduced
cost fixing can be whenever ALB and H are close enough. Finally, see that ALB is
zero for P4 and P9 in implementation C (i.e., the cost matrix structure is not exploited).

The column headed KLB in Table 7 gives our tightest lower bound on the SOP
optimal solution. It is the optimal value of the LP relaxation (2.3) (1)-(4) enlarged by
appending the cuts that our separation algorithm identifies as violated cuts. By compar-
ing the columns headed A-GAP and K-GAP and, in particular, analyzing the column
headed RK, we can see the effectiveness of appending violated cuts. Notice that the
optimality of the solution provided by the heuristic has been proved for 9 out of 16
cases. On the other hand, the largest gap is only 6.05 percent. Branch-and-bound has
not been used, since our only objective was to create (hopefully) good lower bounds
for the heuristic given in [4] and [5].

8. Conclusions. In this work we have presented two new 0-1 models for the
sequential ordering problem. Both are stronger than the model introduced in [4]. We
have also introduced polynomial time separation algorithms for subtour elimination
constraints and precedence forcing constraints. We have outlined the LP framework
of three implementations for tightening the lower bound of the optimal solution and
reported our computational results. More theoretical work is required mainly for
identifying (in reasonable time) violated further inequalities mentioned in § 5. In any
case, our computational experience indicates that this LP-based approach is a quite
promising way to analyze the quality of a feasible solution and eventually to obtain
an optimal one.
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ERROR BOUND AND REDUCED-GRADIENT PROJECTION
ALGORITHMS FOR CONVEX MINIMIZATION OVER A
POLYHEDRAL SET*

ZHI-QUAN LUO! AND PAUL TSENGH#

Abstract. Consider the problem of minimizing, over a polyhedral set, the composition of an
affine mapping with a strongly convex differentiable function. The polyhedral set is expressed as
the intersection of an affine set with a (simpler) polyhedral set and a new local error bound for this
problem, based on projecting the reduced gradient associated with the affine set onto the simpler
polyhedral set, is studied. A class of reduced-gradient projection algorithms for solving the case
where the simpler polyhedral set is a box is proposed and this bound is used to show that algorithms
in this class attain a linear rate of convergence. Included in this class are the gradient projection
algorithm of Goldstein and Levitin and Poljak, and an algorithm of Bertsekas. A new algorithm in
this class, reminiscent of active set algorithms, is also proposed. Some of the results presented here
extend to problems where the objective function is extended real valued and to variational inequality
problems.

Key words. local error bound, convex minimization, linear convergence, reduced-gradient
projection algorithms

AMS(MOS) subject classifications. 49, 90

1. Introduction. We consider the convex program

(1.1) minimize  f(z)
subject to =z € &,

where X is a polyhedral set in the n-dimensional Euclidean space R™ and f is a
real-valued function defined on R™. We assume that f is of the special form

(1.2) f(z) = g(Ez) + (g, ),

where F is some m X m matrix, g is some vector in R", and g is a continuously
differentiable function in R™ with Vg Lipschitz continuous and strongly monotone in
the sense that there exist positive scalars p > 0 and o > 0 such that

(1.3) IVg(2) — Vg(w)|| < pllz — wl|  Vz, Vw,
and
(1.4) (Vg(z) = Vg(w),z —w) > ol|z —w||®> Vz, VYuw.

We also assume that the optimal solution set for (1.1), denoted by X*, is nonempty
and denote by v* the value of f on A*. In our notation, all vectors are column
vectors, superscript T' denotes matrix transpose, (-,-) denotes the usual Euclidean
inner product, and | - || denotes the Euclidean norm induced by (:,-).
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There are many optimization problems that satisfy the above assumptions, in-
cluding convex quadratic programs and a certain routing problem in data networks
(see [BeG8T7]). We remark that the assumption that g be real valued is made only to
simplify the analysis and can be relaxed so as to allow, for example, certain entropy
optimization problems and their dual to be captured by the problem framework. (See
86 for detailed discussions.)

A classical method for solving (1.1) is the gradient projection algorithm of Gold-
stein [Gol64] and Levitin and Poljak [LeP65], which follows each gradient step by a
projection onto the feasible set X’

v = [z - aVf(@)},

where [-|1 denotes the orthogonal projection onto X and « is some suitably cho-
sen positive stepsize. This method has been well studied and, when combined with
second-order scaling, has been successful in solving large quadratic programs with box
constraints (see, e.g., [Ber76], [Ber82], [GaB84], and [Mor89]). However, when X is
not a box, the projection []} cannot be easily computed and this method can suffer
from poor performance.

For the special case where X is the Cartesian product of simplices, Bertsekas pro-
posed a modification of the gradient projection algorithm which avoids the relatively
expensive operation of projecting onto the simplices (see [Ber80], [Ber82], [BeG83],
and [BeG87]). (A simplex in R" is a set of the form {x € R" | Y, z; = ¢, = > 0}
for some ¢ > 0.) Instead, the algorithm of Bertsekas moves an iterate opposite the
direction of a certain reduced gradient associated with the knapsack constraints and
follows this step with a projection onto the nonnegative orthant. This algorithm
has been successfully applied to solving a certain routing problem in data networks
(see [BeG83], [BeG87], and [BeT89]) and can even be implemented in a distributed
asynchronous manner (see [Tsa89] and [TsB86]).

A key question concerns the convergence and the rate of convergence of the above
algorithms. For the gradient projection algorithm this question is largely resolved. It
was shown by Bertsekas and Gafni [BeG82], in the more general context of variational
inequality problems, and rediscovered by Luo and Tseng [LuT92b], that the gradient
projection algorithm for solving (1.1) attains a linear rate of convergence, provided
that the stepsize « is suitably chosen. Similar results were obtained by Dunn [Dun81],
[Dun87] and Gawande and Dunn [GaD88] for the general problem of minimizing a
differentiable function over a closed convex set, but under an additional assumption
that all local minimizers are isolated and that the objective function satisfies a certain
local growth condition. Central to their analysis is a certain local error bound for
estimating the distance from a point € X to X™*, defined as

(1.5) ¢(z) = min [lz —27.

In particular, it was shown in [LuT92b] that ¢(z) can be bounded above by some
constant times

Iz — o - V@)%,

the norm of the “natural residual” at x, provided that the latter quantity is small.
The same local error bound also extends to affine variational inequality problems
(see [Rob81] and [LuT92c]) and holds globally if f is strongly convex [Pan87]. For
the Bertsekas algorithm, however, no comparable result was known. We remark that
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bounds for ¢ have been studied quite extensively, although the focus has been on
global bounds and on using the bounds to terminate iterative algorithms and to
extract sensitivity/stability information near the optimal solution set (see [MaS87],
[MaD88], [Pan87], and [Rob82]).

The goals of this paper are twofold. First, we propose a generalization of the
above error bound based on a certain decomposition of the polyhedral set X. More
specifically, let us express X as

(1.6) X=Cn{zeR" | Br=c},

for some (simpler) polyhedral set C € ®", some [ x n matrix B, and some vector ¢ in
R!. We will show that ¢(z) can be bounded above by some constant times

(1.7) lz — fe = Vf(z) + BTp¢ || + || Bz — cll,

for any z € C and any p € R for which the above quantity is “sufficiently” small.
Here [} denotes the orthogonal projection onto C. Some obvious advantages of this
new local error bound, relative to the earlier one, are (i) z is only required to be in
C, not X, and (ii) instead of projecting onto X, we project onto the simpler set C.

Second, we propose a class of feasible descent algorithms for solving the special
case of (1.1) where C is a box. At each iteration of these algorithms, we compute a z
according to the projection step

z:= [z — a(Vf(z) — BTp)|{,

for some stepsize o > 0 and some multiplier vector p, and then adjust a subset of
the coordinates of z to obtain a new iterate in X’. Both the gradient projection
algorithm and the algorithm of Bertsekas described earlier can be shown to belong to
this class. By using the new local error bound, we show that the iterates generated
by any algorithm in this class converge at least linearly to an optimal solution. (Here
and throughout, by linear convergence we mean R-linear convergence in the sense
of Ortega and Rheinboldt [OrR70].) We also propose a new algorithm in this class
reminiscent of active set algorithms.

The remainder of this paper is organized as follows. In §2 we prove some technical
facts concerning the problem (1.1); in §3 we use these facts to establish the new local
error bound. In §4, we describe the class of feasible descent algorithms mentioned
above and relate them to the gradient projection algorithm and to the algorithm of
Bertsekas. In §5, we use the error bound of §3 to show that any algorithm in this
class which uses an Armijo-like stepsize rule is linearly convergent. In §6, we give our
conclusion and discuss extensions.

Throughout this paper, we adhere to the following notations. For any vector x
in R*, we denote by z; the jth component of z and, for any subset J C {1,...,k},
we denote by z; the vector with components x;, j € J. For any matrix A, we
denote by ||A|| the matrix norm of A induced by the vector Euclidean norm || - ||, i.e.,
| All = max|z=1 || Az].

2. Technical preliminaries. In this section we will prove a number of interest-
ing facts concerning the solution set X* and the level sets of f over certain subsets of
C. These facts will be used in the analysis of subsequent sections.

First, by using the strict convexity of g (cf. (1.4)) and the special structure of f
(cf. (1.2)), we have the following simple lemma which says that the linear mapping
z — Ez is invariant over the solution set X* (also see [LuT92a] and [Tse91)).
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LEMMA 2.1. There ezists a t* € R™ such that Ex* = t* for all * € X*.
From (1.2) and the chain rule for differentiation, we have

(2.1) Vf(z) = ETVg(Ez) +q, Vz.

Then, (1.3) yields that V f is Lipschitz continuous with Lipschitz constant p|| ET|||| E||,
that is,

(2.2) IV£(z) = Vi@l < plETNIENz - yll, vz, Wy,

and Lemma 2.1 yields that V f is invariant over X* or, more precisely,
(2.3) Vf(z*)=d", Vz*eX*

where we let d* = ETVg(t*) + q.

The optimality conditions for (1.1), together with (2.3), imply that X* is equiv-
alently the solution set of the linear program min,e x(d*, z). Then, as we shall see in
the next section, the question of finding a local error bound for (1.1) translates into
a perturbation analysis on the solution set to this linear program. To perform this
analysis, we will need the following result, due originally to Hoffman [Hof52] (see also
[Rob73] and [MaS87]), on the Lipschitzian continuity of the solution set to a linear
system as a multifunction of the right-hand side. This result will be used in the proofs
of Lemma 3.1 and Theorem 3.2 which follow.

LEMMA 2.2. Let C and D be any r X k and s X k matrices. Then, there exists
a constant @ > 0 depending on C and D only such that, for any T € R* and any
(d,e) € R™ x R® such that the linear system Cy = d, Dy > e is consistent, there is a
point § satisfying Cy = d, Dy > e with

Ilz—-gll < 6(|Cz - d|| + ||Dz — el)).
For each v > v* and § > 0, define the level set
F§={z€C|||Bz—c| <$ f(z) <v}

(Note that .7-'3’* = X* and .7-';’,/ C Fy whenever v' < v,8’ < §.) By using the
polyhedral structure of X' (cf. (1.6)) together with the strict convexity of g (cf. (1.4)),
we can show the following boundedness property of EFy. This property will be used
in the proofs of Lemma 3.1 and Theorem 5.3. Its proof is patterned after that of
Fact 4.1 in [Tse91] and is based on the observation that a strictly convex function has
bounded level sets whenever its infimum is attained at some point.

LEMMA 2.3. For any v > v* and any 6 > 0, the set EFy is nonempty and
bounded.

Proof. Fix any v > v* and any § > 0. The set EFy is clearly nonempty since Fy
is nonempty. If EFf were not bounded, then the closed convex set

L={(tz]¢) R+ |t=Ez, z€C, |Bx—c| <6 f(z)<(}

would have a direction of recession (v,u,0) with v # 0 (see [Roc70]). Let z* be any
element of X*. Then, by Lemma 2.1, (t*,z*,v*) is a point in £, so (t*,z*,v*) +
0(v,u,0) is also in £ for all § > 0. This implies z* + 6u € C and f(z* + 6u) < v* for
all § > 0. Moreover, we see from the structure of £ that Bu = 0 and Fu = v. The
former implies B(z* + 6u) = Bz* = c for all § > 0, so z* + 6u € X* for all § > 0.
On the other hand, the latter, together with v # 0, implies that E(z* + fu) is not
constant for @ > 0, a contradiction of Lemma 2.1. 0
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3. A new local error bound. In this section we show that the distance from
a point ¢ in C to X* can be bounded above by the quantity (1.7) when the latter
quantity is small and f(z) is bounded. The proof of this is analogous to an argument
used in [LuT92b] and is based on a certain property of (1.7) for identifying (locally)
those constraints which are “active” at some optimal solution. By treating these active
constraints as equalities, we then apply Hoffman’s result (Lemma 2.2), together with
the Lipschitz continuity and strong monotonicity properties of Vg (cf. (1.3) and (1.4)),
to establish the desired bound.

First, since C is a polyhedral set, we can express it as

(3.1) C={zeR"| Az > b},

for some k x n matrix A and some b € R*. For convenience, we denote by A; the
ith row of A and, for any subset I C {1,...,k}, by A the submatrix of A obtained
by removing all rows i of A with i ¢ I. Then, for any (z,p) € C x R, the vector
z = [z — Vf(z) + BTp]} satisfies, together with some multiplier vector A € R*, the
following Kuhn—-Tucker conditions:

(82) z—2z+BTp+ATA=Vf(z), =0, Vigl, Aiz=b;, Viel,

(3.3) Az > b, A >0,

where I is some (possibly empty) subset of {1,...,k}. We say that an I C {1,...,k}
is identifiably basic at a vector (z,p) € C x R! if (z, p), together with z = [z — V f(z) +
BTp|t and some X € [0, 00)¥, satisfies (3.2).

By using Lemmas 2.1, 2.2, and 2.3, we show the following lemma which roughly
says that if x € C is sufficiently close to X*, then those indices which are identifiably
basic at (z,p) for some p are also identifiably basic at some element of X* x R'.

LEMMA 3.1. Fiz any v > v*. There exists an € > 0 such that, for any (z,p) €
F2 xR with ||z — [z — Vf(z)+BTp|f|| < e and any I C{1,...,k} that is identifiably
basic at (z,p), there is some (z*,p*) € X* x R at which I is identifiably basic.

Proof. We argue by contradiction. If the claim does not hold, then there would
exist an I C {1,...,k} and a sequence of vectors {(z",p")}r=12,... in F¥ x R with I
identifiably basic at (z",p") for all r and

(3.4) ' — 2" -0, Bz" — ¢,
where we let
(3.5) 2" =[z" - Vf(z")+BTp"|f, Vnr,

and yet there is no (z*,p*) € X* x R! at which I is identifiably basic.
Since z" € FY for all r, it follows from Lemma 2.3 that {Exz"} is bounded. Let
t* be any cluster point of {Ez"} and let R be a subsequence of {1,2,...} such that

(3.6) {Ez"}g — .

We show below that t*° is equal to t*.

Since Vg is continuous everywhere, then we obtain from (3.6) (and using the fact
Vf(z") = ETVg(Ez") + q for all r) that

(3.7) {Vf(z")}r — ETVg(t™) +g.
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For each r € R, consider the following linear system in z, p, z, and A:

BTp+ ATA=Vf(z")+ 2" —a", Az>b, A>0,
AM=0, Vigl, Aiz=b, Viel,
Ex=Ex", z—xz=2"—~2", Bz=Bz".

The above system is consistent since, by I being identifiably basic at (z",p") and by
(3.2)~(3.3), (z",p", 2"), together with some A" € R* is a solution of it. Then, by
Lemma 2.2, it has a solution (&",p", 2", ;\r) whose size is bounded by some constant
(depending on A, B, and E only) times the size of the right-hand side. Since the
right-hand side of the above system is clearly bounded as r — oo, r € R (cf. (3.4),

(3.6), and (3.7)), we have that {(2",p", 2", :\’)} R is bounded. Moreover, every one of
its cluster points, say (z°°,p™, 2>, A>®), satisfies (cf. (3.4), (3.6), and (3.7))

BTp® + ATX® = ETVg(t>®) +q, Az®>b, A®° >0,
AX° =0, Vigl, Az®=0b, Viel,

Ez™® =t*, 2*-z*=0, Bzr*=c

Upon using (cf. (2.1)) ETVg(Ez>®)+q = V f(z*), we can simplify the above relations
to

BTpoo + AT)\oo — Vf(.’L'oo), Ax® > b, 2\® > 0,
A°=0, Vigl, Aa®=b, Viel, Bz®=c

This shows that > € X and that (Vf(z*),z —z>) > 0 for all z € X (cf. (1.6) and
(8.1)). Thus z* € X* and, by Lemma 2.1, t>° = t*. Moreover, I is identifiably basic
at (z°°,p*) (cf. (3.2)), so a contradiction is established. o
Lemmas 2.1, 2.2, and 3.1 together yield the main result of this section.
THEOREM 3.2 (local error bound). Fiz any v > v*. There exist scalars e > 0
and k > 0 (depending on v and the problem data only) such that

¢(2) < K(llz — [o = Vf(z) + BTpl¢|| + || Bz — )

for any (z,p) € F¥ x R with ||z — [z — Vf(z) + BTp|t|| <e.

Proof. Let € be the scalar in Lemma 3.1 corresponding to v. Consider any
(z,p) € FY x R! satisfying the hypothesis of the theorem and let I be any subset of
{1,...,k} that is identifiably basic at (z,p) and let z = [z — V f(z) + BTp]{. By (3.2)
and (3.3), there exists some A € R* satisfying, together with z, p, and z,

BTp+ AT A=2—-z+Vf(z), Az>b+A(x—2), A>0,
AM=0, Vi€l Ai.’II=bi+Ai($—Z), Viel.

By Lemma 3.1, there exists an (z*,p*) € X* x R! such that I is identifiably basic at
(z*,p*), so the following linear system in z*, p*, and A*:

BTp* + ATX* =d*, Az*>b, X\ >0,
Af=0, Vigl, Ax*=b;, Viel, Ez*=t", Bz"=c

is consistent (cf. (2.3), (3.2)—(3.3), and Lemma 2.1). Conversely, it can be seen that
every solution (z*,p*, A*) to this linear system satisfies z* € A*. Upon comparing
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the above two systems, we see that, by Lemma 2.2, there exists a solution (z*, p*, A*)
to the second system such that

I, A) = (", ", M) < O(ll2 -2+ V f(z) -d"[| + || A(z - 2) | + | Ez — " || + || Bz —l]),

where 0 is some scalar constant depending on A, B, and F only. By (2.1), the
definition of d*, and the Lipschitz condition (1.3), we also have ||V f(z) — d*|| =
|ETVg(Ex) — ETVg(t*)|| < p||ET||||Ex — t*||, so the above relation yields

I1(z,2, %) = (&%, 2", )| < 641l + Dz — 2]l + (PIET|| + 1)[| Bz — t*|| + | Bz — cll).

Upon rewriting some of the above relations and by using the fact d* = V f(z*)
(cf. (2.3)), we have

(3.8) t—2z+BTp+ AT\, =Vf(z), BTp*+ AT\, = Vf(z"),
(39) A[z = b[, A[.’I}* = b], Bzx* = C,

and

(3.10) I(z,p,A) = (%, p*, A")|| < O(| Ez — t*|| + ),

where we let v = ||z — z|| + || Bz — ¢|| and, for convenience, use the notation oo < O(3)
to indicate that a < wf for some scalar w > 0 depending on v and the problem data
only. In addition, I is identifiably basic at (z*,p*) and (cf. (1.4))

(3.11) o||Ex — t*||? < (Ezx — t*,Vg(Ex) — Vg(t*)).

We will use (3.8)—(3.11) to show that ||z—z*|| < O(7), which would then complete
the proof. Since Ez* = t* (cf. Lemma 2.1) and Vf(z) — Vf(z*) = ETVg(Ez) —
ETVg(Ezx*) (cf. (2.1)), then (3.11), together with (3.8)—(3.9), yields

o|Ezx - t*||® < (Exz — Ez*,Vg(Ez) — Vg(Ez*))

= (z— 2", Vf(z) - Vf(z"))

=(z—z*,BTp+ AT\ +2—2— BTp* — AT)\})
=(B(x—z*),p—p") + (A1(z — z*), A1 = A\}) + (¢ —z*, 2 — 2)
=(Bzx—c,p—p*)+ (Ar(x — 2), A\ = A\]) + (z — =¥,z — 2)
<|IBz —cllllp —p*[| + llz — 2| (I AllIA = A"l + l|lz — z*[])

< 1Al = p* I+ A =A™ + [l — =™ (),

where the last inequality follows from the definition of 4. Applying the above relation
once and (3.10) twice then gives

lz — 2| < O((I| Bz — t*[| + 7))
< O(| Bz —t*||* ++%)
<O((lp =2+ 1A = X[l + lle = 2*[1)y ++°)
<O((|1Bz — t*|| + 7)7 +7*).

Since ||Ez — t*|| < |E||||z — =*||, the above relation implies that there exists a scalar
constant w > 0 (depending on v and the problem data only) such that

|Ez — t*|* < w(||[ Bz — t*|ly + 7°).
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This is a quadratic inequality of the form a? < w(ay + v?), which implies a < %(w +
Vw? + 4w)~y and therefore

|Ez —t*| < %(w + Vw? + 4w)y.

Combine this bound with (3.10) and we obtain ||(z, p, A) — (z*,p*, A*)|| < O(y). 0

We note that the proof of Theorem 3.2 in fact yields the stronger result that, for
any (z,p) € F¥ x R satisfying ||z — [z — Vf(z) + BTp]}|| < eand any I C {1,...,k}
that is identifiably basic at (z,p), there exists an (z*,p*) € X* x R! such that I is
identifiably basic at (z*,p*) and ||z —z*|| < k(||z — [z — V f(z) + BTp|¢ || + | Bz — cl|),
for some scalar k depending on v and the problem data only. Roughly speaking, we
can bound ¢ and identify the active constraints at the same time. Finally, we remark
that, at the price of forgoing this stronger result, the proof of Theorem 3.2 can be
simplified further by appealing to a result of Robinson [Rob81] on the local upper
Lipschitzian nature of polyhedral multifunctions.

4. RGP algorithms. In this section, we introduce a general class of feasible
descent algorithms for solving the special case of (1.1) where C is the nonnegative
orthant in R”, i.e.,

(4.1) C = [0,00)™.

An algorithm in this class updates an iterate by first moving it opposite a certain
reduced-gradient direction, then projecting it onto C, and finally adjusting a subset of
the coordinates with zero reduced gradient, so that the new iterate remains in X. We
will show that both the gradient projection algorithm and the algorithm of Bertsekas
mentioned in §1 belong to this class. We also propose a new algorithm in this class
reminiscent of active set algorithms and, in particular, of a projected Newton method
of Bertsekas [Ber82]. Unlike most active set algorithms, this algorithm can add/drop
many constraints from its active set at each iteration. We remark that the above class
of algorithms readily extends to the case where C is a box in R™, i.e., the Cartesian
product of closed intervals, but, for simplicity, we will not consider this more general
case here.

In what follows, we denote by B; the jth column of B and, foreach J C {1,...,n},
by By the matrix obtained by removing all columns B;, j € J, from B. We define
V,f and V;f analogously. We also denote by J the complement of J with respect
to {1,...,n}.

To motivate our algorithms, consider an iteration of the gradient projection algo-
rithm: 2’ = [z — aV f(z)]}, where z is the current iterate, a is the stepsize, and ' is
the new iterate. Let [-]; denote the orthogonal projection onto [0,00)™. By using the
structure of X given by (1.6) and (4.1), we can rewrite this iteration as =’ € X and,
for some p € R,

(4.2) o' = [z~ a(Vf(z) -~ BTp))+.

(It can be seen that p is in fact an optimal Lagrange multiplier vector associated with
the constraints Bz = c in the problem of projecting z/a — V f(z) onto X.) Thus, the
above iteration is equivalent to the problem of finding a p € R! so that z’ given by
(4.2) is in X. Can the restriction (4.2) be relaxed so it would be relatively easy to
find such a p?

To answer this question, suppose that, in addition to (4.1), wehave B=[11 --- 1]
and ¢ = 1 (so X is the unit simplex). Consider the algorithm of Bertsekas mentioned
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in §1 for solving this special case of (1.1), which operates as follows: Given an iterate
x € X, it chooses an index j € {1,...,n} for which

(43) V;f(z) = min Vi (2),
and computes a new iterate ' € X according to
(44) o = [ox — a(Vef(z) =V f(@)l+  Vk # 35,
(45) zh=1-3 a},
k5

where a is some positive stepsize. (The fact that m; > 0 follows from the observation
that z}, < @ for all k # j, so the fact 3, xx = 1 =3, } yields z; > x;.) A moment
of reflection shows that the iteration (4.4) is simply the following relaxed version of
(4.2):

(4.6) oy = [z — a(Vif(z) - Byp)l+, Vk#3,
with p = V; f(z). Moreover, by combining (4.4) with (4.5), we see that
(4.7) o — 2ll < Vnllz — [z — a(Vf(z) — BTp)]+|.

We remark that, for simplicity, we considered only the unscaled version of the Bert-
sekas algorithm. See [BeG87, §5.7] for a description of the full algorithm; see [Ber82,
§3] and [BeG83] for a related algorithm in which j is chosen by the maximum compo-
nent rule: j = arg maxy xx. This latter algorithm is closely linked to the active-set-
type algorithm to be described below.

The formulas (4.6) and (4.7) suggest the following generalization of the gradient
projection algorithm and the Bertsekas algorithm for solving (1.1) (under the condi-
tion (4.1)) whereby, given an iterate x € X, we choose a positive stepsize a and we
compute a new iterate =’ which, together with some p € R!, satisfies

(4.8) zh = [zx — (Vi f(z) — BIp)ly, Vk with Vif(x) # Blp,
and
(4.9) lla" - z|| < nlle - [z — a(V f(z) — BTp)]+ |,

with 7 some scalar constant. In order to maintain feasibility, we assume that the
new iterate x’ has the property that

’ T2
(4.10) ' € X whenever a < 7@’
with 7 some scalar constant (possibly 72 = oo). Thus 2’ is feasible whenever « is
chosen to be sufficiently small.

We will call any iteration a reduced-gradient projection (RGP) iteration if it gen-
erates, for a given iterate x € X and a stepsize a > 0, a new iterate z’ satisfying
(together with some p € R!) the relations (4.8)—(4.10). Roughly speaking, at each
RGP iteration we take a step opposite the reduced-gradient direction V f(z) — BTp,
project onto [0,00)", and then adjust those coordinates with zero reduced gradient
so as to remain in X. Any algorithm that generates iterates in X by successive ap-
plications of RGP iterations will be called an RGP algorithm. We now describe three
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example RGP algorithms, the first two of which we have encountered earlier. The
issue of stepsize rules will be addressed in the next section.

Ezample 4.1. Gradient projection algorithm. By (4.2), the gradient projection
algorithm is an RGP algorithm with 7 = 1, 79 = oo, and p an optimal multiplier
vector associated with Bz = ¢ in the problem of projecting z/a — V f(z) onto X.

Ezample 4.2. Bertsekas algorithm. By (4.6) and (4.7), the Bertsekas algorithm
(4.3)—(4.5) is an RGP algorithm with 7, = y/n, 72 = 00, and p = ming Vi f(z).

Ezample 4.3. An active-set-type algorithm. Consider the following algorithm for
solving (1.1), under the condition (4.1): Fix any v > 0. Given an iterate z € X, we
choose a positive stepsize a and a (possibly empty) subset J C { j € {1,...,n} | z; >
v } with B; having full column rank, and we compute a new iterate ' as the (unique)
solution of a convex quadratic program, given by

(4.11) z' = arg ¢ min Z Vi f () (& — zk) + 51& Z |k — (zk — aVif(z))[%.

with Bé=c
€. >0 VhgJ keJ kgJ
We will show that the iteration (4.11) is well defined and the z’ thus generated,
together with some p, satifies (4.8)—(4.10) for some scalar constants 73 and 72.

The above algorithm may be viewed as a generalization of the gradient projec-
tion algorithm in which projection is omitted for coordinates that are far from the
boundary. In particular, if we take J to be the empty set, then we recover the gradi-
ent projection algorithm (see Example 4.1). A key advantage of the algorithm is its
flexibility. For example, we can choose the set J so that the work in solving (4.11)
is less than that for performing the full projection (see discussions to follow). The
parameter v, however, needs to be chosen with care. If -y is too large, the choices for
J would be restricted; if 7 is small, then, as we shall see, & may need to be small (cf.
(4.14)), in which case the algorithm would take small steps. Finally, we note that ~
need not be fixed but can be adjusted dynamically, provided that it remains bounded
away from zero.

We now show that the iteration (4.11) is a well-defined RGP iteration. If J is the
empty set, then (4.11) reduces to a gradient projection iteration, so it is well defined
and the =’ generated by it, together with some p, satisfies (4.8)—(4.10) with 3 = 1
and 1 = oo (cf. Example 4.1). Thus, it remains to prove the above assertion for the
case where J is nonempty. First, notice that the feasible set for the minimization in
(4.11) is nonempty (since it contains X’) and bounded (since the objective function is
strongly convex in €5 and, by virtue of B having full column rank, £; is determined
uniquely by £ on the feasible set). Thus, the minimization in (4.11) has an optimal
solution. It is easily seen that this optimal solution is unique, so (4.11) is well defined.
From the optimality conditions for the minimization in (4.11) we have that Bz’ = ¢
and

(412) ‘,l"lj = [xj - a(ij(:c) - B:Ii1p)]+a VJf(-’I?) = B.%wpa

where p is any optimal Lagrange multiplier vector associated with the constraints
B¢ = cin (4.11). The former, together with the fact Bz = ¢, implies 0 = B(z' —z) =
B;(z'; — z5) + Bj(z'; — x 7) so, multiplying both sides by BY and using the fact that
By has full column rank, we can solve for /; — x; to obtain

&y —z; = —(B} By) "' By Bj(z; — x3),
implying
(4.13) ey — =41l < (BT Bs)~*BJ Bjllllz’; — ;|-



ERROR BOUND AND REDUCED-GRADIENT PROJECTION 53

Relations (4.12) and (4.13) show that z’, together with p, satisfies (4.8) and (4.9) with
n =1+ |(BTB,)"*B} By].

It only remains to show that z’ satisfies (4.10) for some scalar constant 7. For
any subset I of {1,...,m} and any subset J of {1,...,n}, let By; denote the matrix
obtained by removing from Bj all rows i with i ¢ I. We show below that ' € X
whenever

minge s{zx}
4.14 a< s
(4.14) I(BTB,) BT B,V £ (@) - BL,(BL) Vi@

where I is any subset of {1,...,m} such that By is invertible. This, together with the
fact z; > « for all j € J, would then complete the proof. First, we observe that the
constraints B§ = ¢ can be rewritten as B;;€; + B; 7§57 = c; and Bj ;€5 + Bj{5 = cj,
where I is the complement of I relative to {1, ..., m}. Using the first set of constraints
to eliminate £ ; from the second set and from the objective function in (4.11), we reduce
the minimization in (4.11) to the following problem:

minimize % ; & — (zx — aVi f(2))1? = (Vs f(x), (Brs) "' Brs€s)
k@

subject to (ij - BfJ(BIJ)_lBIj) Er=cj— BfJ(B[J)—IC[, &5 >0,

to which z’; is an optimal solution. Then, z'; satisfies the optimality conditions:

o’y = oy — a(Vf(z) — B;(BI)) 7' Vif(@)l3,

where D denotes the feasible set for the reduced problem. This, combined with the
observation that 7 € D (cf. z € X), implies

l2s — 2l = 2y — (V3£ () = B{3(BL,) "' Vi f(2))5 — 215l
< al|Vyf(z) - B3(BL,) "' Vi f (@),

where the last inequality follows from the nonexpansive property of the projection
mapping []}. Combining this with (4.13) gives

=y — zsll < @|(BT By) ™' BI Bj|lIIV ;£ (z) — Bi;(Bf;) "'V f (@),

and it follows that 2/, > 0 whenever « satisfies (4.14). Since Bz’ = ¢ and (cf. (4.12))
x'; > 0, this shows that 2’ € X (cf. (1.6) and (4.1)) whenever « satisfies (4.14).

The iteration (4.11) admits an interesting interpretation as an active-set-type
iteration. To see this, let us assume for simplicity that the matrix B; therein is
invertible. Then, since V;f(z) = BTp (cf. (4.12)), we can eliminate p from the first
expression in (4.12) to obtain

oy = [z7 — a(V;f(z) — B (B]) 'V f(2))4-
Also, since Bz’ = ¢, we can solve for ', to obtain
a’; = (B;)"'(c — Bya’}).

Thus we may interpret (4.11) as an iteration in which we first take a reduced-gradient
projection step, and then we adjust those coordinates for which the reduced gradient
is zero so that the new iterate z’ satisfies Bz’ = c. This philosophy of taking a descent
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step with respect to those coordinates “active” at their respective bounds (i.e., z )
is reminiscent of active set schemes for solving problems with simple bounds. In fact,
it can be seen that the above iteration is very similar to an unscaled version of a
projected Newton method studied by Bertsekas [Ber82, §3] and Bertsekas and Gafni
[BeG83]. In contrast to conventional active set schemes, the above scheme has the
advantage that it can add and drop many elements from its currently active set J at
each iteration.

5. Convergence of RGP algorithms. In this section we show, by using the
local error bound of §3, that every RGP algorithm with the stepsizes chosen according
to an Armijo-like rule is linearly convergent. The proof of this is analogous to a proof
given in [LuT92b].

First, we describe the rule for choosing the stepsizes a. This rule is based on the
efficient Armijo-like rule proposed by Bertsekas for the gradient projection algorithm
[Ber76]. Let 73 and 72 be the parameters of a given RGP iteration (cf. (4.9) and
(4.10)). We fix two parameters 3 € (0,1) and 73 > 0 and we let

7 = 3| ETIEllp(r1)? + 7s.

Given an iterate £ € X, we choose a number oy with ag > min{l/74,72/||V f(z)||}
and we set

(5.1) a = agfF,

where k is the first nonnegative integer for which an =’ and a p generated by the RGP
iteration with a given as above (i.e., ' and p together satisfy (4.8)—(4.10)) satisfies
2’ € X and the sufficient descent condition

(5.2) f(2) = f(z') 2 msallz — [& — V§(2) + BTpl4 .

We remark that, instead of the Armijo-like rule given above, we can also use a stepsize
rule analogous to one proposed by Goldstein [Gol74] and the analysis can be adapted
accordingly.

We next show that the stepsize rule (5.1)—(5.2) is well defined and that the stepsize
generated is sufficiently large.

LEMMA 5.1. The stepsize rule (5.1)—(5.2) is well defined. Moreover, the stepsize
o generated by this rule is bounded below by Bmin{1/74,72/||V f(z)||}.

Proof. First, we show that, for a given x € X and a positive number « strictly
less than min{1/74,72/||Vf(z)||}, any =’ and any p € R’ that together satisfy (4.8)—
(4.10) also satisfy ' € X and (5.2). Since V f is Lipschitz continuous with Lipschitz
constant | ET||||E||p (cf. (2.2)), we have

IETIIEllp

(5.3) f(@) - f@) 2 (Vf(2),z —a') - —

Iz’ — x|,

Let J = {j € {1,...,n} | Bfp = V,f(z)}. Then, by (4.8), ’; is the orthogonal
projection of 7 — a(Vjf(x) — B}‘p) onto the nonnegative orthant. Since > 0, this
implies

(25 — x5+ a(Vif(x) — BIp),z5 — ;) > 0.
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Since Bx = Bz' (cf. z € X and 2’ € X), we have from the definition of J and the
above relation that

(Vf(z),z—a') = (Vf(z) - BTp,x — "
(5.4) =(V;f(z) — Bip,z; — ;)

1
> = - — 2‘
= C¥”flf'J =]
Upon combining (5.3) with (5.4), we obtain

ET
f(@) - f() > %”(I;’j— le_Hz _ I ||2||E||P

so (4.8), (4.9) together with the definitions of J and 74 yield

lz — "%,

1@) = 1) > (5 = m+n) e~ o - a(VS@) - BTa

Since ||z — [z — ad]+| > a||lz — [z — d]+ || for any d € R™ (see, for example, Lemma 1
in [GaB84]), this shows

f() = f(z') 2 (1~ ma+ ma)|z ~ [z — Vf(z) + BTp|+|*.

Thus z’ together with p satisfies (5.2) whenever « is less than 1/74. Since z’ satisfies
(4.10), we also have that ' € X whenever « is less than 72/||V f(z)||.

The above result implies that, for a given z € X, if the integer k is sufficiently
large, then any z’ and p satisfying (4.8)—(4.10), with o given by (5.1), also satisfies
z’ € X and (5.2). There must be a first k for which this occurs, so the stepsize rule
(5.1)—(5.2) is well defined. Now we prove the second claim. Let & be the stepsize
given by this rule. Then, either @ = ap or @ < ap. In the former case the second
claim holds trivially (by choice of ap). In the latter case, there must exist some z’
and p satisfying (4.8)—(4.10), with « set to @/, such that either 2’ ¢ X or (5.2) fails
to hold. By the result proven above, this means that @/ must be greater than or
equal to min{1/74, 72/||V f(z)||} or, equivalently, & is greater than or equal to 3 times
the latter quantity. The second claim then follows. 0

Our final lemma bounds the cost difference f(z') — v* in terms of the inezact
residual = — [z — V f(z) + BTp]*. This bound is analogous to the cost bounds used
in the convergence analysis of gradient projection methods (see [Dun87, eq. (23)],
[GaD88, Lemmas 2 and 3|, and [LuT92b, Thms. 2.1 and 3.1]).

LEMMA 5.2. Fiz any v > v* and let € be the corresponding scalar given in
Theorem 3.2. For any x € X, any p € R, and any =’ € X satisfying f(z) < v,
lz — [z — Vf(z) + BTp|+| < € and (4.8)—(4.9), we have

1) = v <75 (143 ) o= lo = V(@) + BTl I,

where 5 > 0 is some scalar constant depending on v and the problem data only.

Proof. Fix any z, 2/, and p satisfying the hypothesis of the lemma. Let z =
[ — Vf(z) + BTp]*. Then, (z,p) € F¢ x R and ||z — z|| < ¢, so (z,p) satisfies the
hypothesis of Theorem 3.2. Upon invoking Theorem 3.2, we have that there exists
some z* € X* such that

(5.5) lz —2*|| < kllz - 2|,
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where k is the scalar in Theorem 3.2.
Since Bz’ = Bz*, then
(Vf(z),&' —z*) = (Vf(z) - BTp,2' —z*)
= (Vsf(z) - Bip, s — z%),
where we let J = {j € {1,...,n} | BJTp = V,f(z)}. Since z; is the orthogonal

projection of z; — a(V ;f(z) — BTp) onto the nonnegative orthant (cf. (4.8)) and
x} > 0, we also have

(@'; — x5+ a(V;f(z) — Blp), a5 — %) <0,

which, when combined with the previous relation, yields
1
(Vf(@),2' —2%) < — @y~ 2,2y = 2).

Also, by the Mean Value Theorem, there exists some { lying on the line segment
joining z' with z* such that

f@) = f&*) = (VF(Q),a' —z").

Summing the above two relations and rearranging terms give
§(&) = 1(2) S (VH(Q) = V(@) 2 ~ %) + — @y — a2y — 25)
< (I95©) = 5@+ Jlle - 1) I’ = o°I
< (PIETNIENIC - ol + 21l - 1) o' - o]
< (IETNEIe" 1 + Sl = 1) I’ = 27

where the third inequality follows from the Lipschitz continuity property of Vf (cf.
(2.2)). Using (5.5) and the fact ||z—2'|| < m1||z—z]|| (cf. (4.9)) to bound the right-hand
side of the above relation completes our proof. 0

Upon using Lemmas 5.1 and 5.2, we can now establish the linear rate of conver-
gence for RGP algorithms employing the Armijo-like stepsize rule.

THEOREM 5.3 (linear convergence). Let {z°,z!,...} be a sequence in X gen-
erated by a RGP algorithm (cf. (4.8)—(4.10)) using the Armijo-like stepsize rule (cf.
(5.1)-(5.2)). Then, {"} converges at least linearly to an element of X* and {f(z")}
converges at least linearly to v*.

Proof. For each index r > 0, let a” and p” denote, respectively, the stepsize and
the multiplier vector associated with the generation of z"*! by the RGP algorithm
using the Armijo-like stepsize rule. In other words, the conditions (4.8)—(4.9) and
(5.1)—(5.2), as well as 2’ € X, are satisfied by z = z", 2’ = 2"t!, a = o, and p = p"
for every r. By (5.2), we have

(5.6) f@) = f(@™) > ma'||lz” - 2" - Vf(z") + BT |4 |%, v,
and, by Lemma 5.1, we have

(5.7) o > Bmin{l/74,72/||Vf(z")|}, Vr.
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Relation (5.6) implies f(z") < f(z°) for all r. Since in addition 2" € X for
all r, we obtain from (1.6) that z” € FyJ for all r where we let v = f(z°). Then,
Lemma 2.3 implies that the sequence {Ez"} is bounded. Since Vg is continuous, this
in turn implies that {Vg(Ez")} is bounded, so that (cf. (2.1)) {Vf(z")} is bounded.
Combining this with (5.7), we see that {a"} is bounded below by some positive scalar
constant.

Since {a"} is bounded away from zero and f is bounded below on X, the relation
(5.6) implies z" — [z" — Vf(z") + BTp"]+ — 0. Then, by Lemma 5.2, there exist a
scalar constant 75 > 0 and an index 7 such that

T [T T T, r 2> o” r+1 * > 5
I = [o” = VI + BT LI 2 s (P — o), W2
which, when combined with (5.6), yields
2
TN r+1 > Ts(aT) r+1y % > 7
f@) = fE 2 SET S (E —v), ez
Upon rearranging terms in the above relation, we obtain
7‘5(1 + OAT)

r+1 *
f(:L' ) vt s T5(1+OLT)+7'3
Since {a"} is bounded away from zero, this shows that f(z") — v* at least linearly,
which, together with (5.6), shows that |z" — [z" — Vf(z") + BTp"]+|| — 0 at least
linearly. Since ||z7+! — 7| < 7||z" — [z" — Vf(z") + BTp"]4|| (cf. (4.9)), it follows
that ||z"+t1 —2"|| — 0 at least linearly, so {z"} converges. Since f(z") — v*, the limit
point of {z"} is in X™. 0

We have just shown that any RGP algorithm using the Armijo-like stepsize rule
attains a linear rate of convergence. Upon applying Theorem 5.3 to the algorithm
of Bertsekas and to the active-set-type algorithm of §4, we immediately obtain the
following new convergence results.

COROLLARY 5.4. Suppose that C = [0,00)", B=[11 --- 1], and ¢ = 1. Then,
any sequence of iterates generated by the Bertsekas algorithm (cf. (4.3)—(4.5)), with
stepsizes determined by the Armijo-like rule (cf. (5.1)—(5.2)), converges at least linearly
to an element of X*.

COROLLARY 5.5. Suppose that C = [0,00)™. Then, any sequence of iterates gen-
erated by the active-set-type algorithm (cf. (4.11)), with stepsizes determined by the

Armijo-like rule (cf. (5.1)-(5.2)), converges at least linearly to an element
of X*.

(ar)g (f(wr) - U*) ’ Vr > 7.

6. Concluding remarks. In this paper, we studied a (new) local error bound
for certain convex minimization problems over a polyhedral set. We then used this
error bound to prove linear convergence for a class of reduced-gradient projection
algorithms.

There are several directions in which our results may be generalized. We briefly
describe two main ones below.

1. Problems with extended-real-valued cost function. In many situations,
g is defined only on some open subset G of ™ and Vg is Lipschitz continuous and
strongly monotone on any compact subset of G. All of our results can be extended to
this situation provided that, for some ¥ > v*, the level set F = {r € X | f(z) < v}
satisfies

EF Cg.
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(Notice that the above condition holds automatically if dom g is open and g tends to
oo at the boundary of dom g.) In particular, Theorem 3.2 still holds provided that v
therein does not exceed ©. The proof of this is based on an interesting fact that, for
6 > 0 sufficiently small, EF} is a compact subset of G, where F} is defined as in §2.
(The proof of this is similar to that of Lemma 9.1 in [Tse91].) By using this fact in
place of Lemma 2.3, we can verify that all the steps in the proof of Theorem 3.2 go
through, provided that we take v < ©. Linear convergence of the algorithms described
in §4 also holds, provided that the stepsize « is taken sufficiently small so as to ensure
that each new iterate remains within . (The proof of the latter uses the boundedness
of Vf on F and the strict inclusion of EF by G.)

2. Variational inequality problems. The error bound in §3 readily extends
to the following variational inequality problem, first studied by Bertsekas and Gafni
[BeG82], of finding an z* satisfying

" = [z — F(z")]%,

where F(z) = ETG(Ez) + q and G : R™ — R™ is a Lipschitz continuous strongly
monotone function. However, it is unclear whether the bound would help in the
development of algorithms for solving such a problem. The error bound also readily
extends to affine variational inequality problems (where F' in the above problem is any
affine mapping). This follows from a result of Robinson [Rob81] on certain Lipschitz
continuity properties of polyhedral multifunctions.

There remain many open questions which we plan to investigate. Specifically,
can the local error bound described in §3 be extended to problems with general con-
vex constraints? Can the linear convergence result of Corollary 5.4 be extended to
an asynchronous version of the Bertsekas algorithm proposed by Tsitsiklis and Bert-
sekas [TsB86]? Some progress along this latter direction has already been made (see
[LuT91]). Are there other reduced-gradient projection algorithms, different from those
described here, to which our convergence analysis can be fruitfully applied?

It was pointed out to us by one of the referees that, although RGP algorithms
typically require less work per iteration than the gradient projection algorithm, their
rate of convergence may be slower, thus offsetting any saving in the per iteration
workload. In particular, a careful examination of the convergence analysis in §5 shows
that, in the worst case, the rate of convergence of an RGP algorithm may depend on
n, whereas the gradient projection algorithm does not. Does this dependence exist
in practice and, if yes, what are its effects on the performance of an RGP algorithm?
This is yet another question that we hope to address in the future.

Acknowledgment. We thank Professor D. P. Bertsekas and an anonymous ref-

eree for their many helpful comments, which led to a number of improvements in the
presentation.
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BLACK-BOX COMPLEXITY OF LOCAL MINIMIZATION*
STEPHEN A. VAVASISt

Abstract. The complexity of local minimization in the black-box model, that is, the model
in which the objective function and its gradient are available as external subroutines, is stud-
ied. The black-box model is used, for example, in all the optimization algorithms in Dennis and
Schnabel [Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-
Hall, Englewood Cliffs, NJ, 1983]. The first main result is that the complexity grows polynomially
with the number of variables n, in contrast to other related black-box problems (global minimization
and Brouwer fixed points) for which the worst-case complexity is exponential in n.

The second contribution is the construction of a family of functions that are bad cases for all
possible black-box local optimization algorithms.

Key words. optimization, local optimality, black-box model, information-based, complexity
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1. Black-box model. Numerical optimization refers to the problem of mini-
mizing a continuous function f : D — R where D is a subset of R”. For nonconvex
problems, most optimization algorithms will not return global minima; instead, they
will return (at best) local minima.

It is therefore natural to inquire about the complexity of local minimization for
general nonconvex objective functions. In order to make general statements about
local optimization, it is necessary to have definitions of valid objective functions and
of “approximate” local minima. These definitions will be the subject of most of this
introduction. To our knowledge, this paper is the first attempt to define approximate
local minimization.

The remainder of the paper is organized as follows. In §2 we present the first
main result of this paper, that is, a simple algorithm to find an approximate local
minimum. Its running time is polynomial in n (the number of variables) and M/e
(see below for an explanation). In §3 we present the second main result, a family of
functions that constitutes a bad case for minimization algorithms. These functions
lead to a lower bound that is polynomial in M/e. In §5 we give an algorithm with
a better bound for some values of the parameters. In §6 we compare our bounds to
the bounds known for global minimization and Brouwer fixed points (a closely related
problem).

The model of computation will be a real-number model. We assume that the
algorithm can store and compute exact real numbers. We assume that the objective
function f is provided by the user via a subroutine. This subroutine takes as input
a vector x € R" and returns a real number f(x). We assume for this work that f
is continuously differentiable. We assume that the gradient Vf is also available as
a subroutine (see further remarks on this in §2). Some of the algorithms for uncon-
strained problems that fall into this category are the steepest descent method, the
Powell-symmetric-Broyden method, the Broyden—Fletcher—-Goldfarb—Shanno method,
and the line-search and trust-region modifications of these algorithms. See Dennis and
Schnabel [1] for more information.

* Received by the editors August 7, 1990; accepted for publication (in revised form) October 23,
1991. This work was supported in part by the Applied Mathematical Sciences Program (KC-04-02) of
the Office of Energy Research, U. S. Department of Energy, under grant DE-FG02-86ER25013.A000.

T Department of Computer Science, Cornell University, Ithaca, New York 14853.
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This model of computation is known as a “black-box” model, a “function-evalua-
tion” model, or an “oracle” model. The key limiting feature is that global information
about f is not available to the minimization algorithm (unlike, for instance, the special
case of quadratic programming).

Because our focus is on the objective function rather than the constraints of the
problem, we will assume the simple case that the domain of f is the n-dimensional
unit cube denoted by I™ (the n-fold Cartesian product of the interval I = [0,1]). It
would perhaps be easier to assume simply that f is unconstrained (i.e., the domain is
R"™), but this leads to difficulties of scale as well as to the problem that local minima
might not exist. Since I" is compact, there is always a global (and hence a local)
minimum.

An algorithm to find a local minimum takes as input a function f and its gradient
Vf as black-box subroutines. It must repeatedly evaluate f and V f at points in I™
until it has found a local minimum. It is easy to see that in the real-number function-
evaluation model, there will always be some uncertainty about the exact position of
the local minimum. Accordingly it is useful to define approximate local minima.

Recall that x* € I"™ is said to be a global minimum of f if f(x*) < f(x) for all
x € I™. The point x* is said to be a local minimum of f if there exists an open set N
containing x* such that f(x*) < f(x) for allx € NN I"™.

DEFINITION. A point x* € I™ is said to be an e-approximate local minimum of a
continuous function f : I"™ — R if there exists an open set N containing x* such that
f(x") < f(x) +€llx — x|

foralx e NN I".

Below we give an alternate characterization of this definition. First, we explain
this definition and also point out its shortcomings. The motivation for this definition
is that while x* may not have the smallest function value in the neighborhood N, the
value of f decreases slowly (at a rate no faster than €) as one moves away from x*.

The most obvious shortcoming of this definition is that an interior local maximum
or interior saddle point would also qualify as an e-approximate local minimum under
this definition. We do not feel that this property is a severe flaw in the definition,
however. For example, examining the local minimization algorithms of Dennis and
Schnabel, we see that it is possible for these algorithms to converge to saddle points.
Indeed, distinguishing local minima from other kinds of stationary points in general
is a computationally difficult problem; see, for example, Murty and Kabadi [3].

We observe that it is required to select a norm in the above definition. For this
paper we will assume that the one-norm is used in that definition. The norms in this
paper have been selected to make the analysis simple.

We now give an alternative characterization of an approximate local minima. We
will say that x* = (27,...,2}) is an e KKT point of f : I" — R if

1. For all ¢ such that =} > 0, 0f/0z;(x*) <e.

2. For all ¢ such that z} < 1, 8f/0z;(x*) > —e.
(Note that if € = 0 these conditions are the KKT (Karush-Kuhn-Tucker) necessary
conditions for local optimality.) If x* is interior, these conditions are equivalent to
the requirement that ||V f(x*)|loo < €.

If f is continuously differentiable, then there is a close connection between its
e-KKT points and its e-local minima, as proved by the following lemma.

LEMMA 1.1. Suppose f : I" — R is Ct. If x* € I™ is an e-approximate local
minimum of f, then it is an e-KKT point. Conversely, if x* is an e-KKT point, then
it is an € -local minimum for all € > e.
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Proof. We start with the first claim made by the lemma. We verify condition
1 in the definition of e-KKT point for a particular index i (condition 2 is similar).
Assuming z} > 0, the point x* — te; is feasible for small enough ¢ > 0, where e; is the
ith column of the identity matrix. For small enough ¢, this point is contained in NN1I,
hence f(x*) — f(x* — te;) < te by definition of approximate local minimum. Since
this holds for all ¢ small enough, by definition of the partial derivative this implies
Of /0x;(x*) <e.

To prove the second statement of the lemma, recall that the definition of a deriva-
tive is that for all d,

F(x* +4d) = f(x*) + Vf(x*)Td + o(|ld]).

Suppose that z} > 0 for some 3; then we know

Fx* — tes) = F(x*) — t;%(x*) +o(t)
SO

f(x* —te;) > f(x*) — te + o(t)

SO
fx* —te;) > f(x*) —t€

for all ¢ small enough. This inequality holds not only for x* but for every x in a
neighborhood of x* since we are assuming that f is continuously differentiable. Then
we see that we can get a lower bound on f(x* + d) for an arbitrary d that is small
enough by expressing d as a sum of small steps of the form ¢;e;. ]

We next ask the question: Given a continuously differentiable function f : I — R
and given a number € > 0, what is the complexity of finding an e-approximate local
minimum? It turns out that the number of steps required is infinite. In particular, for
any finite sequence of test points x1, ..., Tk, there exists a continuously differentiable
function f : [0,1] — R such that f(z;) = 0 and f'(z;) = 1 at all test points (except
if z; = 0 then f’(0) = —1). Moreover, —1 < f’(z) < 1 for all z € [0,1]. Figure 1
illustrates an example of a sequence of test points and the bad-case function for these
points. To construct this function, put the x;’s into increasing order, and then let f
be a correctly chosen cubic Hermite function on each interval.

An algorithm trying to find approximate local minima for this family of functions
will always completely fail (i.e., it will discover that f(z) = 0 and f'(z) =1 at all of
its test points) for at least one function in the family after any finite number of steps.

The problem with this family of functions is that the first derivatives can vary too
much over short intervals, so that no algorithm can get a bound on the first derivative
of the function.

Accordingly, we place additional restrictions on the function. In particular, we
require that the first derivative satisfy a Lipschitz condition, that is, there exists a
constant M such that

V(%) = ViE)lloo < Ml[x — ylloo

for all x,y € I™.
We now ask the question: What is the complexity of finding an e-approximate
local minimum for a function in this class? Clearly the answer depends on €, M, and
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n. In the next section, we give an algorithm for this problem, which yields an upper
bound on the complexity.

We remark that none of our complexity bounds depend on M or € individually;
instead, they all depend on the ratio M/e. This is expected because the problem
of finding an e-approximate local minimum for f is the same problem as finding a
ce-approximate local minimum for ¢f (where ¢ > 0). Therefore, we would expect the
complexity to be unchanged if M and € are scaled by the same amount.

2. An algorithm for local minimization. In this section we propose an al-
gorithm for approximate local minimization, along with a complexity analysis. We
call this algorithm LOCAL1. We assume that €, M, and n are given. We assume also
that M/e is an integer. We are given a starting point x(°) € I, which is assumed
to have each coordinate equal to an integer multiple of /M. If no starting point is
given, the origin can be used.

Given a function f(x), we define the vector-valued function g(x) as follows. The
ith entry of g(x) is defined by

min (O, g—i(x)) if z; =0,

gi(x) = g !

(x) if0<z; <1, o0r

7

max (0, —g—;f-;(x)) if x; = 1.

Notice that if x is interior to I", then g(x) = Vf(x). This function g(x) could be
called the “projected gradient,” although this terminology is not standard.

Algorithm LOCALI begins by testing whether ||g(x(?))||oo > M. If this inequal-
ity holds, then for some i we know |0f/dz;(x(?))| > M. Take the case in which
0f /0x;(x(®) > M (the negative case is similar). We claim that 8f/8z;(x) > 0 for
all x € I™. This follows from the Lipschitz bound on V.
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This means in particular that any local minimum of f must occur on the face
T = {x € I": z; =0} of I". Moreover, if fo : T — R denotes the restriction of f to
T, then it suffices to find an e-approximate local minimum of fy. Therefore, we can
project x(® onto T and work on the restricted problem. The restriction operation
has the effect of deleting the ith entry from the vector g(x).

Accordingly, we can continue to reduce the dimensionality of the problem coor-
dinate by coordinate. Therefore, without loss of generality, we can assume that our
starting point satisfies ||g(x(?)||oo < M.

Let x* be a global minimum of f. We can use the upper bound on g to derive
an upper bound on the difference f(x(®) — f(x*). Let s = [|x* — x(O||;. Then we
can construct a path made up of segments parallel to the coordinate axes from x* to
x(9); the length of this path will be exactly s. Assume that the path is made up of n
segments Py, ..., P, such that P; is parallel to e;.

Then we can write a line integral for the change in function values:

NON A .
F®) - Fx7) ;Lwa

8 )
@ =Y [ gL azi
i=1v 5 t

where o; = 1 depending on the orientation of P; with respect to e;. We now derive
an upper bound on each integral in (1). There are two cases. In the first case,
gi(x) = 8f /0z;(x?). In this case, we can apply the Lipschitz bound directly. We
know that |g;(x(?)| = |0f/8z:(x(?)| < M. Since the distance from x(®) to any point
of P; is at most 1 in the co-norm, we know that the magnitude of df/dz; along P; is
at most 2M. Therefore, the above integral has magnitude at most 2M.

In the second case, g;(x(?) # 8f/0z;(x(?)). Examining the definition of g, we
see that there are two possible subcases: either wgo) = 0 and 0f/0z;(x®) > 0, or
x§°) =1 and 8f/0z;(x(¥) < 0. We treat the first subcase since the second subcase is
analogous. Since x?’) = 0 and 9f/0z;(x(®) > 0, we know that f/dx; cannot drop
below —M at any point on P;. Moreover, we know that P; is oriented in the negative
direction with respect to e;, because w§°) = (. Therefore, the ith integral in the above
summation is at most M (this argument does not give a lower bound, but only an
upper bound is needed).

We conclude that all the integrals in (1) are at most 2M, and hence

FO) = f(x*) < 2Mn.

This gives an upper bound on how much the objective function can decrease.

We now return to the main part of LOCAL1 under the assumption that ||g(x(?)]|o
is at most M. The algorithm operates on an imaginary grid of nodes spaced e¢/M
apart in each dimension of I™ and aligned with the coordinate axes. By our earlier
assumptions, there is an integer number of mesh cells in every dimension, and the
initial point x(® is one of the mesh points.

We now use the following iteration. Assume that the current iterate is x*). We
compute g(x*)). If ||g(x®)||o < €, then we halt. The justification for halting is as
follows. If ||g(x(*))||o = € and € < ¢, then it is easy to verify from the definition of
g that x(*) is an ¢’-KKT point and is therefore an e-approximate local minimum.
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Otherwise, suppose ||g(x*))||cc > €. Then we identify a component, say g;(x(*)),
whose absolute value is at least €. Say, for example, that g;(x(*)) > € (the negative
case is similar). This means by definition that 8f/0z;(x*)) > € and that zgk) > 0.
Then we set x(**1) = x(*) _ (¢/M)e;. If g;(x*)) had been negative then we would
have instead added (e¢/M)e;. Notice that, under this definition, x*+1) will be a mesh
point lying in I"™.

With this formula for x**1) we claim that f(x**tV) < f(x*)) - 0.5¢2/M. To
see this, observe that in the case in which df/dz;(x(®)) is positive,

Fx®)) — fx*D) = / ’

—e/M

0
—a%(x(’“) + te;) dt
1

0
> / (e + Mt)dt
—e/M

> 0.5¢2/M.

To derive the second line we used the fact that 8f/dz;(x¥)) > € as well as the
Lipschitz bound on 9f/dzx;.

- We conclude that the objective function decreases by at least 0.5¢2/M per iter-
ation. As noted earlier, the most that the objective function can decrease is 2Mn.
Therefore, the maximum number of iterations is 4n(M/€)2. Let us state this as a
theorem.

THEOREM 2.1. Let f : I™ — R be a C' function whose gradient satisfies a
Lipschitz condition with bound M. Then an e-approximate local minimum can be
found with at most 4n(M/€)? function and gradient evaluations.

We remark that if gradient values are not available, the first part of the algo-
rithm (the restrictions to subproblems) can be carried out by estimating the gradient
via finite differences. A bound can be derived on the accuracy of finite difference
approximations to the gradient using the hypothesis that the gradient is Lipschitz
bounded.

If gradient values are not available, then the main local-search step of the algo-
rithm can be replaced with a comparison of the objective value at x(*) to the objective
values at the neighboring grid points. This requires 2n function evaluations per local
search step.

3. A lower bound for local minimization. In the last section we saw poly-
nomial dependence on both n and M/e. The polynomial dependence on n is to be
expected in general (since f depends on n variables, it presumably takes at least
n operations merely to evaluate f). The polynomial dependence on M/e is clearly
unavoidable with that algorithm since the step size is ¢/M.

It is natural to inquire whether the polynomial dependence on M/e is actually
necessary for all algorithms. Indeed, for the case n = 1 there is a simple bisection
approach solving the problem in O(log(M/e)) steps. Could an algorithm with large
steps (say, steepest descent combined with line search) achieve better complexity for
n> 17

The purpose of this section is to give a lower bound in the n = 2 case showing
that polynomial dependence on M/e is inherent in the problem of black-box local
minimization. The lower bound applies to all algorithms based on the function eval-
uation model (not merely to the algorithm of the last section). The lower bound
is based on a family of functions that could fool any algorithm until it has made
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at least Q(1/M/e) function and gradient evaluations. Here the notation Q(1/M/e)
means that the worst-case running time is bounded below by a constant multiple of
v/ M/e for some sequence of values of M/e tending to infinity. The construction of
this family has two parts: an algebraic/geometric part and a combinatorial part. No-
tice that because we are trying to provide a “bad case” (lower bound) for all possible
information-based algorithms, we need a whole family of bad-case functions rather
than a single function.

These functions are bad cases in the sense that an algorithm for local minimization
will require many steps. There are other senses in which a local optimization example
could be bad (for instance, it may be that local minima are easily found but have
large objective function values with respect to the global minimum).

We focus on the n = 2 case since the interest here is the dependence on M/e.
This lower bound is based on the same ideas of a lower bound for Brouwer fixed points
in two dimensions due to Hirsch, Papadimitriou, and Vavasis [2]. We assume that M
and € are given. In this section we work with || - ||2 norms because we use two rotated
coordinate systems (other norms could lead to confusion).

The lower bound is based on how much information any algorithm could get about
f. We argue informally in this section about what the algorithm “knows” from its
function evaluations, but the information model can be cast into formal terms. See,
for example, Traub, Wasilkowski, and Wozniakowski [6].

We divide the unit square I? into K x K subsquares, where K is an integer on
the order of /M /e (the exact value will be selected below). Besides K, we also have
the parameters § and ¢, which are both on the order of € (the exact formulas are
below). Number the subsquares with ordered pairs (u,v), u,v =0,...,K — 1. Two
subsquares are said to be adjacent if they have a common edge.

We will embed I? in the plane diagonally, i.e., with corners at (0,0), (v/2/2,
+4/2/2), and (v/2,0). The relationship between the subsquare numbering and coordi-
nate system is as follows. The vertex of subsquare {(u,v) with minimum x coordinate
is at

%(u+v,v—u),

where J = K+v/2. The embedding along with some numbered subsquares is indicated
in Fig. 2.

A southeast track is a sequence of adjacent subsquares with increasing first coor-
dinates, and a northeast track is a sequence of adjacent subsquares with increasing
second coordinates.

The west subsquare is subsquare {(0,0). Define a riverbed to be a sequence of
adjacent subsquares starting at the west subsquare, proceeding along a northeast
track, and then following a sequence of alternating southeast and northeast tracks,
and ending somewhere inside the square. This terminology is used because the mesh
plot of function f based on this construction resembles the top view of a riverbed on
a hillside. An example of a riverbed is indicated in Fig. 3. Note that the riverbed
will have at most 2K — 1 subsquares. The last (closest to the east) subsquare of the
riverbed is called the sink. The subsquares of I? not in the riverbed are called hillside
subsquares.

Our functions will be defined based on K, 6, and §' (i.e., based on M and €) and
on a particular choice of riverbed. The function f will be constructed below so that
all e-approximate local minima lie in the sink subsquare.
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©,0)

Fic. 2. Embedding I? in the plane with subsquares indicated.

F1G. 3. An example of a riverbed for K = 4.

Notice that there is a large but finite set of possible riverbeds for each particular
value of K. The functions on I? in our family will be in correspondence with choices of
riverbeds. The particular riverbed to choose will depend on the algorithm at hand—
this is the combinatorial part of the construction described below.

For now, we assume that a particular riverbed is selected, and we proceed with
the construction of f. All the properties that f should have are stated in the lemmas
below. The reader uninterested in the geometric details can skip ahead to Fig. 7 and
read the lemmas.

The first part of the construction is the function s(x) that traces the shape of the
riverbed. The path defined by (z, s(x)) as z varies from 0 to z. passes through all the
subsquares of the riverbed (z. is defined below). It enters and leaves each subsquare
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through the midpoint of the edge between adjacent subsquares of the riverbed.

In particular, s(x) is defined piecewise on intervals of the form [(i + 0.5)/J, (3 +
1.5)/J] where i is an integer. If  is the endpoint of one of these intervals, s'(z) = 1.
The pieces are matched so that s(z) is continuously differentiable. The formulas for
s(z) are as follows. In the west subsquare, for  between 0 and 1.5/J, we define

4
277

We notice that this function leaves the west square through the point (3/(2J),1/(2J)),
i.e., the midpoint of the edge between subsquares (0,0) and (0,1). This means
that the subsquare after (0,0) in the riverbed will always be (0,1) (as mentioned
above, a riverbed is defined to start with a northeast track). Also, we can check that
s'(3/(2J)) =1.

In a subsquare (u,v) that is interior to a northeast track, s(z) is a linear function
with slope 1. Specifically, (z, s(z)) linearly joins the point

(Jx)3.

s(z) =

}(u+v+0.5,v-—u——0.5)

to the point

%(u+v+1.5,v~u+0.5).

Similarly, in a subsquare interior to a southeast track, s(z) is linear with slope —1.
In a subsquare (u,v) in which the riverbed makes a turn, say, from northeast to
southeast, the formula is

s(z) = %(Jx—u—v—0.5)(u+v+1.5—Jw)+v—u—0.5.
This function starts at

(u+v+0.5,v—u—0.5)

~f =

and ends at
1
7(u+v + 1.5,v —u —0.5).

Function s(z) has slope +1 at the first point and —1 at the second. A turn from
southeast to northeast is analogous.

In the sink subsquare, s(x) is defined by the linear function of slope 1 if the sink
subsquare is the terminal of a northeast track, otherwise s(x) is a linear function of
slope —1.

The end z. of the domain of definition of s(z) is the z-coordinate of the midpoint
of the edge of the sink square where the riverbed terminates. If (ue,v.) is the sink
subsquare, this coordinate is

1
Te = 7(ue + ve + 1.5).

An example of this construction with K = 4 is plotted in Fig. 4. Here, the
riverbed is given by (0,0), {0,1), (0,2), (1,2), (1,3).
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FiG. 4. An ezample of s(z).

We observe that s(z) has the following properties. It is C* and piecewise C2.
The maximum value of |s'(z)| is 1, and the maximum value of |s”(x)| (where defined)
is 2J.

We have now defined a function to specify the shape of the riverbed. The next
step is to define the two functions controlling the value of function f on the riverbed
portion of I2. The first function indicates how f varies in the direction across the
riverbed, and the second indicates how f varies parallel to the riverbed. The first
function is defined by

0 for w < -1,
c(w) =< —w*+2w?-1 forwe[-1,1],
0 forw>1,

which is plotted in Fig. 5.

It is easily checked that this function has the following properties: cis C!, ¢(—1) =
¢(1) = 0, ¢(0) = —1, and ¢/(-1) = ¢'(0) = /(1) = 0. Also, the maximum value of
le(w)] is 1, of |¢/(w)] is approximately 1.54, and of |¢”(w)| (which is undefined at +1)
is 8.

Next we define the function p(z), which determines how f varies as the riverbed
is followed. The value of p(z) depends on the position of the sink. Specifically,
suppose (ue, ve) is the sink subsquare. Then the formulas for p(z) are as follows. Let
Zp = (ue + ve + 0.5)/J, that is, the z-coordinate of the point where path (z, s(z))
enters the sink square. Let z. = (ue + ve + 0.75)/J and 4 = (ue + ve + 1.0)/J. Let
bo = 6 + bxp. Then

6+ 6z for z € [0, ),
—26J(z — xp)2 + 6(z — xp) + by for T € [zp, 2],

p(e)= | Go+8/BD)[2(4J(x — o))’
—34J(z —z)) + 1] for z € [z, zq4], and
0 for z > x4.
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Fi1G. 5. The graph of c(z).
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FIG. 6. An ezample of p(z); the right plot shows a detail.

It can be checked that p(z) is C1. In particular, p(zp) = bo, p(x.) = bo + 6/(8J), and
p(zq) = 0. Also, p'(zp) = 6 and p/'(z.) = p'(z4) = 0. The maximum value of |p(z)|
is bg + 6/(8J), which is at most 3. Also, it can be checked that |p’(z)| is at most
186J, and |p”(z)| (where defined) is at most 2886J2. An example of p(z) is plotted
in Fig. 6.

From c(w), p(z), and s(z) we now assemble the function f(z,y),which is defined
as follows:

f(z,y) = p(x) - (2K (y — s(x))) + &'z

A MATLAB™ mesh plot of f(z,y) is illustrated in Fig. 7. MATLAB, an interactive
package for numerical computation, is a trademark of The Mathworks, Inc. Many of
the other figures in this paper were also produced using MATLAB.

We now establish some properties of this function.

LEMMA 3.1. If (z,y) lies in the hillside, then f(z,y) = §'z.
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(¢9))

Fic. 7. An example of f(z,y).

Proof. We must show that the first term vanishes outside the riverbed. If (z,y) is
not in the riverbed, either z > z4 or |y — s(z)| > 3/(4J). This latter inequality arises
from the fact that the distance from (z,s(z)) in the y-direction to the boundary of
the riverbed is always at least 3/(4J) by definition of s(z). If z > z4 then p(z) = 0, so
the claim is true. Similarly, if |y —s(z)| > 3/(4J) then 2K|y—s(z)| > (3K)/(2J) > 1,
hence ¢(2K (y — s(z))) = 0. 0

At this point, we choose an € to be slightly larger than €, and we let

5 = 32v/2¢

and
8 = 19V2¢.

These choices are made so that we can prove the following lemma.
LEMMA 3.2. Let (z,y) be a point not in the sink square. Then ||V f(z,y)|2 >
V2€

i’roof. Let w denote 2K (y — s(x)). We compute
Vf(z,y) = @' (z)c(w) — 2Kp(z)c (w)s'(z) + 8, 2Kp(z)c'(w)).

We now take cases to prove a lower bound on the size of Vf(z,y). The first case is
that we are not in the riverbed, which was handled by the previous lemma and by the
fact that &’ > +/2¢’. This is the case in which |w| > 1 or £ > z4. For the other cases
we assume that |w| < 1 and z < ;. (We can assume that = < 3 since (z,y) is not in
the sink.) We now take subcases. The first subcase is that |w| € [1 — 1/(64K),1]. In
this case, |c(w)| and |¢/(w)| are at most 1/(8K). Then, we observe that for x not in
the sink, |p(z)| < 26, |p(z)| < 6, and |s'(z)| < 1. Thus the term [p’(z)c(w)| above is
at most §/16, and the term |2Kp(z)c' (w)s'(z)| is at most §/2. The third term of the
first entry of V f is exactly §'; therefore, the first entry of the derivative has magnitude
aj_least &' —(9/16)6. Using the above formulas for 6, ', this is a magnitude of at least
2¢'.

In the second subcase, |w| € [1/(64K),1—1/(64K)]. In this case, we observe that
|¢/(w)| > 1/(10K). This means that the second entry |2Kp(z)c' (w)| of V f(z,y) is at
least |p(z)/5|, i.e., at least §/5. This quantity is greater than v/2¢’.

In the third subcase, |w| € [0,1/(64K)]. In this case, |c(w)| > 7/8, whereas
|¢/(w)| < 1/(16K). Therefore, the first term [p’(z)c(w)] is at least (7/8)6. The second
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term |2Kp(z)c/ (w)s'(z)| is at most (1/4)8. The last term is exactly 8. Thus the first
entry has magnitude at least (7/8)6 — (1/4)6 — &', which is v/2¢'. 0

LEMMA 3.3. Let (z,y) be a point not in the sink square. Then (z,y) is not an
e-approzimate local minimum of f.

Proof. This follows from the previous lemma, with special attention paid to the
boundaries. Region I? has four boundaries and four corners. We must check whether,
if (z,y) is on a boundary, the projection of V f(z,y) onto the boundary will be at least
€’. The argument is as follows. Along a boundary we know that V f(z,y) = (¢, 0) from
the construction, except in the west subsquare. The gradient (§’,0) has magnitude at
least € when projected on every boundary except the point (0,0). This takes care of
the whole boundary outside the west square.

Therefore, we only have to examine the exterior boundary of the west subsquare.
A calculation shows that every point has a projected gradient of size at least €'. O

Note that we have not established the existence of an e-approximate local mini-
mum in the sink square. We know by compactness, however, that such a point exists,
and the previous lemma forbids its existence anywhere else.

It is now time to select the value of K, which will be

1 /M
®= lm\/ ?J |
The reason for this value of K is to establish the following lemma.
LEMMA 3.4. The gradient V f(z,y) for f defined above is continuous and has
Lipschitz constant at most M.
Proof. The gradient exists everywhere and is continuous because f is assem-

bled from C! functions of one variable. Because f is continuously differentiable and
piecewise C2, then the following inequality holds:

IVF(@1,31) = V(2 2)ll2 < /Pllsz(w,y)llz (22, y2) — (z1,41) 2 dP,

where P is a straight-line path from (z1,%1) to (z2,y2), and D? denotes the second
derivative. This inequality holds for almost all pairs of points (the only exception
being the case when P intersects a continuum of points where D2 f fails to exist).
Thus, to get a Lipschitz bound on V f(z,y) it suffices to establish an upper bound on
the two-norm of the second derivative wherever it is defined. Since the two-norm of
a matrix is hard to work with, we instead put an upper bound on the infinity norm,
and then multiply it by v/2.
‘We compute the second derivative entry by entry:

PIEY) _ p(w)etw) - 4K ()¢ (u)s'(2)
+ 4Kp(a) (w)s'(2)? — 2Kp(a)e (w)s" (z),
2f(x
TN 2kl ()¢ (w) - 4K*D(o) ()5 ),
32f (:I), y) _ "
a2 - 4K%p(z)c" (w).

We can go through each term and use the crude estimates made earlier to get an
upper bounds of 1116 K26 on 82 f/0x2, 312K26 on 02 f /0x0y, and 96 K25 on 8% f /0y>.
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Estimating § < 45.3¢’ gives an upper bound of about 6.5 - 104 K¢’ for the co-norm
of the second derivative, which translates to an upper bound of about 9.2 - 10*K2¢’
for the two-norm. Therefore, with the above choice of K we are guaranteed to have a
Lipschitz bound of at most M. Note that the true Lipschitz bound for our construction
grows proportionally to K2e but with a much smaller constant. ]

LEMMA 3.5. Suppose that (z,y) lies in subsquare (u,v). From f(z,y) and
Vf(z,y) it is not possible to determine any information about the riverbed except
possibly whether or not (u,v) lies in the riverbed and, if so, what the positions of the
two neighboring riverbed squares are.

Proof. This follows from the definition of f(z,y). If z > z4 or |y—s(z)| > 1/(2K)
then we cannot determine anything about the riverbed except that (u,v) is not in the
riverbed. If |y — s(z)| < 1/(2K) and z < x4 then we might be able to determine
the values of s(z), s'(z), and p(z) from f(z,y) and V f(z,y). This means we can
determine that the particular square is in the riverbed, and we can determine what
kind of turn the riverbed makes. Nothing else can be determined. 0

We now prove a general lower bound for finding approximate local minima for
this family of functions. We imagine an algorithm A that makes function and gradient
evaluations. We want to find a pair of functions f(z,y), f'(z,y) in our family with
disjoint sets of approximate local minimum such that algorithm A cannot distinguish
them until K function/gradient evaluations (i.e., (1/M/e)) have been made. Notice
that the only approximate local minima for functions in our family occur in the sink
square, and therefore f and f’ will have different sinks. We start by assuming that
the algorithm knows M and e (and therefore K).

The combinatorial argument that constitutes the remainder of this section is iden-
tical to the argument of [2], but we present it again here for the sake of completeness.

To construct f and f’ we need to specify riverbeds R, R'. The riverbeds for these
two functions will be almost identical. The riverbeds are constructed “adaptively.”
In particular, we fix more and more of R, R’ as we observe the test points made by A.
The idea is that f and f’ will agree at all test points, so R and R’ will agree almost
until the end.

We assume that A makes a deterministic sequence of test points, and that at each
test point it evaluates f and V f. The sequence of test points is denoted (z;,y;). Each
one may depend on previous test points in any way possible. Thus A has unlimited
computational power. Note that there is no advantage for A to make a test point
exactly on a boundary of a subsquare for our family (i.e., no more information about
the riverbed can be gleaned from a boundary than from a nearby interior point), so we
assume that all test points lie in a unique subsquare. Once a test point has been made
in a subsquare, we assume that A has complete information about the subsquare (i.e.,
all the values of f(z,y) are known to A for (z,y) lying in the subsquare).

The riverbeds R, R’ are constructed as a sequence of tracks alternating northeast
and southeast. They are built up as the limit of the sequence Ry, R1, Ra,..., where
each R; C R;;1, and R; denotes the partial riverbed that is determined after ¢ test
points from A (note that Ry = {(0,0)} since this subsquare is in every riverbed).

We know that R; starts from (0,0); denote its last square as (u;,v;). In our
construction R and R’ will agree with R; all the way up to subsquare (u;,v;), and
moreover, that R, R’ will make a bend in subsquare (u;,v;). We let T; denote the
track starting from (u;,v;) following the direction of the bend and proceeding to the
border of I2. The invariant property of the upcoming construction is that no test
points have been made in T; on iterations 1 up to i. Note that Ty is the northeast
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FiG. 8. The three cases for test points.

track of subsquares with first coordinates equal to 0.

We now give the rules for extending R;_; to R;. There are three cases for test
point i. In the first case, (x;, ;) lies in the part of I2 that is already determined. To
be specific, suppose, for example, that R;_; ends at subsquare (u;—1,v;—1) and that
T;_; is a northeast track emerging from this subsquare. Suppose that (z;,y;) lies in
subsquare (u',v’). If ' < u;—; or v’ < v;_; then the behavior of R is entirely known
in (uv/,v'), and hence f, f’ are determined already. In this case, we set R; = R;_1,
T; = Ti—1, and (u;,v;) = (Ui—1,vi-1)-

The second case is that (z;,;) lies in a subsquare of I, not in T;_;, but through
which R or R’ might eventually pass. This is the case in which v’ > wu;_; and
v’ > v;_1. In this case, we mark all subsquares with first coordinate equal to u’ as
“forbidden” and the same with subsquares with second coordinate equal to v’. In
this case we again set R; = R;—1, T; = T;_;, and (u;,v;) = (uj—1,v;—1). We also set
f(z,y) = &z in this subsquare (i.e., we “tell” the algorithm that the riverbed does
not pass through this subsquare).

In the third case, (z;,y;) lies in T;_;. In this case (assuming as above that T;_;
is a northeast track), we let v; be the smallest integer coordinate greater than v;_;
that has not yet been forbidden in the construction procedure described above. Then
we let R; be the union of R;_; and the portion of T;_; connecting (u;—1,v;—1) to
(ui—1,v;). We let u; = u;—; and T; be the southeast track starting at (u;,v;) and
including subsquares with increasing first coordinates. Finally, we assign values to
f(z,y) based on R; in the subsquare that contained the test point. If T;_; had been
a southeast track, then 7; would have been a northeast track.

Figure 8 shows the three possible locations for a test point. Notice that the rule
for forbidding northeast and southeast tracks keeps the whole procedure consistent,
i.e., each R; is a valid riverbed that is consistent with all the test points up to (z;, y;)-

How long can this construction proceed? We notice that if R; terminates at
subsquare (u;,v;), then u; < i and v; < i because we never pass to a higher value of
u unless all lower integer values of u had test points associated with them. The same
holds for the second coordinate.
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F1G. 9. The construction of the riverbed for 12 test points.

Therefore, we can continue extending R; until K test points have been made.
Until the K — 1st test point, there are at least two subsquares in 7T, and therefore,
there are at least two subsquares in which the riverbed could end. Therefore, we let
R be Ry _, terminated with one of these sinks, and R’ be Rx_ terminated with the
other. Then the algorithm cannot distinguish f from f’ until K — 1 test points have
been made.

We state this as a theorem.

THEOREM 3.6. Let A be any deterministic algorithm to find e-approzimate local
minima of functions f : I? — R whose gradients satisfy Lipschitz conditions with
constant M. Assume the algorithm is limited to using function and gradient evalua-
tions. Then, in the worst case, algorithm A requires Q(y/M/€) function and gradient
evaluations.

As a further example of the construction, we give a series of 12 test points in a
6 x 6 grid, illustrated in Fig. 9. The last test point is the sink square. The forbidden
rows and columns are shaded. The most recent test point in each figure (i.e., the test
point not in the preceding picture) is shown enlarged. The dashed line indicates T;
in the preceding construction. A test point in T; causes the riverbed to be extended.
Notice that the riverbed never reaches a row or column until all previous rows and
columns have had test points. In the twelfth plot, the riverbed can no longer be
extended, so the sink square is finally fixed in subsquare (2, 5).

4. Tests with an actual optimization algorithm. We implemented an opti-
mization algorithm that is based on algorithms common in the literature. In particu-
lar, our algorithm uses a second-order model of the objective function. The quadratic
term in the model is either the exact Hessian f”(z) in the case when the Hessian is
positive definite, or a matrix of the form f”(z) + Al for some choice of A > 0. We re-
mark that, outside the riverbed, our function is linear, so that f”(z) = 0. This means
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F1G. 10. Growth of the number of function evaluations (y azis) as a function of K.

that the second-order step (after AI is added) becomes simply a scaled gradient step
(steepest descent).

For our class of functions, the second derivative is not even defined at all points.
This means that, in principle, there is no reason to believe that second-order infor-
mation would speed up global convergence. Nonetheless, we found that second-order
information sped up convergence by a factor of about 20.

We use an Armijo-type line search once a search direction is identified. Finally, we
take special action to project the search direction when the test point happens to be
on the boundary. See [1] for a description of Armijo line searches and for minimization
with second-order models. Since our interest is on the lower bound and not on the
particular optimization algorithm used, we omit the details of our algorithm.

The function f is the same function described in the previous section, and we
use the adaptive riverbed construction technique used to prove Theorem 3.6. The
whole procedure was implemented in MATLAB. The number of function evaluations
for K = 4,8,16, 32,64, 128,256,512 is plotted in Fig. 10. Theorem 3.6 mandates that
the number of function/gradient evaluations be at least K. The table suggests that
for this algorithm, the number of evaluations is linear in K, about 55K. We did not
tabulate gradient and Hessian evaluations.

5. An improved algorithm when n is small. We notice that the upper bound
on Algorithm LOCALL in §2 grows like (M/€)?, whereas the lower bound grows only
like v/M/e. Is it possible to bring these bounds in closer agreement? In this section
we propose an improvement on the algorithm of §2 in the case when n is very small
with respect to M/e. The new algorithm will be called LOCAL2.

The main point of LOCAL2 is to pick the initial point x(¥ for LOCALI in an
intelligent manner. We make a mesh with points spaced 1/k in every dimension (the
“coarse” grid), where k is an integer determined below. Then we evaluate f at every
one of these (k 4+ 1)” mesh points. We let x(®) be the coarse grid point with the
minimum value of f. We begin the local improvement algorithm (on the “fine mesh,”
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that is, the mesh with spacing €¢/M) from this x(®). Assume that k is an integer
divisor of M /e, so that all the coarse grid points are also fine grid points.

Now we re-analyze the number of steps to find a local minimum. Let x(©) be as
in the previous paragraph. Let x* be a global minimum of f. In §2 we established an
upper bound on f(x(®) — f(x*) without any special knowledge about x(®). In this
section we want a better bound on this difference.

To establish this bound, let x’ be the coarse grid point closest to x*. First,
we establish the claim that ||g(x’)||cc < M/(2k). Suppose not; suppose, e.g., that
9i(x") > M/(2k). This means that 9f/0z;(x’) > M/(2k) and z} > 0. Since x’ is the
closest coarse grid point to x*, the difference between z} and z} is at most 1/(2k).
In particular, 7 > 0 since z; > 1/k. We have the bound ||x’ — x*|| < 1/(2k), so
the Lipschitz bound implies that 0f/0z;(x*) > 0. This, combined with the fact that
x} > 0, contradicts the minimality of x*.

Thus, ||g(x')||ec < M/(2k). Now we put an upper bound on the difference f(x')—
f(x*). We use the same reasoning as in §2, namely, we form a path with n segments
between the two points and express f(x’') — f(x*) as the integral of partial derivatives
along the path. Each path segment has length at most 1/(2k), and each integrand
is bounded above by 2M/(2k). Therefore, the total difference is at most nM/(2k?).
This gives an upper bound on f(x') — f(x*). Since f(x(@) < f(x’) (because x(* is
the coarse grid point with the smallest value of the objective function), we conclude
that

<nM

1) = fx) < T

Starting from x(®), we apply the same local search algorithm, LOCALIL, as was
used in §2. We now get a new bound on the number of steps. Since each step decreases
the objective function by at least 0.5¢2/M, and since the maximum possible decrease
is given above, we get a bound of nM?2/(¢2k?) on the number of search iterations.

Thus the algorithm requires a total of

nM?

(k+1)n+m

function and gradient evaluations. We want to choose k to be an integer that mini-
mizes this total. A good choice is to choose k between

1 1
nM?\ »+2 nM?\ 2
R

With these choices, we can estimate

n nM?2\ 72
(k+1) s( - ) .

To analyze the other term, we assume that M?2/e2 > 4"+2 /n (recall that the method
of this section is meant to be applied when n is small with respect to M/e). If this
holds, then (nM?/e2)Y/("+2) > 4. Thus,

1 -2
nM?  naM? | (nM?\ "+
€2k? = €2 [( €2 ) -2
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Thus we see that the total time for LOCAL?2 is at most

o) ((""‘f 2) ﬁ—) .
€
In the special case of n = 2 (the case covered in the previous section), this gives a
bound of O(M/e), which is closer but still not equal to the lower bound.

The above choice of k will generally not be an integer divisor of M/e. This can
be addressed with further analysis, which we omit.

6. Local minima compared to global minima and fixed points. In §2 we
came up with a bound of O(nM?/e?) for finding e-approximate local minima. The
purpose of this section is to compare this result to information bounds for global
minima and Brouwer fixed points. As we will see, these two other problems both
depend on n exponentially.

Define an e-approximate global minimum of a function f : I™ — R to be a point
x such that, if x* is a global minimum, then f(x) — f(x*) < e. It turns out that
the reasonable assumption to make for this problem is that f has Lipschitz bound
L (rather than assuming a Lipschitz bound on Vf). It is fairly straightforward to
prove upper and lower bounds on this problem of the form (cL/€)™, where c is a
constant. This result is implicit in work by Sikorski [5] and appears in other places in
the literature. Thus we see an exponential instead of polynomial dependence on n.

Local minima are more closely connected to Brouwer fixed points than to global
minima. In fact, as we will show, local minima may be regarded as a special case of
Brouwer fixed points. Let u : I™ — I™ be a continuous function. Then Brouwer’s
fixed point theorem states that there exists an x € I™ such that u(x) = x. Such an
x is called a fized point.

Define an e-approzimate fized point to be a vector x € I"™ such that |ju(x) —x||cc <
€. It turns out that the reasonable assumption to make is that function u(x) — x has
Lipschitz bound K. In this case, [2] showed that the worst case for Brouwer fixed
points in the information model behaves roughly like (cK/e)™ (again, exponential
in n).

We claim that local minima can in fact be phrased as Brouwer fixed point prob-
lems.

In particular, given a continuously differentiable function f : I™ — R with a
Lipschitz bound of M on the gradient, we define a vector-valued function u(x) as
follows. For the purpose of this discussion, it is convenient to assume that I" =
[-1/2,1/2]™ so that the origin is the center of the domain. For ¢ > 0 let p.(z) be the
function that projects onto the interval [—c¢, ¢ (i.e., pc(z) = median{—c, z, c}), and let
P be the coordinate-wise projection onto [—c, c]”, i.e., pc(x) = (pc(z1), ..., Pe(Tn))-

Let €’ be slightly larger than . We define a new domain U to be [-1/2—¢€/,1/2+
€']™. Notice that p;/, maps U onto I"™. Then we define u(x) on U as follows:

u(x) = p1/2(x) - Pe'(Vf(Pl/z(x)))~
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The image of u lies in U (because the first term has co-norm at most 1/2, and the
second term at most €'), hence u(x) satisfies the conditions of Brouwer’s theorem.

The first claim is that u(x) —x has Lipschitz constant equal to M. If x € I™ then
u(x) = x — pe(Vf(x)); hence u(x) — x = —pe(Vf(x)). This right-hand side has a
Lipschitz constant of M. The other case is handled in a similar manner.

Now, suppose x € U is an e-approximate fixed point of u. Let y = p;/2(x); we
claim that y is an €’-approximate local minimum of f. Let d = y — x. For each 4, if
d; > 0 then y; = —1/2, and if d; < 0 then y; = 1/2. With this notation,

() u(x) —x =d - pe(VF(y))

The left-hand side of (2) is assumed to have co-norm at most e. Consider an index
i such that y; > —1/2. In this case, d; < 0, so (2) implies that the ith entry of
P« (Vf(y)) is at most e. This means that 0f/0z;(y) < e. Analogous reasoning
applies to the case when y; < 1/2. This shows that y satisfies the conditions for being
an e-KKT point, and hence an €/-approximate local minimum.

Conversely, suppose that y is an e-approximate local minimum of f. For each
i such that y; = 1/2, define d; = min(0, pes(df/0z;(y))). For each i such that
y; = —1/2, define d; = max(0,pes (8f/0z;(y))). For other 4, let d; = 0. Then it
can be checked that the point y — d will be an e-approximate fixed point of u.

Notice that the size of U is slightly larger than the size of I"™. The size of U can
be brought to 1 in every dimension by scaling. This would have an effect on the value
of M.

The construction of u from f introduced in the last few paragraphs was rather
intricate. We remark that simpler definitions for u that might seem plausible do not
give true Brouwer functions. For example, if we simply defined u(x) = x — Vf(x),
then the image of u would not necessarily be contained in I™. Similarly, if we defined
u(x) to be x — g(x), where g is the “projected gradient” of §2, we would find that u
is discontinuous. Either way, u would not be covered by Brouwer’s theorem.

The earlier construction shows that approximate local minimization can be ex-
pressed as a special case of Brouwer fixed points. Finally, we remark that approximate
local minimization is related to complexity classes PLS and PPAD designed for com-
binatorial problems, the first having to do with local minima and the second with
Brouwer fixed points. See Papadimitriou [4] for more information.

7. Conclusion. We have presented a simple local search algorithm whose run-
ning time is polynomial in the dimension of the problem. We have also presented a
family of problems for which finding a local minimum would be time-consuming for
any information-based algorithm.

There are many questions left unanswered by this work. What happens when
more complicated domains than I™ are used? How can the gap between the lower
bound of §3 and the upper bound of §5 be closed?

We have assumed that the functions under consideration are C'. What if we
assumed that they are C? with a Lipschitz bound on the second derivative? This
would open up the possibility of using Newton-type methods. Would these Newton-
type methods be provably more efficient than gradient-based methods?

Our algorithms LOCAL1 and LOCAL?2 were designed mainly with ease of analysis
in mind. Can more practical algorithms be placed in the context of this paper and
analyzed? In particular, would the algorithm of §4 (or some similar algorithm) always
converge within a number of steps comparable to the time bounds of LOCAL1 and
LOCAL2?
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Finally, is there a good explanation for the fact that approximate local minima
can be found in time polynomial in n but not in Brouwer fixed points?

Acknowledgment. The author thanks Michael Todd of Cornell for pointing out
a key improvement to an earlier version of algorithms LOCAL1 and LOCAL2.
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MESH INDEPENDENCE FOR NONLINEAR LEAST SQUARES
PROBLEMS WITH NORM CONSTRAINTS*

MATTHIAS HEINKENSCHLOSS?

Abstract. If one solves an infinite-dimensional optimization problem by introducing discretiza-
tions and applying a solution method to the resulting finite-dimensional problem, one often observes
the very stable behavior of this method with respect to varying discretizations. The most striking
observation is the constancy of the number of iterations needed to satisfy a given stopping criterion.
In this paper an analysis of these phenomena is given and the so-called mesh independence for non-
linear least squares problems with norm constraints (NCNLLS) is proved. A Gauss—Newton method
for the solution of NCNLLS is discussed and its convergence properties are analyzed. The mesh in-
dependence is proven in its sharpest formulation. Sufficient conditions for the mesh independence to
hold are related to conditions guaranteeing convergence of the Gauss—Newton method. The results
are demonstrated on a two-point boundary value problem.

Key words. nonlinear least squares, Gauss—Newton method, mesh independence, parameter
identification
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1. Introduction. This paper is concerned with the analysis of Gauss—Newton
methods applied to (Galerkin) discretizations of infinite-dimensional nonlinear least
squares problems of the following type:

min ||F(z)[[}

(1.1) st. |lzllx < R,

where F' is a sufficiently smooth, weakly continuous function, which acts between the
two Hilbert spaces X and Y. Problems of this kind frequently arise in parameter
identification (see, e.g., [5], [20], [26], and [28]). The constraint ||z||x < R reflects a
priori information on the sought parameter and guarantees the solvability of (1.1).

If residual and nonlinearity of F are of moderate size, a Gauss—Newton-like
method is an appropriate technique for solving (1.1). For the solution of the con-
strained problem (1.1) we propose a Gauss—Newton method in which the function F
is linearized around a given approximation xj, of the solution, whereas the constraint
is retained. The approximation is improved by solving the resulting constrained linear
least squares problem. This yields the following algorithm (here and in the subsequent
sections B, (z) will be the open ball around z with radius r).

ALGORITHM 1.1.

(0) Given an initial point zo € Bg(0), set k = 0.

(1) Compute the solution .y of the linearized problem (let px41 denote the
corresponding Lagrange multiplier)

L2 min ||F(ax) + F'(@x)(z — 20)|%
’ st ||lz|]|lx < R.
(2) Test for convergence. If the test succeeds, take xx4+1 as an approximation of
the solution. Else

* Received by the editors August 10, 1990; accepted for publication (in revised form) October 21,
1991.

t Universitit Trier, FB IV—Mathematik, Postfach 3825, D-5500 Trier, Germany (na.heinken@na—
net.ornl.gov). This research was partially supported by the Gottlieb-Daimler und Karl-Benz-Stiftung,
Ladenburg, and National Science Foundation, Cooperative Agreement CCR-8809615.

81



82 MATTHIAS HEINKENSCHLOSS

(3) Set k =k +1 and goto (1)

Reviewing the convergence theorems for Gauss—Newton methods for unconstrained
problems (see, e.g., [11], [12], and [14]), one expects a linear convergence rate for this
algorithm if the starting point is sufficiently close to the solution of (1.1). Moreover,
the speed of convergence should depend on the nonlinearity and size of the residual
of F. A detailed convergence analysis confirming these considerations is given in §2.

Subproblems of the type (1.2) also arise in trust region methods for unconstrained
optimization. Here, however, R is fixed and is not the variable trust region radius.
Nevertheless, we may use efficient methods established for the solution of trust region
subproblems to obtain zjx41. Such methods are discussed, for example, in {12] and
[25]. Hence, if a good initial point is available, problem (1.1) can theoretically be
solved with the Gauss-Newton method as the outer iteration and an inner iteration
scheme, e.g., the Newton or Hebden—Reinsch-Moré iteration [24, Algorithm 5.5], [25,
p. 273], for the solution of (1.2).

For a globalization of the convergence one can add a line search or trust region
strategy. The latter leads to minimization problems with two norm constraints instead
of (1.2). Utilizing the special structure of this subproblem, it can be solved using
efficient methods designed for the solution of minimization problems with quadratic
objective and one simple norm constraint as in (1.2). However, in this paper we are
only concerned with the local analysis and assume that a good estimation for the
solution is available.

For the numerical solution one has to approximate the infinite-dimensional prob-
lem by introducing discretizations for the parameter space X and the output
space Y.

It is to be expected that the underlying infinite-dimensional problem influences the
behavior of the Gauss-Newton method applied to the discretized problem. Therefore,
it is important to study the relation between the solution method applied to the
infinite-dimensional problem and its application to the discretized problem as well as
to give an analysis of the method under varying discretizations. If all quantities of the
method, such as iterates, Lagrange multipliers, and convergence constants, depend
continuously on the discretization, we say that the method is mesh independent.
Mesh independence in its sharpest form is developed in [2] for Newton’s method,
where estimates are given which are uniform with respect to the iteration count. The
influence of discretizations on Broyden’s method is studied in [18]. There a weaker
mesh independence property is proven, which does not guarantee uniform bounds on
the error between infinite- and finite-dimensional iterates; the bounds depend on the
iteration count.

Mesh independence is important for two reasons. First, it allows us to predict the
convergence of the method applied to the discretized problem when the method has
been analyzed for the infinite-dimensional problem. Second, it can be used to improve
the performance of the method. Since we are interested in the solution of an infinite-
dimensional problem, it is usually necessary to choose reasonably fine discretizations.
This leads to a large number of variables in the discretized minimization problem and
therefore to a large amount of work per iteration. If the method is fixed, the only
possibility for reducing the total amount of work consists in the improvement of the
starting value. For these problems it is obvious that we must use information from the
coarse discretizations to obtain good starting points for the finer ones. This leads to
mesh refinement strategies. Mesh independence is a theoretical justification for mesh
refinement strategies and, moreover, can be used to design the refinement process and
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to predict the overall performance of the method.

The second point is not addressed in this paper, so we refer the interested reader to
the literature, where several applications of refinement strategies can be found. Such
strategies are presented in [1] and [17] for Newton’s method; in [19] for quasi-Newton
methods, and in [16] for the Gauss—-Newton method.

In this paper we extend the mesh independence results of [2] to the norm con-
strained Gauss—Newton method, but we use a somewhat different discretization scheme
based on Galerkin approximations. We will assume that Xj»; and Yy are finite-
dimensional linear subspaces of X and Y, respectively, and that Fiy : X — Yy is a
suitable approximation for F'.

Although Fy is defined on the whole space X, it is evaluated only for some
zpr € Xy during the numerical calculation. The discretized problem is then given as

min || Fn ()]

(1.3) s.t. Ha)M“x <R, zMe Xy,

and in the kth iteration of the Gauss—Newton method the current iteration point
zMN € Bp(0) N Xy is given and we must solve

min ||Fy (23 + F (zy™) (@™ - 2M)IIF

(1.4) st. |[zM||x <R, aM € Xy

instead of (1.2). Throughout the paper we will denote the iterates of the Gauss—
Newton method applied to (1.3) by =M N and the corresponding Lagrange multipliers
by uMN. For the solution of (1.4) we have to compute the adjoints of F (zMN).

Since we are working in the finite-dimensional spaces, we define the adjoint Fj (z)* €
L(Y, X ) through

(Fy@)*yN,2Myx = (yV, Fy(@)zM)yy VM e Xp,yN € Yn.

v (z)* can be any extension of the (X, ||||x), (Yn,||-|ly) adjoint of Fj(z) onto Y.
We need the extensions of Fi, Fy(z), and Fy(z)" to apply these operators to points
that are not contained in the finite-dimensional subspaces. This allows us to compare
infinite- and finite-dimensional terms without prolongation or restriction operators.
For finite element discretizations these extensions are given in a natural way (see
also §4).

It is important to note that F(z)* is an extension of the (X, ||-||x), (¥Yn, ||*]]ly)
adjoint onto Y, but not the adjoint for the pair (X, ||-||x), (Y, || - |ly) since in general
we do not have

(Fy(@)'y,z)x = (y, Fy(@)x)y VzeX, yeY.

A consequence of this fact is that

IFN ()" = F'(2)"llov,x) # 1N (@) = F'(@)llex,vy,»

and therefore we have to impose different approximation properties on the function
and its derivative, on one hand, and on the adjoint of its derivative on the other.
Since F is defined on X, it is evident that the approximation properties of Fy and
F}, are affected only by the discretization of Y, whereas the quality of approximation
of F}," is also influenced by the discretization of X. We now list the assumptions we
impose on X, YN and on the function F' and its discretizations.
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ASSUMPTIONS.

(A1) F € C*(Bgr(0)).

(A2) [|FO(2) — FO(y)|| < Lillz — y|| for all z,y € Bg(0), i =0, 1.

(A3) Fy € CY(Bg(0)).

(A4) There exist uniformly bounded Lipschitz constants LY, i = 0,1 such that
WFP (@) = FP @) < LV||z —y||, i= 0,1, for all 2,y € Bg(0) and for all N.
Without loss of generality we assume that LY < L;,i = 0,1, forall N € IV .

(A5) There exists a bounded function py : [0,1] — IRt which is continuous at
0 with py(0) = 0 and satisfies ||[F® () — F(z)|| < py(1/N), i = 0,1, for all
z,y € Bgr(0) and for all N.

(A6) For every « and § > 0 there exists M, such that for all M > M, , there
exists zpr € X with ||z — 2| < 6.

(A7) There exists a bounded function px : [0,1] — IR* which is continuous
at 0 with px(0) = 0, such that the adjoints of the original and discretized Fréchet
derivatives obey ||F'(z)" — Fy(2)*|| < py (1/N) + px(1/M) for all z € Bg(0).

This setting is suitable for finite element discretizations and, as already pointed
out, allows us to compare the discretized and infinite-dimensional terms without the
incorporation of prolongation and restriction operators. Another more important gain
is that we obtain uniform bounds for ||z — zM¥||, which we would not obtain with
the method of [2], where for Newton’s method the finite-dimensional iterates z ™ are
compared with projections of the infinite-dimensional ones, IIsxk, and Iy denotes
the projection of X onto X ;. These uniform bounds enable us to deduce estimates for
the error between the solution of (1.1) and the solutions of the discretized problems,
which improve estimates derived from perturbation theory for infinite-dimensional
optimization problems. In this sense the Gauss—-Newton method can be viewed as a
tool for the analysis of (1.1) and its discretizations.

The sufficient conditions for mesh independence are strongly related to the condi-
tions that are sufficient for the convergence of the Gauss—Newton method and through-
out the paper we will use these conditions to formulate our mesh independent results.

Throughout the paper, we let z. be a (local) solution of (1.1) with corresponding
Lagrange multiplier p.. {zx}n always denotes the sequence generated by Algorithm
1.1 and {zM"} v denotes its discrete analogue (see (1.3) and (1.4)).

The outline of this paper is as follows: In §2 we present a convergence analysis for
the algorithm stated above. In addition to the convergence theorem, we will give a re-
sult concerning the perturbation of solutions of (1.1) in the presence of discretization.
This result is based on perturbation theory for infinite-dimensional optimization prob-
lems. In §3 we will develop the mesh independence principle for the Gauss—Newton
method and in §4 we will discuss its application to a boundary value problem and
present some numerical results.

2. Local convergence. The Gauss—Newton method for unconstrained problems
has been intensively studied, and convergence results for this case can be found, for
example, in [11], [12], [13], [14], and [27]. Algorithms for the solution of nonlinear
least squares problems with equality constraints based on Gauss—Newton sequential
quadratic programming (SQP)-like approaches are described and analyzed, for exam-
ple, in [6] and [29]. Our approach is different in that we keep the original constraint and
solve in each iteration a subproblem with quadratic objective function and quadratic
constraint.

In this section we present a convergence theory for our algorithm, which gener-
alizes Theorem 10.2.1 in [12] and partly generalizes the results in [14]. In [28], Vogel



MESH INDEPENDENCE FOR NONLINEAR LEAST SQUARES 85

also uses Algorithm 1.1 and gives a convergence theorem. He uses second-order infor-
mation to formulate and prove his results. In the proof of his result he distinguishes
between whether the constraint is active at the solution z. or not. If the constraint
is inactive, he uses the results in [12]; if the constraint is active at z., he applies
techniques similar to those used in the convergence proofs of (Newton) SQP methods.
This may give an imprecise description of the algorithm when the constraint is active
and p. = 0. In this case, in the proof given in [28], it is assumed that all iterates are
also locally active, which may not hold.

In the analysis presented here we only use first-order information and we in-
corporate the special structure of the problem completely. This leads to stronger
convergence results and yields estimates for the iterates and the Lagrange multipliers.

It is well known that the solutions of (1.2) can be characterized as solutions of
the system of Kuhn—Tucker conditions.

(F'(zk)* F'(zx) + prr1D)zrgr = —F'(zp)*(F(2x) — F'(xK)2k),
(2.1) tr1(||zrs1]% — R?) =0,
Pr+1 2> 0, [|lzk+1]l% — R?2 < 0.

The Kuhn-Tucker conditions for (1.1) at z, are given by (2.1) with zx, Zg+1, tk+1
replaced by x, T, it«, respectively. It should be noted that

(F' (@) F'(z4) + puD)za = —F'(2.)"(F(24) = F'(4)74)

is equivalent to the commonly used condition

(2.2) F'(z)*F(24) + paxs = 0.
For p > 0 let zx(u) be defined as the unique solution of
(2.3) (F'(zk)*F'(zx) + pl)xz = —F'(zx)*(F(zx) — F'(zx)zk),

and let xx(0) denote the minimum norm solution of (2.3) with u = 0. If ||zx(0)||x >
R, the problem of finding a solution of the Kuhn—Tucker system is equivalent to the
computation of a positive root of

(2.4) gk (1) = |lze(w) 1k — R?.

On [0, 00), gk is a convex and monotonically decreasing function with g (1) — —R? as
pu — oo. Therefore, the root is uniquely determined. Furthermore, gy is continuously
differentiable on (0, c0) with derivative given by

(2.5) (1) = =2 (w), (F' ()" F' (zx) + pI) " ou(p))x -

We will use the relation between Lagrange multiplier and iterate given through

(2.1) as well as the special structure of gi to prove the following convergence results.
To simplify notation we define

H(z,p) = F'(2)*F'(z) + pl.

LEMMA 2.1. Let F satisfy (A1) and (A2). Assume further that there exist e,w > 0
and k € (0,1) such that for all x € Be(x.) N Br(0), p € Be(us) N IR, and t € [0,1]
the following conditions hold:

(2.6) | H (z, )" (F' (2)" — F'(24)")F(z.)|| < &lle — ]|,
(2.7) | H(z,n) " F'(2)* (F'(2s + t(z — 24)) = F'(2)) (2 — 2.)|| < wtl|e — z.|*.
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Then there ezist € € (0,€¢], 7 > 0, and 6 > 0 such that for xx € Be(z.«) N Br(0) and
pr € Be(pa) N IR the following inequalities are valid
w
28)  le = peral <0 (wllow = ael| + S los = 2l[7) + 8l — Tl
(2.9) i = p1| < 7|z — |-

Proof. First, we will collect a few technical details and definitions. Define

s= sup ||F'(2)"(F(z) - F'(z)z)|| and A’= sup ||F'(z)"F'(z)||.
z€BR(0) z€BRr(0)

For A€ L(X,Y), b€ X, and u > 0 it holds that

" _ 1
(2.10) [I(A*A + pI)~10]| < L1l
If we set A = F'(z) and b = F'(zx)*(F(zx) — F'(xk)zk), and if we assume that
pk+1 > 0, then the complementarity condition R = ||zk(pk+1)|| = ||zk+1]], (2.3), and
(2.10) yield
! * ’
o s < U (Flar) — Pladm)l] s

Inequality (2.11) is clearly also valid for g1 = 0. Similarly,

1F"(z2)"(F(z.) = F'za)za)l| _ s
(2.12) e < 7 -

bd

Let

ssm{wﬂﬁfmywumwmrwumm@-
We will show that (2.8) holds with
_ (A2 +s/R)(c+ R)

where c is a constant such that ||zx(u.)|| < ¢ for all k (the existence of such a constant
will be established below).

From the definition of zx(u), and from (2.3), we can conclude that

(2.13)

el > g 1P (@) (o) = F (i)

1

(2.14) = e (IIF'(x*) (F(z.) = F'(za)za)|| — Lilzs — zil])

(here, L is a Lipschitz constant depending on the Lipschitz constants of F, F’ as well
as A% sup_ <Bal0) [|F(z)||,and R ). Moreover, the definitions of zx(u) and (2.2) yield

Ty — k(i) = — (F'(2k)" F' (2k) + pu ) 7 (F' () "F' () + i) (2 — @)
— (F'(2k)" F (k) + ps
— F'(zk)" F(24) — pras)
+ (F'(z) — F'(2x))" F ()]
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With (2.6) and (2.7) the latter inequality implies
w
(2.15) s — @)l < Rllas — 2l + Sz — 2l

provided that ||z, — zk|| < €.

Inequality (2.15) guarantees the existence of ¢ such that ||zx(u.)|| < ¢ indepen-
dently of k.

Note that g1 and p, are either 0 or they are the roots of g, and g., respectively.
In either case the special structure of these functions will be used to derive bounds for
the Lagrange multipliers and estimates for the error |, — pg+1|- If g = pr+1, then
(2.8) and (2.9) trivially hold. For the derivation of the estimates in the nontrivial case
we consider the cases . > pr1 and py < piy1.

First, we consider the case p. > pg+1. Since gy is convex, we obtain that

0 > ge(pr+1) = g (a) + G (1) (41 — p1a)-
Using this equation, (2.5), and the complementarity condition ||z.|| = R, we find that

9k (N*)
gr (1)

Pox — Pr+1 <

_ i ) |2 — B2
2 (42), (B ()" F' () + ) 2ax (1)
A%+ B2 — o ()|

(2.16)

2 |l () 112
A% + py |zl + (el
< Ty — T
= 2 ”xk(“*)nz “ * k(:“’*)“

A2+/—L* R+C
T2 Tague o ol

If we choose
e=min{e, 2L IF @) (F(@.) - Flae )l
we obtain with (2.12), (2.13), (2.14), (2.15), and (2.16) that, for ||z. — zk|| <,
(217) po = pier < 0 (slles —aell + iz — 2ull?)
When p. < pr41 we again use the convexity of gx and gr(ux+1) = 0 to conclude that

g () > gre(pr+1) + gk (1) (s — Brt1) = |9k (rot1) | (Br+1 — px)

2 2
2 m”wk(ﬂkﬂ)ﬂ (Mk+1 — Bs) -

With ||zk+1]] = ||zk(tk+1)|| = R and (2.15) this implies

A%+ ppg
et = i S T (o) = ok 1)
A%+
(2.18) < S e+ R)(low() = @l + llae = ol )

w
<0 (wllze — 2kll + 5 llow = okl + O]l — el
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Equations (2.17) and (2.18) yield the estimate (2.8).
From ||zx|| < R = ||zk+1|| we find, analogously to the derivation of (2.18), that

w
(219)  pess = pe <0 (Kllow — il + Sl — @) + 6l — .

Setting 7 = 0(k + €w/2 + 1), (2.9) follows from (2.17) and (2.19). a

To guarantee the convergence of the iterates we have to replace (2.6) and (2.7)
by stronger conditions. The following theorem is a generalization of Theorem 10.2.1
in [12).

THEOREM 2.2. Let F satisfy (A1) and (A2). Assume further that for €,v.,0 > 0,
and that for all z,y € Br(0) N Bc(z.), h € {h € X|z. + h € Bg(0) },

(2.20) IF'(z)hI* > yallhl?,
and
(2:21) [1(F'(2)* — F'(z:)")F(24)|| < ollz — 24]|-

Define A = SUP, 510y [|F'(z)||. If 0 < yu + s, then for all o € (1, (Y« + ps)/0)
there ezists €. = €.(ax), €« > 0 such that the solution zx4+1 of (1.2) obeys

ao al A
2.22 T — Zyl|| K ——||zp — x| + Tk — Tx
@2) ek —mull € 2o =l 4 gl =l
and

Vs + U + 0o
(2.23) [[Tr+1 — 24| < 2(7—:-;4)”%_27*” < lzk — =l

provided that zy € Be,(z+) N Br(0).

Proof. Let a € (1, (7« + p«) /o) be an arbitrary constant. Since F” is continuous,
we obtain from (2.20) the existence of €; € (0, €), such that for all z € Br(0)NBe, (),
p€ B, (p) NIRY, and h € {h € X |z, + h € Bg(0) }, the following inequality holds:

*+*
(2.24) (H(z,m)h, by > T=E ]2

Since the assertions (2.20), (2.21) imply the assertions in Lemma 2.1 with kx =
a0 /(Yx+ps) and w = oLy A/(Y«+ps), there exists €3 € (0, €1) such that ||zx—z.|| < €
implies p € B, (1) N RY.
From the necessary optimality conditions we obtain the identities
(F'(zk)"F' (k) + pre1D)Th41 = —F' (zk)* (F(2k) — F'(z1)2k)
F'(.’I:*)*F(.’L'*) + pas = 0.

These yield

H(@k, pr11)(@k41 — o) = F'(2) " (F(24) — F(2g) — F'(2%) (24 — 1))
(2:25) + (F'(z4)* = F'(zk)*)F(4) + (s — pt1) T
and

H(zk, o) (Tht1 — T4) = F'(zx)" (F(24) — F () — F'(21) (24 — 71))
(2:26) + (F'(22)" = F'(zk)*)F(24) + (s — Pht1)Thi1-
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If gy > pgt1, then R = ||z4|| > ||zk+1]|, and thus
(@ zre1 = 2a) < Nl l|zraall = 2l * < 0.

Combining this inequality with (2.25), we obtain that for ||z — .|| < €2 the following
inequality holds:

(H (ks pio41) (Tht1 — Tu), Tkt 1 — T
< (F'(zx)" (F(24) = F(zx) = F'(21) (24 — Tk)), Tht1 — T)
+ ((F'(z4)" = F'(2k)")F (%), Th41 — ).

Together with (2.24) and (2.21), this yields
T+ s LA
(2.27) lEiWHP%WS(éﬂm—hw+ﬂ%—mommrwm'

If ps < pr+1, then we can proceed analogously and obtain
(-’L’k+1,.’L'* - xk+l> < 0>
(H (@, ha) (Tht1 — T) Tht1 — )

< (F'(zk)*(F(zx) — F(zk) — F'(z) (T4 — Tk)), Tht1 — T
+ ((F'(z2)* — F'(xk)*)F(24), Thy1 — Tu)-

Hence for ||z — z.]| < €,

*+ % LA
(2.28) ”a“|ww4—wm2s(—§4mk—wm2+ﬂmk—wm)HM+r—mn.

The estimates (2.27) and (2.28) yield (2.22). The local g-linear convergence follows
from (2.22) if we set

_ . 7* + /J,* — Qo
€x(a) = min {62, ol A } .
For ||zk — z4|| < e«(c) we obtain
ao aliA 2
Tyl — Tx|| < T — Tu|| + o———||zk — 2
lokss = 2ull < =57 llok = 2ull + 5o el = o
ao aliA v+ py — aa)

< + Tk — T

(% +pe o 2%t ) alanA l i
x T s + 0
< 2B ok — 2| < llog -l D

2(7x + pix)

Remark 2.3. (i) For unconstrained problems local g-linear convergence can be
guaranteed under the weaker conditions (2.6) and (2.7). This follows, since

Tu — Trr = — (F' () F'(2x)) 7 [F' (20) " {F' (k) (@k — 24) = F(2x) + F(24)}
+ (F'(z4) — F'(2x))"F(z.)]
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implies
w 2
[l = zha|l < wllzs = 2il] + Fllox — 2l

(compare with the proof of Lemma 2.1). Conditions of the type (2.6), (2.7) are also
used in [13] and [14] for the analysis of the Gauss—-Newton method for unconstrained
problems.

(ii) Under the conditions of Theorem 2.2 the results of Lemma 2.1 can be strength-

ened. With kK = ao/(y« + p«) and w = aLiA/(« + p+) we obtain from (2.8) and
(2.22) that

w
e = | < 26 (sllo — ol | + 512 — 7).

We conclude this section with an analysis of the assumptions made in Lemma 2.1
and Theorem 2.2. A similar analysis is given in [6].

LEMMA 2.4. Let F € C*(Bg(0)). Moreover, assume that F"(x.) exists and that
H(z.,, 1) s continuously invertible.

@) If
[(H (2, ) H(F'(2)* = F'(24)*)F(24)|| < K|z — .||V € Be(z.) N Br(0),
then

(H (s, 1)) HE" () (-, B)* Fz)l| < ][Rl VR € X.
(ii) If
I(H (2, a)) " (F" () (-, B)* F ()| < RI[RI| VR € X,
then for each k > & there exists € > 0 such that for all x € Bc(z.) N Bg(0),

I(H (s, 1)) " (F' ()" = F' () ") F ()| < sl = 24-

Proof. (i) Define Z(z.) = {h € X|z. + h € Bg(0) } and assume that
[(H (s, 1) 7H(F' ()" = F'(22)*) F(24)]| < sl — 2]
for all € B,(x.) N Br(0) . From the differentiability we obtain that
[ICH (s, 1)) T (F" () (5 ) F ()| < (5 + @(I[RI))IBI] - VR € Z(z.),

where ¢ is continuous at the origin and fulfills ¢(0) = 0. Since (F"(z.)(:, h))* is linear
in h, the inequality remains valid if we multiply h on both sides by a positive constant.
By the continuity of ¢ for each n € IV there exists §, > 0 such that ¢(||h||) < 1/n
for all h € Bs, (0). This yields

| (e (o)) P
Multiplying both sides by ||h||/6, and taking the limit n — oo gives
(2:29) [(H (4, 1)) 7 (F" () (-, R))* F ()| < &l|RI| Vh € Z(a.).

< (m + ;1;) 8, Vhe Z(z)\{0}.
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Since h — (F"(z4)(:, h))*F(z,) is linear, the set Z(x,) in (2.29) can be replaced by
{he€ X|3t:z,+the Br(0)} > {h € X|(z.,h) #0}.
(Both sets are equal if ||z«|| = R.) Finally, the continuity of F”(z.)(:,-) implies that
I(H (4, 1)) (F" () (, ) F ()l < KllRIl VR € {h] (2, h) #0} = X.

(ii) The second assertion can be proved in a similar way. o
LEMMA 2.5. Let F € C?*(Bg(0)). If H(x.,p) is continuously invertible the
following statements are equivalent:
(i) There exists v > 0 with

(2:30)  (H(zx, pa)h h) = [{(F"(2)(, 1)) *F (), h)| 2 7IIBII* Vh € X.

(ii) There exists k < 1 with
(2.31) ICH (s, 1)) 7 (F" () (5 1) *F (@)l < sl[BI] - VR € X.

Proof. First we prove that (i) implies (ii). The operator h — F"(z,)(-, h)*F(z.) is
self-adjoint, since F' € C?(Bg(0)). Using the existence of the square root of H (., pt4),

e.g., [9, Thm. 4.6.2], (2.30) with the variable transformation b — H (&, st) "% h yields
that for all h € X,

CH ey 1) 73 (F" (2) (-, H (o, ) "2 R))* F(@,), h)| < (1 - Wj_,u*_)ll) lIRI1%.

The latter inequality implies [9, Thm. 4.4.5] that

5 (F"(2.)(, H(2u, )" %-))* F (s -
1 (e, ) ™2 (B (@) (s H (s ) ™3] F@a)ll 1= 1y

Since

1H (@a, ) 2 (F (@) H(@a, )" 2)) F (@)l = 1H (@, 1) 7H(F” (@) () F )],

(2.31) holds with k = 1 — /|| H (zx, px |-

The implication (ii) = (i) follows by similar arguments. Here, one obtains v =
(1= w)/IH (s, ps) 7. O

Lemma 2.5 shows that in the situation of Theorem 2.2 the second-order sufficient
optimality criteria is satisfied at x,. In particular, we obtain that x, is an isolated min-
imizer and that the objective in (1.1) possesses local quadratic growth [23, Thm. 5.6].
This requirement seems to be inappropriate, since parameter identification problems
are often rank deficient and ill posed. But in the presence of ill-posedness one has
to employ regularization techniques to stabilize the problem, i.e., to guarantee con-
tinuous dependence of solutions of (1.1) upon input data. Such a technique may be
the Tikhonov regularization, where a regularization term of the form «||z||? is added
to the objective. Similarly, a regularization may be obtained by reducing R. Hence,
under suitable assumptions on F' and on the regularization, the regularized parameter
identification problem may fit the requirements of Theorem 2.2. In fact, in [7] and
[8] it is shown that the output least squares formulation of certain elliptic parameter
identification problems exhibit quadratic growth for properly chosen regularization
(see also §4).
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The quadratic growth of the objective function can also be used to derive an
estimate for the error between the solution of the infinite-dimensional problem and
the solutions of the discretized ones.

THEOREM 2.6. Let (A1)-(A6) be valid and assume that F and Fy are weakly

continuous functions. If there exist & > 0 and € > 0 such that for all zx € Br(0) N
Be(zy),

(2.32) IF@)II* 2 IF(z.)I” + allz — 2.1

holds, and if there exists a continuous function g with g(0) = 0 and g(t) >t for all
t € [0,1] such that d(hi,h2) = g(py(|h1 — h2|)) defines a metric on [0,1], then for
all 6 > 0 there exists Ms and Ng such that for all M > Mg, N > Ns the discretized
problem

min ||Fy (z")[]?

(2.33) st M| <R, zM e Xu

has a solution MN satisfying

|z —:I)iWNH <6.

Proof. For brevity we set dy = d(0,1/N) and p = py(1/N). By (A2) and (A5)
there exists ¢ > 0 such that for all N sufficiently large and z1,z2 € Bg(0),

IF(z)|” = [|Fn(@2)]]? < clp+ |loy — z2|l) < e(dn + [|z1 — z2]]) -

This shows that the discretization of F' defines a Lipschitzian perturbation. The
results of Alt [3, Thms. 4 and 6] yield the existence of N, such that for each N > N
there exists a solution z of

min ||Fy(z)|?
st. |lo]| <R

with

(2.34) llzs — V|| < éV/dn,

where ¢ is independent of N.
In the next step we will analyze the behavior of the discretized objective near z¥

We will show that a perturbation of the growth function for the original objective
describes the growth of the discretized one. This result will be used to prove the
assertion of the theorem.

For z € B(z.) we deduce from (2.32), (2.34), and assumption (A5) that

p* + 2p||Fn ()| + || Fw ()| > || F ()|
> [|F(z)|I? + allz — 2.||?
> ||F(@M)||* - 2Lol|z. — 2| || F (=)
+allz — a2 |]? - 20lle — 2V || [|z. — =¥ ||
> ||Fn @) + allz — 2| * — 20| | Fn (2|
— (2Lo||F(2Y)|| + 4Ra)&v/dn .
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Let £ > 0 be chosen with

(2.35) & < min {e, g} .
If we choose Ng > N such that

(2.36) Vdy < €/é
and

a 2
% +20(|Fn (@)l + || En (@)l + 2Lol|F ()| + 4Ra)éy/dw < g

for all N > Nj, then we obtain with (2.32), (2.34), and assumption (A2) the following
growth condition for the finite-dimensional objective function:

2
a ———
@371 EN@I? > IEn I +alle — 2N |2 - % Ve € Be(al).

By (A6) there exists Mj such that for all M > Mj there exists ™ € Xjs with

N|[|2 2
(238) 122 - 2| < min {s L \/ L Zf}
0

Let 2" denote a solution of

min ||[Fy(z)||?
st. ||zM||< R, zM € Be(zN)N X

In the next step we will show that " is a local solution of (2.33), which will be

proven if we show that ||z MN|| < ¢ Assume that ||zl — zMN|| = ¢. Then
(2.37) yields

(2.39) [ En (@M V)12 > || Fn ()] + ag? — “5

On the other hand, each z™ € Bg(0) that obeys (2.38) satisfies
1Fx (22M)I1? < || Fw (™)
and

1Fn (@) < ([ Ew (@0)I? + 2Lol [ Fn (@)l [l — 2™ + Ll — =12

< [IEw )P + 2.

Hence, by (2.39),

at?
I < B @I < Fe(H M) - 25,

a contradiction.
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This gives the assertion, since each local minimizer MV of (2.33) fulfills

6 .
2™ — 2| < |lz2™ = 2| + [le — 2| < 5 tevdn <$

(see (2.35), (2.36)). |

If we have py (h) = ch? with p > 1, which is usually the case for finite element
discretizations, we can choose g(t) = t7. In view of Lemmas 2.4 and 2.5, (2.32) is
clearly satisfied if F' € C%(Bg(0)) and if the assertions of Theorem 2.2 are valid.

Theorem 2.6 gives a qualitative result on the perturbations of solutions, but
does not give error estimates for the difference between z, and zM¥ although the
derivation of the theorem indicates that ||z — z,|| is dominated by 1/d(0,1/N) and
[laMN — || by dist(X, X)) = supgex infymex,, || — z||. But note that since
M; ,, in (A6) depends on § and z, the distance dist(X, X3s) may be infinite for fixed
M. A detailed analysis of the Gauss—Newton method, which will be presented in the
next section, will enable us to improve this theorem. We will derive error estimates
related to the approximation properties of the discretization as well as uniqueness
results for the minimizers of the discretized problems.

3. Mesh independence. In this section we will investigate the behavior of
the Gauss—Newton method for the discretized problem. Our goal is to develop es-
timates for the difference between the Gauss—Newton iterates of the infinite- and
finite-dimensional problem.

In what follows we will use some basic estimates, which are collected in the fol-
lowing lemma.

LEMMA 3.1. Assume that (Al), (A2), (A3), (A5), and (A7) are valid. Define
p = px(1/M) + py(1/N). Then there exist constants ¢, cz2, and c3, independent of
M and N, such that for all z,zM,y € Br(0), and N € IN the following inequalities
hold:

(8.1) |[Fn(z™)*Fy(@™) — F'(z)*F'(z)|| < &(p+ ||z — ™)),
|IF' (z)*(F(z) — F'(z)z) — Fy(a™)*(Fn (&™) — Fy(a™)z™))|
(3.2) .
< clp+|lz—z™),
(3.3) ||F"(z)" F'(x) — F'(y)* F' (y)|| < csllz—yll-

Proof. The proof is a straightforward application of (A1)—(A3), (A5), and (A7),
and is therefore omitted. 0

Before we derive the fundamental estimates for the iterates and Lagrange multi-
pliers, we introduce some notation. Define

¢4 = max {Sup sup ||Fn(z)|, sup llF(w)ll}
z€BR(0) z€BR(0)
and

05=maX{8up sup ||Fy(2)||, sup sup ||Fy(x)*||, sup ||F'($)||}-
N zE€BR(0) N z€BR(0) z€BR(0)

Note that c4,c5 < 00 by (A2), (A4), and (A5).
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In the following proofs we will use the special representation of the iterates g1,
zl. We recall that
H(z,p) = F'(z)*F'(z) + pl,
(34) wx(p) = —H(zx, p) " F' (2)* (F (k) — F'(zx)8)
= ax — H(zk, ) 7 (F' (xx)" F (k) + pax) ,
and we define M~ (11) to be the discrete analogue of zx () with F, F”, x, replaced by
Fn,Fhy,zMN | and we define Hy(z, ) to be the operator corresponding to H(zx, u)
with F’ replaced by F},.
With these abbreviations we obtain that xx(pk+1) = k41 and N (uMY) =
Again, we will use the convexity of the functions
(1) = l|zx(p)||* - R?,

g (1) = Iz (W)I1? - R?
to derive the estimate for the Lagrange multipliers fux41, ) , which are given as the
roots of gk, gM¥, respectively. Due to the special structure of gi, px+1 is bounded
by
||F" (k)" (F (k) — F' (zk) 1) ||
R ,

as established in the proof of Lemma 2.1. Since F, F’ are Lipschitz continuous, px41
is uniformly bounded. The same is true for uf*y by Lemma 3.1.
Finally, we set

(3.5) a1 = max{¢é, Bé },

where B is an upper bound for ||H (zk, 1) 7|, ||H (zk, prs1) 2|
LEMMA 3.2. Assume that (A1)—(A5) and (A7) are valid and let € (0,1), B> 0
be such that

| H (g, )™ (F (2x)" = F'(@™) ") F ()| < wllzd™ -,
|1 H(zx, ) 7'| < B.

Define ey, = ||zMN — ai|| and p = px(37) + py(F). Ifci(p+ex) < 1, then there
exists cg > 0, independent of M, N, and k, such that

2
MN +c1(p+ ex)||zr () — zx|| + wex + cop
3.6 x - < %% )
(3.6) |z ™ (1) — ze(p)|] < 1—ci(p+er)

Proof. From the definition of zx(u) and 2" (1) (see (3.4)), we obtain
et (1) — zr(p) < Hn(a™, p) ™ H (x, p)
(H(zk, 1) "H{(Fn(@t™)* Fy (@f™) + puI) (@Y — )
— (Fn (™) F (zi™) + pap™
— Fry(z™)* Frv(zx) — pae)}
3.7) + H(zy, )" H{[Fa(a™)* Fy(zz™) + ul
— (F'(zx)" F'(zk) + pl)]
(F'(zk)* F' (zx) + pI) 7 (F' ()" F (k) + pex)}
+ H(zk, )" H{(F' (xx)*F (z1) + pzy)
— (P (@2™)* Fiv(zx) + pax)}) -
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For operators A,C € L(X,X) with continuous inverse we have the following
equality:

A-1C = A71CC-N(C - A) + 1.
From this it can be seen that if ||C7}||||4A - C|| < 1

1

A~C| < .
147l < T qe=ma =y

The application of the latter inequality to Hy (zMN, u) ' H(z, p) together with (3.1)
and (3.5) yields

1
Hy(zMN | 1)~ H (xy, < —.
VN (™, 1) @ | € Tt

Using the basic estimates of Lemma 3.1, the terms in (3.7) can be estimated as
follows:

[|Fn (@) Fp (™) (@Y — ap) — (Fpy (af™N)* F (ap™N) — F(a™N)* Fr (k)|
< |[Fp @)l 1Py (@ ™N) (@™ — k) — Fn(z™) — Fr(a)|
< c5(L1/2)€2,

[(F (elN)* iy (V) = F'(@)* ' (@) H (s, 1)~ (F' (1) F (i) + )|
< &1(p+ ew)llak(p) - zll,

|H (2, p) " (F" (zk)* F(xx) — Fp(ap'™)* Fn (i)l
< (| H (g, p) T (F (r)* = F(2p"N)*) F(a) ||
+ B||(F(z™)* — Fp(z™)*) F ()|
+ B||Fy (zi"™)*|| ||Fn(zk) = F(@)l|
< ke + Beyp + BC5py(1/N) .

Inserting these bounds into (3.7), we obtain the desired result by setting
c¢ = max{BcsL1/2, B(cs + c4)}. a

For the derivation of the estimate for the Lagrange multipliers we will use the
convexity of ||zx()||> — R? and its discretized analogue.

LEMMA 3.3. Assume that (A1), (A2), (A3), (A5), and (A7) are valid. If
[|#MN (pr41) — Tk+1|| < R, then there exists ¢ independent of M and N such that

cr(1+ [l (pe4)l])
N (urs1) — zega|l/R

(3.8) fﬂkﬂﬂl — Brt1| £ 1- )2 llze™ (1r+1) — Trsall.

Proof. For brevity we set

ert1 = [Jed™N (1) — Tea -

If prsr = u,lc"f\l’ the assertion follows immediately. Therefore let us assume that
pe+1 # pptlY . From the definition of gg, g™V we obtain

19 (1) = g™ ()] = (lze @I+ 2™ @11 el = k™ @l

(3.9) < 2R||zx (1) — MV ()],
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provided p > max{p41, pa }, and

gAY ()] = 22N (), (Fr(@f™ ) Py (™) + p) 2™ ().

Since Fi (zMN)*Fi (zMN) is self-adjoint on (X, (-,-)x), it holds that for all hys €
Xum

1
P @™+

(P (zp™)* Fy(a™) + )" har, har) > T ||hal|? -

Hence

(3.10) M ()| >

MN 2
X .
C% 'u“ k (:u)“

Now we will combine the estimates above to develop the estimate for the error
in the Lagrange multipliers. First let us consider the case pr41 < u,’c"ﬂ’ . For p €
[k+1, pptY] we obtain, as in (3.9), that

(3-11) g™ (1) = (R + [lag™ () [Dllzx () — 2™ (W] < gr(w) < 0.

Since gM* is convex and gM™N (uMY) = 0 (keep in mind that pY > 0), we conclude
that

1
N () > g™ (W) | — ptA).

With (3.10) and ||z™ (upY)|| = R this gives

2R?
(3.12) (W) > 5w It - A
k cg_‘_ﬂﬂj\l] k+1

Inserting (3.12) into (3.11) yields

0> g™ (r41) — (R+ |z (r1)|]) ext

2R?
2 5. MW M ey — s — (R + |2 (rr1)|]) €xs1
5 T Hit1
respectively,
2, , MN
C5 + M
(3.13) et = prga] < o 2 (R A+ ||z8™ (1)) €xt1 -

In the case pix41 > ppty we can proceed as follows. From the convexity of gM™
we obtain

!
02 g™ () = g™ (k1) + g™ (1) (AT — pe)-
This, together with the fact that px4+1 > 0 is the root of gy, yields

MN
gk\Uk+1) — g Hi+1
|.¢J;c (Br41)]

With the estimates (3.9), (3.10), and ||zx(ur+1)|| = R we finally obtain

R(C + jtrs1) (¢ + prv1)/R
3.14 MN _ < AN k1 S gt '
(3.14) k1 — b | < 2™ (s )2 = (1= exqa/R)Z H
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Since the Lagrange multipliers pux11, %Y are uniformly bounded the assertion
follows from (3.13), (3.14), and zx(4k+1) = Tht1- g

After providing these technical lemmas, we are able to prove our main result.

The assumptions required in the following theorem are closely related to the
assumptions needed to guarantee local convergence of the Gauss-Newton method,
but convergence of the method is not explicitly used. It should be noted that the
requirement on the Lagrange multipliers in (3.15) is implied by condition (3.15) for
the iterates if the assumptions of Lemma 2.1 hold. If the conditions of the convergence
theorem, Theorem 2.2, are valid, then (3.15) is satisfied. For unconstrained problems
(3.15) is implied by (3.16) and (A2), which was shown in Remark 2.3 (ii).

THEOREM 3.4. Assume that (A1)-(A5) and (A7) are valid and that there exist
€> 0,¢, € (0,€), such that for all € € (0,¢€.) the implications

(3.15) llzx —2ul| <€ = |leet1 — 2l <6

llzk —zall <€ = lprts —pa| <%

hold. Moreover, let k € (0,1), B > 0 be such that for all z,y € Be(z«) N Br(0) and
u € Bz(us) N IR the following conditions are valid:

(3.16) ||H (z, )~ (F' (2)* — F'(y)*)F(2)]| < &llz — 9l
|H (2, )| < B.
Then there exists € € (0,€4),c > 0 (both independent of M, N), M., N, and a
function T : IN* — R, such that for all zo € BR(0)N Bc(z,), M > M,, and N > N,
the condition ||zo — z}N|| < 7(M, N) implies

1 1
(3.17) ||zk—xkN||<c(px(M)+py(ﬁ)) vk and

(3.18) i — V| < c (Px ({Z) oy (},)) Vk.

Proof. For brevity we define

p=px (—Al?)-l-py (%) and ey = ||z — MV

The assertion will be proven by induction. However, the proof is quite technical,
because we have to bound |px11—ppY | and ||k (prs1) —zp N (pk41)|| simultaneously.

In order to give a better idea why we have to choose the parameters in the ways
to be specified, we will introduce the choices step by step.

In the first part we will derive bounds for ||zx(pks1) — TMV (uk+1)|] and
ltk+1 — pptY| based on the Lemmas 3.2 and 3.3. We then combine these results
with a stability estimate for the solution of linear systems to obtain the desired in-

equalities.
Choose
. { 1- n}
€ < minq €., ——
861

and set cg = max{1, 2¢}.
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Define

8(c1 + cs)

(3.19) Co 30 =)

Cg

and let M, N be such that

1 1-x  3(1-k)2 R e*——é’}

p<mm{cl+C1CQ’ 4c; ’64cs(ce+c1)2’-2?9’ Co

for all M > M,N > N.
Moreover, define

1
1-k (1-k)2 2ae+b) 2ae+b

(3:20) T(M,N,a,b,¢) = (4(a +b) 16(a+b)2 a+b p a+b

and set
Tl(M,N) = F(M,N,Cl,Cﬁ,g).
From p < 3(1 — k)2/(64cs(cs + c1)?) we obtain
1-k (1-k)2 2¢1€+ ¢ 3(1—k)
+ 5~ Pl :
4(61 -+ Ce) 16(61 + Cﬁ) c1 + cg 8(06 + Cl)

With (3.19) and (3.20) this yields

(3.21) T1(M,N) <cgp.

Now, assume that M > M,N > N, and z; € Bg(z,) N Bg(0), and that oMV is
given such that

llzk — 22N || < 7a(M, N).
For brevity we set 71 = 7(M, N). Then (3.21) and p < (e« — €)/cg imply
llzw — 2™ Il < Nz — zil| + ||z — 2R < e

Thus, the inequalities (3.15) and (3.16) are satisfied for the triple (zx,zM, pk11).
Lemma 3.2 and (3.15) and (3.16) yield

ceei + c1(p + ex)||zk — Th41|| + Kex + cop
1—cip—cieg
(3.22) < cee? + 2c1(p + ex)€ + ke + cop
) = 1—cip—ciex ’

llzk (1) — 2™ (prs)l| <

Since p is chosen less than 1/(c; +¢1¢9) we obtain with (3.19) and (3.21) that the
denominator of (3.22) is greater than 0. Therefore, (3.22) is well defined.
From € < (1 — k)/(8¢1) and p < (1 — k)/(4c1) we find that

k—14+2ci€+cip<(k—1)/2.
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Therefore, we can continue to estimate (3.22) by

|k (1) — ﬂkaN(uk.,_l)H
(3.23) < c6Ti + (k= 1)71/2 + 210 + cop + (1 — c1p)T1
‘ B l-—cip—can

=T1,

where for the last equation we used the fact that 7; is the smallest root of

k—1

(c1 4 ce)T + T+ 2c1pé+cep=0.

Since ||zk(k+1)|| < R we obtain from (3.23) that ||z} (uk+1)|| is bounded. There-
fore, there exists ¢7, independent of M, N, such that ||[zM¥(ux41)|| < & and
cr(1+ ||zM¥N (uk41)|]) < &7, where c7 is defined in Lemma 3.3. From

< —
P 35
(3.21), and (3.23), we obtain

< 4é7
—_ .
(1 - ||xk(,uk+]) - :IJM,N(;J,k+])I|/R)2

Since, up to the constant
& /(1= ||z (k) — 2™ (ur4) 1/ R)?,

lpkt1 — pa2 | is bounded by the same term as ||k (ux+1) — MY (k+1)|], we obtain
from (3.8), (3.24), and (3.23) that ||z — zM V|| < 71(M, N) implies

(3.24)

(3.25) |1 — Y | < 48 (M, N).

Together with (3.21), this gives the desired estimate for the Lagrange multipliers.
To prove the estimate for the iterates, we have to combine the previous results.
Lemma 3.2 yields
l|zk41 — 2235 ||
= ||z (1) — 2™ ()|
(3.26) < lzw (1) = 2 ()| + 2™ (1) — 22 i)l

cﬁei +ci1(p + ex)||Th1 — k|| + Kex + cop
1—cip—cieg

g™ () = 2™ (DI

If A, A € L(X, X) are continuously invertible with ||A~!|| |4 — A|| < 1, then

<

A4 - A

(3.27) [|[A=20 — A71p|| < - .
1—[[A-[]|A - Al

14778

With Lemma 3.1 we get

B

3.28 F (N FLy (M) + 7Y < .
( ) I[(Fn (2 ™) Fy(@i ) + pea )7 < l_cl(p+|lmk_$kMN||)
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Now (3.27) and (3.28) yield

llza™ (1) — 2R (i)l
N(EFN @™ Fa @) + pepr D) 7] i1 — N leh™ (i) |
- 1= ||(Fp(@p™)* F (™) + g D) 7] s — pptY |
ki1 — pit| Bé;
~ 1-cap-allzk — ™| ~ Bluktr — ppid |

Define c19 = ¢1 +4Bé&rcg and c¢11 = 4Bé%cy. Then we conclude with (3.21) and (3.25)
that

3.99 MN _ pMN( MN\| < c11p
(3.29) k™ () = 2N (ADI < Tt

provided M > M,N > N and e; < T1(M, N).

If we insert (3.29) into (3.26), we observe that ||zxt1 — zpY|| is bounded by a
term which has the same structure as the bound in (3.22) (replacing ¢, by cio and cg
by c12 = ¢ + ¢11). Therefore, with the choices M, > M , N¢ > N such that

3(1 - k)2 1-k
64cs(ci0 + c12)?’ 4eio

(. 1—k
e < min{eE, 80 y
10

7(M,N) = min {r1(M, N),I'(M, N, c10, c12,€)},

pSmin{ } VM >M.,, N>N,

and

we finally obtain that ||zx — z§"|| < 7(M, N) implies ||zx4+1 — MY || < 7(M, N).
This gives the assertion, since

8(610 + 012)

(M,N) < 3(1— ) Csp-

0

To guarantee that the error between zj, and M~ can be bounded by px (1/M) +
py (1/N), we have to ensure that the starting point =}/ satisfies a certain approxima-
tion property, which is essentially ||zo—zd || < O(px(1/M)+py (1/N)). However, if
the starting point for the infinite-dimensional problem satisfies ¢ € X for all M, we
can choose )N = z; for all M (and N). In this case we always have ||zo — z} V|| <
7(M, N). Such situations occur, for example, if Xp; = span{¢y,...,dn}, where ¢;
are splines and z is a constant function.

The advantage of our approach is that we obtain uniform bounds between the
infinite-dimensional iterates xx and the corresponding finite-dimensional ones mkM N,
whereas using the approach of [2], we would obtain uniform bounds between the re-
striction of the infinite-dimensional iterates onto the finite-dimensional space, Iz,
and the iterates ™. In the case of finite element discretizations, with X = H*, H*
some Sobolev space, and II; the spline interpolant, this would lead to estimates of
the form (see, e.g., [4, p. 217])

llzk — 22Vl ge < llex — Tagzn|| e + |[Marze — 23N || e

1
< exrllaxllicsrss + elox (1/M) + py(1/N).
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This bound involves the H¢tP*1_norm of z) and therefore only leads to a pointwise
estimate since ||zx||ge+»+1 may not be bounded.

For fine discretizations, subproblem (1.4) is a large-scale problem, and most of
the computing time for the determination of a solution of (1.3) is spent solving the
subproblems (1.4). In practice, it is therefore often useful to reduce the amount of work
by solving the subproblems only partially. This leads to so-called inexact methods.
It is usually possible to retain good convergence properties of the inexact method
when the accuracy with which the subproblems are solved is sufficiently improved
when the iterates approach the solution. The question of how the quality of the
computed solutions of the subproblems affect the convergence speed of the method
has been analyzed in [10] for Newton’s method and in [22] for the Gauss—Newton
method for unconstrained problems. If zy; denotes the exact solution of (1.2), Zx4+1
the computed, inexact solution, and if we know that for the exact method with some
k€ (0,1),

|k — 2| < Kl — 24| 5
then linear convergence can be retained if the computed solution satisfies

(3.30) lzkt1 — Zrtall < Gkllzk — 24|

with some 6, < 6§ € (0,1 — k):
Zk+1 — @all S |lTht1 — Ertal| + llzrtr — 24l| < (6k + 6)|l2k — 2| -

In practice, one has to replace ||zx+1 — Zk+1|| and ||zx — .|| by cheaply computable
terms. In case of unconstrained least squares problems with full rank Jacobians we
can replace (3.30), for example, by

(3.31) | (zk)* F' (zk)8k + F'(xx)* F(zk)|| < 8| |F' ()" F(zx)l],

where &), < 6; must be chosen sufficiently small; see [22]. (In the unconstrained case
we solve for the step 5 rather than for the new iterate. The computed new iterate is
then given by Zx+1 = zx + 3k. In the next iteration (3.31) is solved for §x4; with z
replaced by Zx41.)

Instead of analyzing local convergence properties of the inexact methods for the
discretized problem, we will focus on the question of under which conditions the
inexact iterates exhibit a mesh independent behavior. We will show that, instead of
forcing the error between the exact solution xy; and the computed inexact solution
Zx+1 to be less than a small constant times the error between the current iterate and
solution, ||zx —x.|| (which is sufficient to guarantee local convergence), we must adjust
the quality of computed solutions onto the discretization error in order to obtain a
mesh independent behavior. Thus, for mesh independence it is sufficient to impose a
quality measure that is fixed and that is not strengthened if the iteration progresses.
However, in practice one will enforce stronger criteria on the computed iterates in
order to obtain good local convergence behavior.

To distinguish between exact and inexact methods, we denote the inexact iterates
by &k, o' . Then i1 = Ex(prr1), 2N = ZMV (uMA) will denote the exact solu-
tion of the subproblems (1.2), (1.4) with zx, 2N replaced by &, ZMN, respectively.

THEOREM 3.5. Let the assumptions of Theorem 3.4 be valid and let n,nM™N be
constants such that with some 9 > 0,

e (3) o (2)
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If the inezact iterates Zx, TMN are computed such that for all k € IN
(3.32) &k —2ell <n, NN =2V <™V,

then for € given by Theorem 3.4 there exists ¢ > 0 (independent of M, N), M,
and a_function T : IN? — IR*, such that for all Zp € Bgr(0) N B(x.), M >
N > N, and the condition ||Zo — ZYN|| < 7(M, N) implies

(3.33) o= a™l < (ox (57) +ov (37)) -

Proof. The proof of this theorem closely follows that of Theorem 3.4. We let ¢,
M., and N, be the values given by Theorem 3.4, and let ¢y, ..., c12 be the constants
defined in the proof of Theorem 3.4.

Define

’ ]yer
Ma

8(c10+ ¢
ci3 =ci2+29 and 014EH03

and let M, > M., N, > N. be such that for all M > Me,N > NE,

1 1-x  3(1-k)? }
c10 + c1oc1a’ 4cro  64cs(cio + €12)?

p< min{
Moreover, define
T(M’ N) = P(M’ Na €10, C13, 6)
(compare (3.20)). We have

1Zk+1 = ZREN N < 118k (1) — BN ()| + 1R () — 2 (03D
+ 1241 — Zr(prr) || + 1B — SN (w1
Using the estimates (3.22), (3.29), and (3.32) we obtain that

(3.34)
121 — Zoih ||
€2 +2c1(p + ex)€ + s||Zx — ZMN|| + c
< Co€, +2¢1(p + ex)é+ K||Zx — & || CP 110 b4 MV
1—cip—ciex 1 —c10p — c10€k
c1z€s + 2c10(p + ||Ex — E N |DE+ 1+ MY + &l|Zk — T V|| + c12p
1 —c10p — cr0€x
cizeq + 2cio0(p + [|E — RN ()E + w|Zk — ZRV ]| + cazp
‘ 1 —c10p — cr0€k

<

<

(Recall that ¢10 = ¢1 + 4Bérco > ¢1, and c13 > cg.)

Using the same arguments as in the proof of Theorem 3.4 and the abbrevia-
tion 7 = 7(M, N), we can conclude from (3.34) that if M > M;, M > M, and
[|Zx — MN|| < 7(M, N) then

c1a€i + 2c10pé + (K — 1)7/2 + crap + (1 — cr0p)T
1 —ci0p — c107

||1Zkt1 — ERA || <

=7(M,N).
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The assertion follows from an induction argument and 7(M, N) < c¢14p (compare
the estimate (3.21) in the proof of Theorem 3.4). o

An immediate consequence of this mesh independent behavior is the fact that
independent of the mesh size an (almost) constant number of iterations is needed
to satisfy an appropriate stopping criterion. Appropriate stopping criteria for the
restricted Gauss—Newton method are either

[lzk — P(zk — F'(zx)*F(zx))|| < TOL or ||F'(zx)*F(zx) + urzr|| < TOL,

where TOL is a given bound and P denotes the projection onto the feasible set. In
our case,

R

—qy, if > R,
Py =1 T ¥ Fl

Y, otherwise.

If the iteration point xj, is an interior point and the gradient is sufficiently small, both
criteria reduce to ||F’'(z)* F(zk)|| < TOL. We will use the abbreviation

(3.35) te = |lzk — Pz — F'(xx)" F(zy))]
(3.36) it = ||F’(.’l}k)*F($k) + Mk.’L’kH R

depending on which criteria is used. With ¢tV we will denote the corresponding
discretized values. We use the same notation for both terms, since we have the
same type of estimates for |t — t¥ V| regardless of whether (3.35) or (3.36) is used.
k(TOL) and k™™ (TOL) will be defined as the smallest iteration counts for which the
termination criteria is satisfied, i.e.,

E(TOL) = min{k | ¢, < TOL},
EMN(TOL) = min{k | t¥N < TOL}.

Now, the uniform estimate derived in Theorem 3.4, yields the following result.

COROLLARY 3.6. Let the assumptions of Theorem 3.4 hold. Moreover, let xg
and =N be given such that xo € B, (x.) and ||zo — z}N|| < 7(M, N), for €1 and
7(M, N) defined as in Theorem 3.4. Then for every TOL > 0 and § > 0, there exist
My, Ny such that

k(TOL + 6) < kMN(TOL) < k(TOL) ¥YM > M;, N>N,.
If tg(ToL)-1 > TOL then

EMN(TOL) = k(TOL) VM > M;, N > N;.

Proof. In the proof of Theorem 3.4 it was shown under the assumptions listed
above that

llz — 22N < clox (1/M) + py (UUN)), |k — u™| < e(ox (1/M) + py (1/N)

for all k and M > M., N > N.. This yields the existence of ¢, independent of M, N
such that

lte — t4'N] < &px (1/M) + py (1/N)) VM > M., N >N..
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This estimate can be derived using the Lipschitz continuity of F' and F’ and the
estimates in Lemma 3.1. If ¢ is defined through (3.36) one also has to incorporate
the fact that the Lagrange multipliers are uniformly bounded, and if ¢; is defined
through (3.35) one has to incorporate the contraction property of projections, i.e.,
|1Pz — Py|| < ||z — yl|-

If we choose M7, N; such that

lte(roL) — ti(tor)| < TOL —tyoLy VM >M;, N >N
and
te —tMN| < 6 Vk, M>M,, N2>N;,
then we obtain for all M > M;, N > N; that
tarory < te(ror) + [te(ror) — tiror)| < TOL
and
temn (TOL) < tkMMA’,"(TOL) + [tkmn (TOL) — tkMMJ\II\I(TOL)l <TOL+6.

If tx(roL)—1 > TOL we can choose § = (tx(toL)—1—TOL)/2. This yields k(TOL+6) =
k(TOL). Hence the assumption is proven. 0

We conclude this section with results on the convergence rate of the Gauss—
Newton method for the discretized problem and on perturbations of solutions and
Lagrange multipliers. In addition to the assumptions (A1)—(A7) we need an assump-
tion on the curvature of F' and Fy:

(A8) There exists a sequence {&pn} With limy, v oo Emv = 0, such that for all
z,y € Br(0) N Xy

I((Fn(2)" = Fn(y)") = (F'(2)" = F'()") Fn )l < €mnllz —yl|.

If F and Fy are twice Fréchet differentiable, a sufficient condition for (A8) to
hold is that

|1FN () Fn(z)—F"(y) Fn(2)||Lx,x) < ¢ (PX (%) +py <-]-t,~)) Vz,y € Br(0).

Since Fy(y)* is applied to an element of Yy, it is the ordinary Yy, X adjoint,
F}(y)* € L(Yn, XM ® Xar). In this case we obtain Eyy = O(px(1/M) + py (1/N)).
In the following theorem we will use the notation of Theorem 2.2 and its proof.
THEOREM 3.7. Let (A1)-(A8) and the assumptions of Theorems 2.2 and 3.4 hold.
Then for all a € (1, (v« +ps)/0) and all € € (0, ex(x)) there exist M, and N such that
for all M > M., N > N, and 2} € Bgr(0) N Bc(z.), the Gauss—Newton method for

the discretized problem with starting point x)N converges to a solution MV of (1.3).

Moreover, MV is the unique minimizer of (1.3) in Bc(z.), and the convergence rate

s given by

MN OtL{VINAMN

MN ao N
™| < |z — 2N+ 2(YMN 1 M)
* *

a: — —
” k+1 ,YyN_i_Mle

< lz™ — 221,

g™ — NP2
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where AMN = sup B [N (@)|| and {vMNyw, {oMN} v are sequences with

010 (ox (&) o (3)
R M)

The errors between x, and zMY and between the Lagrange multipliers can be estimated
by

llzs — MV < ¢ (PX (—]\1/7) +py (%)) ;
(3.37) X X
itz (2) oo (3)

where ¢ > 0 denotes a generic constant.
Proof. We only give a sketch of the proof. Theorem 2.6 yields the existence of a
sequence {zMN}p of minimizers of (1.3) such that Y — z, (M, N — o).
From (2.21), (A5), and (A8), we obtain that for all z,y € Bg(0)
l(Fn (x)" — Fn(y)")Fn (y)]]
< |[(F'(x)* = F'()") F)ll + |(F' ()" — F'(y)") (F(y) = En )l
+ I((Fn (=) — Fa(y)™) — (F'(2)" = F'(y)")) Fn )l
<olle =yl + py (1/N)La|lz — yl| + Emn ||z — yl|.
Hence there exist 0™~ > o such that oMY — o| = O(émn + px (1/M) + py (1/N))
and
I(Fy(2)* ~ Fa@)*) En@)ll < o™V ||lz —yl|.
Assumption (A5) and (2.20) and (3.38) yield
IFn @ ™)RI1? 2> (|| ()l — [|1F' (22" )k — F'(z.)h||
— |Fy(@™™)h — F' (2} N)h||)?

1 2
> \/’Y*—L1||$*-CL‘£/IN||—PY X ||h||2
N

Hence, there exists a sequence {YMN}n, YMN = v, + O(||z. — 2MN|| + py (1/N))
such that

1FN @XMV har))? > yMN ||he||* Vhar € X

If we denote the Lagrange multiplier corresponding to M~ by uM¥ | one can show,
as in the proofs of Lemmas 3.2 and 3.3 (note that z.(u«) = . and use (3.37)) that
for sufficiently large M, N there exists ¢ independent of M, N such that

e — ™| < e(px (1/M) + py (1/N)) .
These preliminaries show that we can choose M, N such that

MN MN
ac (1’ Yo FHST

TN ) VM >M, N>N.
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If we apply Theorem 2.2 to 2" we obtain the existence of e~ such that the Gauss—
Newton method for the discretized problem with arbitrary starting point
z}'N € Br(0) N Boun (M) converges to zMV:

MN|| < _f‘ﬂ“mMN_ MN|| 4 _w“ — gMN|2
= yMN 4  MN TR 2(YMN 4 yMN)

< g™ — MV

”mk+1 -z

Moreover, the proof of Theorem 2.2 shows that eMN — ,.

The uniqueness of the solution ¥ follows from the fact that the Gauss-Newton
method with arbitrary starting point o € B.(z.) converges towards zMV,

Theorem 3.4 yields the error estimate

(3.38) 2 — oMN)] < 26 (Px (%) +py (%)) ,

since (3.17) holds for all k. a

4. Examples. In this section we will demonstrate how the analysis of the pre-
vious sections can be applied to a parameter identification problem. Although we are
considering the one-dimensional problem, it should be mentioned that our analysis
can be extended to the multidimensional case. The parameter identification problem
for the two-point boundary value problem can be stated as follows.

For a given observation z € L2(0,1) or H3(0,1) find ¢ € H!(0,1) with ||g||z» < R
and ¢(z) > v > 0 almost everywhere on (0, 1), such that

u(q) = z.
Here u(g) € H(0,1) is defined to be the weak solution of the state equation
—(qv) =f in(0,1), u(0)=u(l)=0
with f € L?(0,1), i.e., u(q) is defined through
(4.1) (qu',v') = {f,v) Yve H}0,1).

(For the rest of the section we will drop the notation of the space (0,1) and we will
always use the notation (-,) for the L2-scalar product.) It is well known that (4.1)
always possesses a solution u(gq) € Hj and since ¢ € H!, f € L? one can even show
that u(q) € H} N H? with

(4.2) (@)l < el fllzz

where ¢ is a constant depending on v and R (see, e.g., [5, p. 223]). In what follows,
we will denote by u(g) the solution of (4.1).

In the following we use the output least squares formulation to solve the parameter
identification problem; i.e., we determine ¢ such that u(q) is close to z in the norm of
the observation space Z, and we use Z = L2(0,1) or H}(0,1). It is well known that
this problem may be ill posed in the sense that small perturbations in the observation
z may lead to large errors in the solution ¢. In order to get a stable problem for
which it is possible to estimate the error between the computed solution of the output
least squares problem with perturbed data z and the true, but unknown solution
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corresponding to the unperturbed data, one has to modify the problem. A possible
approach to removing this difficulty is the Tikhonov regularization. Here one adds a
regularization term to the objective, so that we have to solve

ws) win[lulg) — 213 + el
) st. |lgllgr £ R, q(z) >~ a.e. on (0,1).

Another strongly related regularization technique might consist of reducing the size
of R. The Tikhonov regularization for nonlinear problems is studied by many authors
(see, e.g., [5], [7], (8], [15], and [20]). In the following we assume that g. is a solution
of (4.3), which satisfies g.(x) > « almost everywhere on (0,1). Since ||-||z: dominates
the infinity norm and since we are concerned with a local analysis, we may drop the
pointwise constraint on ¢. In the sequel it will always implicitly be assumed that the
considered parameter functions q (, g1, g2, - . .) satisfy this constraint. In this case (4.3)
fits into our framework if we set

X=H', Y=2ZxH" (endowed with the product topology)

and

u(q) — 2 )

F(q) = .

(Q) < \/Eq

(In this section we follow the conventional notation in parameter identification and
denote the sought variable by g, whereas = € (0, 1) denotes the space variable!) It can

be shown that F' is infinitely often Fréchet differentiable. The first Fréchet derivative
is given by

F'(g)h = ( \/%h )

where 1 = uq4(g)(h) is the solution of

(4.4) (qgn', vy = —(hu',v") Vv € H}.

The variational equation

(4.5) (@€', v') = —(hmp,v') — (hamy,v') Vv € Hg,

where 7; is the solution of (4.4) with h; instead of h, characterizes the second Fréchet
derivative of F', which is given as

(@)t = (§) -

From the structure of F’(g) it can be seen that for arbitrary ¢ and h
IIF"(@)Rl|* > al|h||?.

This inequality shows that the Tikhonov regularization shifts the spectrum of the first
Fréchet derivative of F'. On the other hand, the regularization causes an increase of
the residual ||u(q) — z|| and therefore an increase of the weight of the second-order
term (F”(q)(h,h),F(q)) in the Hessian of ||F(g)||?. In [8], Colonius and Kunisch
show that for small a the effect of shifting the spectrum is stronger than the increase
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of the residual. They show that if the residual of the unregularized problem (a = 0)
is sufficiently small there exist parameters « such that the inequality (2.30) holds
(with ., = 0). Although this only guarantees the validity of the conditions for
convergence of the Gauss—Newton method and for its mesh independence in the case
where regularization is only performed by using Tikhonov regularization, we also
obtained extremely good results in the cases where the problem is regularized by the
norm constraint.

For the numerical solution of (4.3) we have to discretize the problem. We choose
piecewise linear splines. Let oM ,1/;}" be the hat functions with oM (i/M) = 1,
YN (i/N) =1, and oM () = 0 for = ¢ (ig, 51, and ¥ (z) = 0 for = ¢ (42, 342,

We set X :=span{pd}!,..., oM}, Vy :=span{y)d,...,¥N_,}, and Yn := Vy x
X.

The discretized solution of the state equation is given as the uniquely determined
element u" = uV(q), which satisfies

’

(4.6) (qu¥ ,vN,) = (f,o") VoM € Vy.

Now we choose the discretization of F' as follows:

po =" ).

where 2" is a discretization of z, for example, the spline interpolant.

From (4.6) it can be seen that although in the computations, F has to be
evaluated only at points ¢ = ¢™ € Xy, the functions are defined on the whole
infinite-dimensional space X. The same is true for the Fréchet derivative and its
adjoint, since they are defined through variational equalities similar to (4.6).

The Fréchet derivative of uV(q), n™ := ulY (q)(h), is given as the unique solution

N

of
4.7) (@™ 0Ny = ~(ha' 0Ny N € Vy.

The second Fréchet derivative is given analogously to (4.5). This especially proves
the validity of (A1) and (A3).

In the following we will denote by u(q) the solution of (4.1) and by u™V(q) its
discretization, i.e., the solution of (4.6), for a given parameter function q. And we
will use a similar notation for the Fréchet derivatives.

We will now verify that F and its discretization satisfy the assumptions (A2) and
(A4). In the following we will use ¢ as a generic constant to reduce the notational
complexity.

Since u(q1) — u(g2) satisfies the variational equation

(q1(u(q1) — u(gq2)),v') = ((g2 — q1)u(g2)’,v") Vv € Hy
we obtain with (4.2) and
(4.8) l[vllLee < eflvl|an
that

(4.9)  u(gr) — ulg2)lla < cll(ar — g2)ulg2)'llL2 < cllfllrzllar — gollar -
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From the error analysis of finite element methods we get (see, e.g., [4, pp. 152, 217])

(410) lua) ~ w¥ @Il < llu@ll gy < cllfllzagy

Using the Aubin—Nitsche trick (see, e.g., [4, p. 229]), this estimate can be improved
for the L?-norm to

llu(g) — u™(g)l]= < %

The Fréchet derivatives ug(g) and u} (g) are defined through the same kind of elliptic
differential equation. Therefore, we can apply a similar analysis to derive continuity
results for the derivatives. If we use the corresponding estimates to (4.2), (4.9), and
inequality (4.8), we obtain

|luq(g1)(R) — uq(g2)(R)| A1
< c(llgr — g2l |lug(@2) (M)l a2 + |IB]] 2 lu(qr) — w(g2)l|ar)
< dIfllzallar — gallm [|A]| a2

Let ¢ € H} denote the solution of

(a¢',v") = (hu' W) Vv € H}

and let 7, 7"V be the solutions of (4.4) and (4.7), respectively. Then the error between
the discretized and infinite-dimensional Fréchet derivative can be estimated through

Il =1l < Ml = Cllars + 116 = 0™
1
< cllhllan llu(e) — u¥ (@)l + bl llw” (@llm

1
< I fll2 b a N

The above techniques can obviously be applied to the second and even higher Fréchet
derivatives. The calculations above show that F satisfies the assumptions (A2) and
(A4) for Z = Hg, or Z = L? with py (1/N) = cy /N, provided that ||z—2"||gz < ¢/N,
or ||z — 2zN||z2 < ¢/N.

Now, we will investigate the computation of the adjoint of F’. From the structure
of F' it is obvious that it is sufficient to study the calculation of (u4(g))*. The adjoint
of u,(q) applied to g € L? can be computed in two steps:

(1) Solve the adjoint equation for given ¢ and g:

(4.11) (qu',v") = (9,v)z Vv € Hj.
(2) Move from the L? to the H! topology
(4.12) P, @) + (0, ¢') = —(u(@)w',p) Vpe H.

(In our example, the adjoint equation is just the state equation, since the differ-
ential operator D,q(D,-) is formally self-adjoint.) If we solve the two equations, we
obtain p = (u4(q))*(g), which can be seen if we set v = uq(¢)(y) in (4.11):

(9,u4(q)(¥)) z = (qu’, (ug(g)(¥))")
= (v, q (uq(q)(¥))")
= —(pu(q),w') = (p, ) m
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(for the third equality we used the definition of the Fréchet derivative; see (4.4) with v

replaced by w). The variational equation (4.12) is the weak formulation of the elliptic
problem

—p" +p=—-u(g)w’ in (0,1)
with homogeneous Neumann boundary conditions. Equation (4.12) yields
(0, ¢) = (p,p) + (u(@w', ) Ve g,

which shows that p” exists and equals p + u(g)’'w’. In particular, we obtain p” € L?
and

lp"llz2 < Ipllzz + cllu(@)|l 2 lwllge -
The Lax-Milgram theorem and (4.8) yield
llpllzz < llpllar < llu(e)w'llzz < (@) llLe llwlla < cllu(@)l gz llwlla: -

Hence we obtain that the weak solution of the Neumann problem obeys the regularity
property p € H? and

(4.13) Pl < ellu(@)llaz [|wllar < el fllL2lg]|z2 -

This bound together with the techniques already applied to prove (A2) and (A4) can

now be used to derive an estimate of type (A5). If we discretize the Neumann problem
(4.12) and solve

(4.14) @™, 0M) + M, M) = (ul@)'v, M) VoM € X,

the error between the solutions of (4.12) and (4.14) can be estimated by
. 1

(4.15) llp = 3™ ||as < cllfllz=llgllz= 37

(see (4.13) and [4, pp. 152, 217]). The adjoint of the discretized Fréchet derivative
u' (q) is given through:
(1) Solve the adjoint equation

(4.16) (qu/,vN')z = (g,vN) VN € Vy.
(2) Move from the L? to the H* topology
! / / /
(4.17) @™, M) + M, M) = WV (@™, M) VoM € Xur.

At the end we obtain p™ = (4 (g))*(g). The error between the infinite-dimensional
and discretized adjoints can be estimated by (see (4.2), (4.8), (4.10), and (4.15))

Il — 2™l < llp— Y ||as + 116 — p™ ||

1 li li
< CHf“L?HgHL?M + sup (uN(q)w" —u(q)w,p)

¥ H1=1

1 :
<difllzzllgllze 37+ sup (™ —w',u(g)'p)

ellg1=1
! !
+(u" () — u(g),w™ )
< cllfllzalgllze -
/
ellw™ = wllm (@)l + elju (a) = (@)l 1™ [

< cllfllzalgllzs 37 + ellFllzellgllze s -
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TABLE 1
Number of iterations
qo = 0'2» z = u(‘]*)
Example 1
TOL =108 TOL = 10~°

M 6 12 | 24 | 48 96 | 192 6 12 | 24 | 48 96 | 192
a N 12 24 | 48 | 96 | 192 | 384 || 12 24 | 48 | 96 | 192 | 384
0 7 7 7 7 7 7 7 7 7 7 7 7
108 7 7 7 7 7 7 7 7 7 7 7 7
1076 | 7 T oT| 7 7 7 7 Ty 7|7 7 7
10—4 8 8 8 8 8 8 7 7 7 7 7 7
10~2 | 10 10 | 10 | 10 10 10 8 8 8 8 8 8

Example 2
0 11 [ 15* 8 6 7 7 1| 10 | 15* 8 7 7 7
108 8 7 7 7 7 7 7 7 7 7 7 7
10-6 7 7 7 7 7 7 6 6 6 6 6 6
1074 9 9| 9| 9 9 9 7 T 7] 7 7 7
10—2 9 9 9 9 9 9 7 7 7 7 7 7

Example 3
0 8 8 8 8 8 8 7 7 7 7 7 7
10-8 8 8 8 8 8 8 7 7 7 7 7 7
106 8 8 8 8 8 8 7 7 7 7 7 7
10—4 8 8 8 8 8 8 7 7 7 7 7 7
1072 | 10 10 | 10 | 10 10 10 8 8 8 8 8 8

The last inequality proves that (A7) is also valid with px(1/M) = cx /M.

Since (A6) is a standard result in finite element error analysis, (A1)-(A7) are
valid for this example.

We ran several test examples from the set of test problems in [21]. The test
functions for the results we present below are given in the following examples.

Ezxample 1.

u(ge) =sin(nz), g =5 +cos(z), |lgullF =5 +sin(1).

Ezxample 2.
—9z% + 6z, z €[0,3],
u(gy) = 1, me(%’gl,
-9z2+12z -3, =z e(3,1].
1 . 3 2 72
¢s = 5 +sin(rz), llgl|F: = ittt
Ezxample 3.

u(g.) =sin(rz), ¢ =14z, |lg.llin=7%.

The Gauss—Newton method is implemented using the Hebden—Reinsch method
for the computation of ufY as the inner iteration. In all test runs we chose z to
be the spline interpolant of z. The iterations were terminated if t;’c"f N < TOL or
k > 15. For all test runs we took go = 0.2 and incorporated either the Tikhonov
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TABLE 2

Number of iterations

=02, z=u(g)

TOL = 10"8
Example 1
M 6 12 24 48 96 192
RN 12 24 48 96 192 384

1.3 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
1.0 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
0.8 6(7) 6(7) 6(7) 6(7) 6(7) 6(7)
Example 2
2.5 6(6) 7(7) 7(7) 7(7) 7(7) 7(7)
2.0 6(6) 6(6) 6(6) 6(6) 6(6) 6(6)
1.5 6(6) 6(6) 6(6) 6(6) 6(6) 6(6)
1.2 7(7) 6(6) 6(6) 6(6) 6(6) 6(6)
Example 3
1.8 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
1.3 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
1.0 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
0.8 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
TOL = 1078

Example 1

1.3 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
1.0 | 10(10) | 10(10) | 10(10) | 10(10) | 10(10) | 10(10)
0.8 8(9) | 8(9) 8(9) 8(9) 8(9) 8(9)

Example 2

2.5 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
2.0 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
1.5 8(8) 8(8) 8(8) 8(8) 8(8) 7(7)
1.2 8(8) 8(8) 8(8) 8(8) 7(7) 7(7)
Example 3
1.8 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)

1.3 | 10(10) | 10(10) | 10(10) | 10(10) | 10(10) | 10(10)
1.0 | 10(10) | 10(10) | 10(10) | 10(10) | 10(10) | 10(10)
0.8 9(9) 9(9) 9(9) 9(9) 9(9) 9(9)

regularization or the regularization by norm constraint. All computations were done
on a SUN Sparcstationl in double precision FORTRAN.

Tables 1 and 2 show the results in case of unperturbed observations for Tikhonov
regularization and regularization by constraints, respectively. For small regulariza-
tion parameter o the discretized problems have almost zero residual at the solution
and the Gauss-Newton method converges almost quadratically. Therefore, there is
no difference in the number of iterations for small o, except for Example 2, where
regularization is needed to observe mesh independence.

In Table 2 the first numbers of each column show the number of iterations needed
for the termination criteria ||gM"N — P(gMN — Fi(gMN)*Fn(gM™N))|| < TOL; the
numbers in parentheses show the number of iterations needed to satisfy the termina-
tion criteria ||Fi (gMN)*Fn(gMN) + pMNgMN|| < TOL.
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TABLE 3

Number of Iterations

g0 =0.2, 2z =u(g«)+ 0.05sin(107rz — 0.57)

Example 1
TOL = 108 TOL = 10~°
M 6| 12| 24 ] 48] 96 | 192 6] 12 ] 24 ] 48[ 96 | 192
aN 12 24| 48| 96 | 192 | 384 || 12 | 24| 48| 96 | 192 | 384
0 15* 8 10| 15* [ 15* | 15* || 11 9 8 | 15* | 15* | 15*
106 100 10| 11 11 11 11 7 7 8 8 8 8
10—4 8 8 8 8 8 8 7 7 7 7 7 7
10—2 10 10| 10| 10| 10| 10 8 8 8 8 8 8
101 [ 15* | 15*% | 15* [ 15*% | 15*% | 15* {| 12 | 12| 12| 12| 12| 12
Example 2
0 12 [ 15* | 15 | 156 | 16* | 15* || 10 | 15~ 13 [ 15* | 15* | 15*
106 8| 10 | 15* | 15* 10 | 10 7 7| 15% | 15* 7 7
10—4 8 8 8 8 7 9 7 7 7 7 7 7
102 9 9 9 9 9 9 7 7 7 7 7 7
10—1 11 11 11 11 11 11 9 9 9 9 9 9
Example 3
0 i5* 9 10 ] 15 | 15 | 15" || 11 8 9 [ 15* | 15* | 15*
10—6 11 11 11 13 13 14 7 8 8 9 9 9
10—4 8 8 8 8 8 8 7 7 7 7 7 7
10—2 10| 10| 10| 10| 10| 10 8 8 8 8 8 8
101 | 15* | 15* | 15* | 15* | 15* | 15* || 13 | 13| 13| 13| 13| 13

The notation 15* in the tables means that the iteration was terminated because
the maximum number of iterations, 15, was exceeded.

In the norm constraint case, we obtain similar results, except for Example 2.
Here we recognize unstable behavior for R = 1.5,1.2 and TOL = 10~8. This might
be due to the fact that the Lagrange multipliers are computed approximately. If the
constraint is active, we stop the inner iteration for the computation of pM¥ if

| 1My (™)) g1 — R|/R < 1074,
Therefore, the projection is computed in the following way:

MN
. q 1—R
Pty = | 1la 1tV ¢ Il =R

R/|IE™N ] g otherwise,

<1074,

where &MV = gt — F{ (¢}'V)*Fn (g¢™).

Tables 3 and 4 show the results for perturbed observations. In the case of
Tikhonov regularization mesh independence can be observed only for sufficiently large
regularization parameter c.. This behavior is theoretically justified through the anal-
ysis presented in §§2 and 3. Our results indicate that k¥ < 1 for small but sufficiently
large a. If « is further increased, the residual and therefore the second-order part in
the Hessian, which is neglected in the Gauss—Newton method, increases. For regular-
ization parameters ¢ > 1 the method did not converge (a result that is not reported
in our tables). For Examples 1 and 3, @ = 0.1, the criteria k > 15 is satisfied before
the gradient reaches TOL, although the method converges.
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TABLE 4

Number of Iterations

g0 =0.2, 2z =u(g«)+ 0.5sin(10wrz — 0.57)

TOL = 106
Example 1
M 6 12 24 48 96 192
RN 12 24 48 96 192 384

1.3 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
1.0 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
0.8 6(6) 6(6) 6(6) 6(6) 6(6) 6(6)
Example 2
2.5 8(8) 7(7) 8(8) 8(8) 8(8) 8(8)
2.0 8(8) 7(7) 7(7) 7(7) 7(7) 7(7)
1.5 8(8) 8(8) 7(7) 7(7) 7(7) 7(7)
1.2 8(8) 7(7) 7(7) 7(7) 7(7) 7(7)
Example 3
1.8 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
1.3 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
1.0 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
0.8 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
TOL = 108

Example 1

1.3 9(9) 8(8) 9(9) 9(9) 9(9) 9(9)
1.0 9(9) 9(10) 9(10) 9(10) 9(10) 9(10)
0.8 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Example 2
255 | 11(11) | 9(9) [ 10(10) | 10(10) | 11(11) | 11(11)
2.0 11(11) | 10(10) | 10(10) 9(9) 9(9) 9(9)
1.5 11(11) | 10(10) | 10(10) | 10(10) 9(9) 9(9)
1.2 11(11) | 10(10) | 10(10) 9(9) 9(9) 9(9)
Example 3
1.8 9(9) 9(9) 9(9) 9(9) 9(9) 9(9)
1.3 10(10) | 10(10) | 10(10) | 10(10) | 10(10) | 10(10)
1.0 10(10) | 10(10) | 10(10) | 10(10) | 10(10) | 10(10)
0.8 9(9) 9(9) 9(9) 9(9) 9(9) 9(9)

In the case of regularization by restriction, we chose a stronger perturbation since
the given constraints force a strong regularization. For the perturbation 0.05 sin(10wz—
0.57) we obtained almost the same results as in Table 2. As in Table 2, the first
numbers of each column in Table 4 show the number of iterations needed for the ter-
mination criteria ||gMN — P(gMN — Fiy(¢MN)*Fn(gM"))|| < TOL; the numbers in
parentheses show the number of iterations needed to satisfy the termination criteria
|Fx (@™ )* Fn (@™) + N g™ || < TOL.
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A SUPERLINEARLY CONVERGENT POLYNOMIAL PRIMAL-DUAL
INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING*

YIN ZHANG! AND RICHARD A. TAPIA!

Abstract. The choices of the centering parameter and the step-length parameter are the fun-
damental issues in primal-dual interior-point algorithms for linear programming. Various choices
for these two parameters that lead to polynomial algorithms have been proposed. Recently, Zhang,
Tapia, and Dennis derived conditions for the choices of the two parameters that were sufficient for
superlinear or quadratic convergence. However, prior to this work it had not been shown that these
conditions for fast convergence are compatible with the choices that lead to polynomiality; none
of the existing polynomial primal-dual interior-point algorithms satisfy these fast convergence re-
quirements. This paper gives an affirmative answer to the question: Can a primal-dual algorithm
be both polynomial and superlinearly convergent for general problems? A “large step” algorithm
that possesses both polynomiality and, under the assumption of the convergence of the iteration
sequence, @Q-superlinear convergence, is constructed and analyzed. For nondegenerate problems, the
convergence is actually Q-quadratic.

Key words. linear programming, primal-dual interior-point algorithms, quadratic and super-
linear convergence, polynomiality

AMS(MOS) subject classifications. 90C05, 65K05

1. Introduction. We consider linear programs in the standard form:

foe . T
minimize c T
(1)

subject to Axr=b, x>0,

where ¢,z € R", b € R™, A € R™*"(m < n), and A is assumed to have full rank m.
The first-order optimality conditions for (1) can be written

Az - b
(2 ATx+y—c | =0, (z,9) >0,
XYe

where A and y are dual variables, X = diag(z), Y = diag(y), and e has all components
equal to one. To facilitate our presentation, we will eliminate the dual variable A from
the above system (although such an elimination may not be advisable from a practical
point of view). Let B € R("~™)*" be any matrix such that the columns of BT form

a basis for the null space of A. Premultiply the second equation by the nonsingular
matrix [AT BT]T. Notice that BAT =0, so

0= [ g](ATHy_C): < AATg;_A}(ByC—c) )
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Since AAT is nonsingular, ) is uniquely determined once y is known. Removing the
equation for A, we arrive at the following 2n X 2n nonlinear system with nonnegativity
constraints on the variables:

Arx—b
(3) F(:L‘, y) = By — Bc =0, (.’L‘,y) 2> 0.
XYe

By the feasibility set of problem (3) we mean:
Q= {((l',y) 1T,y € Rn,A‘T = baBy = Be, (‘Tay) > 0}

A feasible pair (z,y) € Q is said to be strictly feasible if it is positive. In this work
we tacitly assume that strictly feasible points exist.

It is easy to see that for (z,y) € Q, |F(z,y)|l1 = =7y, which can be shown to
be the duality gap for problem (1); we will use the duality gap as the merit function
for our algorithm, i.e., the criterion that tells us when one feasible point should be
preferred to another.

Mathematically speaking, the concepts of polynomiality and rate of convergence
are incompatible. Polynomiality is meaningful only for algorithms that terminate in
a finite number of steps, while rate of convergence is defined only for algorithms that
take an infinite number of steps to converge. When we say that an interior-point
algorithm is polynomial, we have in mind integral (or rational) data and finite termi-
nation. On the other hand, when we say the same algorithm is linearly convergent,
for example, we do so in the traditional numerical analysis sense. With this under-
standing, we can discuss both polynomiality and rate of convergence of an algorithm
at the same time.

It is clearly desirable to develop algorithms that possess both polynomiality and
fast asymptotic convergence, or, in other words, both good global behavior and
good local behavior. To our knowledge, the only prior work in this direction is Ya-
mashita [10]. Using the multiplicative penalty function of Iri and Imai [2], Yamashita
constructed a polynomial primal algorithm and demonstrated its quadratic conver-
gence under the following two assumptions: (i) the optimal objective value is known,
and (ii) the iteration sequence converges to a nondegenerate optimal vertex. The
first assumption is not realistic in general. The second assumption is very restrictive
because most practical problems are degenerate.

The objective of this work is to construct a primal-dual interior-point algorithm
for problem (1) that possesses both polynomiality and fast convergence under more
realistic and less restrictive assumptions. We construct such an algorithm and show
that it takes at most O(nL) iterations to reduce the duality gap to 2~L. Moreover,
we demonstrate that this algorithm gives quadratic convergence for nondegenerate
problems and gives Q-superlinear convergence for degenerate problems.

Subscripts will be used to distinguish values of quantities at a particular iteration
and superscripts will indicate components of vectors. We also use the notation

min(v) = min v and max(v) = max v
1<i<n 1<i<n
for a vector v € R™. The symbol || - || denotes the £, norm unless otherwise stated.
We will use the standard big-O notation in this paper; in particular, for a sequence
{vr} € R™ and a positive sequence {ax} C R, vy = O(oy) implies the existence of
positive constants 5 and ko such that ||vg]| < Boy for all k > ko.
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The paper is organized as follows. In §2, we describe a general interior-point
algorithmic framework for problem (1) based on the nonlinear system (3) and give
a brief survey of existing results for algorithms that fall into this framework. In §§3
and 4, we specify our procedures for determining the step length and for choosing the
centering parameter. We state our algorithm in §5. Global linear convergence (and
polynomiality) are established in §6. Quadratic convergence for nondegenerate prob-
lems is established in §7, and superlinear convergence for all problems is established
in §8. Concluding remarks are given in §9.

2. General algorithm. We now present a general framework for the primal-
dual interior-point algorithms.

ALGORITHM 1 (General Algorithm). Given a strictly feasible pair (zg,yo). For
k=0,1,2,..., do:
Step 1. Compute the Newton step

(A7) =1 rul ™ oo

and the centering step

Az 1 -1( 0
(A58 ) = Setmlr e ((0).

Step 2. Choose o € (0,1) and form the combined step

Az \ _ [ Azl Azl
(Am>_<Aﬁ)+”(Aﬁ '

Step 3. Choose 7 € (0,1) and set ay = &, where
-1

min(X; Az, Y, Ayr)”

Step 4. Compute the new iterate

Tr41 _ Tk Az
(yk+1 ) (yk )+ak( Ay, )

We will now briefly comment on this general algorithmic framework. From a
direct calculation, we have

G =

A 0
4) F(z,y)=| 0 B
Y X

Since we assumed that A has full rank, it is a straightforward matter to verify that
F'(z,y) is nonsingular for any positive pair (z,y). In addition, relation (8) below
guarantees that & > 0. Hence the iterates produced by Algorithm 1 are well de-
fined. Notice that the restriction ay < & guarantees that the iterates remain strictly
feasible. Moreover, we have the following useful relationships:

(5) YkA:l)j’cV + XkAyi,V = —XYre,

(6) YiAz§ + XpAys = LT yre,

(7 YAz + XAyp = —XipYie + o Lalyge,
(8) AzT Ayy =0,

9) Tk 1Ykt = T yk(l — (1 — o) o).
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We have stated Algorithm 1 in this form for notational convenience. It is not
difficult to verify that identical iterates {(z,yx)} can be generated using (2) instead
of (3). For this case, there is no need to introduce the matrix B (see [11], for example).

From (9) we see that Algorithm 1 is a descent algorithm for the duality gap
|F(z,y)|l1 = z¥y. Moreover, the duality gap is reduced at iteration k by a factor
1 — ox(1l — ok) < 1; thus, linear convergence will be obtained if {ax} is bounded
away from zero and if {0y} is bounded away from one. In addition, @Q-superlinear
convergence will be obtained if ai(1 — o) — 1. Observe that we have direct control
over the choice of o;. However, we do not have the freedom of choosing oy uniformly
bounded away from zero, since we must enforce the requirement ay < & and G is
not directly under our control.

A number of existing primal-dual algorithms fit into the above general algorithmic
framework with different choices for the parameters o and ai. For example, in the
primal-dual algorithm of Kojima, Mizuno, and Yoshise [3], o is a constant and ay is
a particular function of 0. They showed that their algorithm requires at most O(nL)
iterations to reduce the duality gap by a factor of 27L. Other examples include
the Todd and Ye [9] primal-dual potential-reduction algorithm and the Monteiro and
Adler [7] path-following primal-dual algorithm. Todd and Ye’s algorithm uses the
choice

__Vn

T n+v

where v is a constant. In Monteiro and Adler’s algorithm,

5

vn'

where 6 is a constant (Monteiro and Adler actually used § = 0.35 in their analysis).
In both algorithms, a rather short step length oy is required. Furthermore, both of
these algorithms require at most O(/nL) iterations to reduce the duality gap to 27 L.
This is the best complexity bound obtained for linear programming so far. Observe

that all three algorithms use constant 0. In each of the three cases, if o denotes the
constant value of o, then Q-superlinear convergence is possible (see (9)) only if

ap — 1
k 1-o'

Ok

op=1-—

which seems extremely unlikely.
In analyzing the convergence of Algorithm 1, a central quantity is

T
T yk/n
(10) T = min(X;Yxe)

Since %x{yk is the average value of the components of XYye, it is clear that n, > 1.
In all the above-mentioned polynomial algorithms, it is essential that the sequence
{nx} be bounded.

Recently, Zhang, Tapia, and Dennis [11] showed that under appropriate assump-
tions, Algorithm 1 has fast convergence. The following two theorems summarize their
main results. By a nondegenerate vertex of (1), we mean a feasible point of (1) that
has exactly m positive components and the corresponding m columns of A are linearly
independent.

THEOREM 2.1 (see [11]). Let (z«,y.) be a solution of problem (3) and let {(xk,yx)}
be generated by Algorithm 1. Assume that
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(i) strict complementarity holds at (z«,yx);
(ii) z« is a nondegenerate vertez of (1);
(iii) ox = O(z¥yk) and 7 = 1 — O(zFyx).
If {(zk,yr)} converges to (z.,y«), then the convergence is Q-quadratic.

THEOREM 2.2 (see [11]). Let (z«,y«) be a solution of problem (3) and {(zk,yr)}
be generated by Algorithm 1. Assume that

(i) strict complementarity holds at (z.,yx);
(ii) the sequence {nk} is bounded;
(iii) ok — 0 and 7, — 1.
If {(zk,yk)} converges to (z,y«), then the duality gap sequence {zyx} converges to
zero Q-superlinearly.
With some additional work, we can actually demonstrate that the sequence
{XxYre} componentwise converges to zero Q-superlinearly.

Several assumptions have been made in the above theorems. Our numerical ex-
periments have led us to believe that the strict complementarity assumption is not
restrictive. On the other hand, the nondegeneracy assumption is quite restrictive since
degeneracy exists in most real-world problems. For degenerate solutions, the best con-
vergence that has been established is Q-superlinear, as stated in Theorem 2.2.

Although many of the existing polynomial primal-dual interior-point algorithms
satisfy assumption (ii) of Theorem 2.2, none of them satisfy assumption (iii), i.e.,
or — 0 and 7, — 1. In fact, in several polynomial algorithms, for example, Todd and
Ye’s and Monteiro and Adler’s, the values of o are close to one. From Zhang, Tapia,
and Dennis [11] it follows that these algorithms will most likely have slow Q-linear
convergence. Hence while their global behavior may be excellent, their local behavior
can be improved.

Recently, in a number of performance-oriented primal-dual algorithms, for ex-
ample, those implemented by Choi, Monma, and Shanno [1]; McShane, Monma, and
Shanno [6]; and Lustig, Marsten, and Shanno [5], very small values of o}, were used and
long steps were also taken. Impressive numerical results were obtained from these im-
plementations, although polynomial complexity bounds are not known. Hence while
their local behavior may be good, their global behavior is questionable from a theo-
retical standpoint.

In this work, we develop a primal-dual interior-point polynomial algorithm that
gives quadratic convergence for nondegenerate solutions and gives superlinear con-
vergence for degenerate solutions. Hence, from a mathematical point of view, both
the global and the local behavior will be good. This new algorithm is still of a the-
oretical nature. However, the fact that polynomiality and quadratic or superlinear
convergence can be achieved simultaneously by one algorithm provides motivation for
practical implementations of the conditions o4 = O(zfyx) and 7, = 1 — O(z¥ yi) for
fast convergence.

3. Determining the step length. In the previous section we mentioned that
both polynomiality and superlinear convergence essentially require that the sequence
{nx} be bounded. The most straightforward way of accomplishing this objective is to
explicitly enforce a uniform bound on the quantity

"L'ki.;.lykﬂ/n
min(Xk+1Yk+1e)

Me+1 =
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during the process of choosing the step length ag; i.e., ask that

(11) 1 _ mln(fk+1Yk+1€) >
Mk+1 Tl Ykt1/n
for some v > 0.
Following the notation used in [3], let
zx(a) = Tf + aAzg, yr(@) = yx + alAyy,
(12) fr(@) = Xp(a)Yi(a)e,  fpro(a) = pzr(a)Tye(e),

fii(e) = min(fr(a)),  fi**(a) = max(fr(a)).

Note that the above quantities actually also depend on the centering parameter o
because both Azxy, and Ay are functions of o (see Step 3 of Algorithm 1). However,
since we will always choose o before we determine ¢, it will suffice to consider these
quantities only as functions of « for a fixed value of o.

Whenever & = 0, we will drop the argument from the above functions. For
example, = = zx(0), f2¥® = f2¥¢(0), and so on. From the formula for the iterates
(Step 4 of Algorithm 1), we also have zx41 = zx(ak), fiY5 = f2¥°(ax), and so on.

Using the above notation, we choose the form of condition (11) as requiring oy
to satisfy

min a
(13) f’;ve ((a)) >,  a>0,
k
where
(14) e € [v, f/F2°), 0<v < fE/f§° <1, and v, <L

In the case 1/mg > v, we allow 1/ to decrease monotonically as long as 1/n; > 7.
In the following development, we use some of the techniques developed by Kojima,
Mizuno, and Yoshise [3].
Using (12), (7), (8), and (9), and letting

sk = diag(Azy)Ayg,

we have

(15) fu(@) = fi = (fi — onf)a + sia
and

(16) fi(@) = fi*[1 = (1 — ox)e].

Hence fi(a) is a quadratic (so ff"(a) and f{**(a) are piecewise quadratic) and
f&ve(a) is linear. Clearly, if f2v¢(&x) = 0, then (zx(dx), yx(Gx)) will solve problem (3).
In the sequel, we always assume f2V¢(Gx) > 0.

For notational convenience, we introduce the piecewise quadratic function

def omin ave
(17) h(a) F f" (@) — 1SR (a).
It follows that condition (13) is equivalent to

(18) h(a) >0, a>0.
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In determining oy we use the following quantity:
(19) ay 4 min{a > 0: h(e) = 0}.

Recall that Gy is defined in Step 3 of the General Algorithm (see §2).

LEMMA 3.1. The quantity o is well defined and o) € (0,d4x). Moreover, condi-
tion (13) is satisfied for all a € (0,a]].

Proof. Let us examine the function h(a). It follows from the definitions of -y, and
&y, that

B(O0) = f® — i 2 0

and

h(bx) = fi™ (&) — Yefo'*(6w) = —ufi'*(ax) < 0.

Hence it follows from the continuity of h(c) that h(a) has a root in [0,&g). When
h(0) > 0, h(a) obviously has a root in (0, &x). When h(0) = 0, it can be verified that
the right-derivative of h(a) at o =0 is

W(0F) = —(fi™ — o f2°) + (1 —ok) f&™
=[(1 = m)or + (v — F°/ FRVONFRY
= (1 —)oefi™ > 0.

Therefore, h(a) > 0 for sufficiently small but positive a. Consequently, o > 0.
Since k(&) < 0, we have af < d. It is evident that h(a) > 0 for o € (0,07],

i.e., condition (13) is satisfied. This completes the proof. O
An equivalent expression for o] is
(20) o] =min{a>0: fi(a) — % f2(a) =0, i=1,2,...,n}.

The computation of a) involves calculating the roots of at most n quadratics and
therefore requires O(n) operations.

In addition to a lower bound for {fi(ax)/f2®(ak)} (i-e., condition (13)), we also
impose an upper bound on these quantities; namely, we require oy to satisfy

max(a)
(21) f’%ve @ <Tx, a>0,

where
(22) Ty € [fR®/feve, 1), 1< fre/fe*<I'<n, and I I\ >1.

Since fi(a)/f2*(a) < n for all i, condition (21) will be redundant if I'y = n. We
introduce condition (21) to improve our complexity bound. We do not feel that
enforcing this condition will have much practical significance.

Following the treatment of condition (13), we introduce the piecewise quadratic
function

(23) H(@) € [ (0) ~ Tk f{(a).
It follows that condition (21) is equivalent to

(24) H(a) <0, a>0.
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We will also use the following quantity in determining ay:
(25) ok o min{a > 0: H(a) = 0}.

Analogous to Lemma 3.1 for condition (13), we have the following lemma for
condition (21).

LEMMA 3.2. The quantity ok is well defined and ok € (0,6x). Moreover, condi-
tion (21) is satisfied by all o € (0,0L).

Proof. The proof is similar to that for Lemma 3.1, so we omit it. 0
Analogous to the expression (20) for condition (13), we have for condition (21)
(26) af =min{a > 0: fi(a) —Txf2(a) =0, i=1,2,...,n}.

For the sake of simplicity, we will enforce the conditions
27) Y < % and Ty > 2.

The specific values in (27) do not constitute a loss of generality because they will only
affect expressions for some constants in our analysis. These values of v; and I'y will
result in much simplified expressions for those constants.

From (5), we see that for fixed o) a larger step length aj will produce a larger
reduction in the duality gap. So it is always desirable to take the largest step length
possible as long as other requirements are satisfied. Our procedure for determining
the step length oy is summarized as follows.

PROCEDURE 1 (step-length criterion). Given positive constants v and I" such
that

(28) 0 <y <min(}, f5"™/£3™),  max(2, f5™*/f§°) <T'<n:
Step 1. Choose v € ['y,min(%, ,‘é“i“/f,‘;“'e)] and Ty € [max(2, f**/fave),I.

Step 2. Compute o) = min{a > 0: fi(a) — %fi(a) =0, i = 1,2,...,n}

(i-e., (19)).
Step 3. Compute of = min{a > 0: fi(a) — Txf2¥(a) =0, i = 1,2,...,n}

(i.e., (25)).

Step 4. Let o = min(a},al).

We note that the above procedure for choosing the step length bears a certain
similarity to a procedure recently proposed by Mizuno, Todd, and Ye [8].

Now we prove two technical lemmas that will be needed in the later development.

LEMMA 3.3. For a € [0,1],

fE™e) 2 7 — (ff™ — ok ff¥®) e + min(sg)a?,
P (a) < f = (™ = ok fi™)a + max(sk)a.

Proof. We first look at the linear part of fi(a). Since for all i,

fi-Gi-oggma={ B 220

kalgvea a = ]-a
it is evident that for a € [0,1],

Fn — (FRin — o fRv)o < f = (f — o) < F% — (FP — ou fE)en
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For the quadratic terms, we clearly have
: 2 02 2
min(sg)a® < spa® < max(sg)a®.

By adding the quadratic terms to their corresponding linear parts, we thus finish the
proof. O

It is worth noting that sy, = 0 by (8). Hence, min(sx) < 0 and max(sx) > 0.
In the sequel, we will adopt the convention that % = +-o00.

LEMMA 3.4. Let oy, be given by Procedure 1. Then

(29) op > min (1, A= okfE" Lk = Dorfi*e
= ] _ mil’l(Sk) ) max(sk) .
Moreover,
. Ok lgve
30 ap 2 min | 1, .
0 te ( 2uskum)

Proof. From (19), ] is a positive root of fi(a) — vk f2¥®(c) for some index i.
Noticing that for a € [0,1] ff¥°(«a) is positive, and using Lemma 3.3, for a € [0, 1],
~k > 0, and for all indices i, we have

fil@) = mfRre(@) > fi™ — (fi™™ — or fi¥*) e + min(sk)o® — e f(e)
(31) = (f0 — e f2°) (1 — a) + (1 — 7)ok f2°0 + min(s;)a?

ave

> (1 =)ok f2¥a + min(sy)o?.

If min(sg) = 0, then h(a) > 0 for o € (0,1]. Therefore, we will have ) > 1. Now

assume min(sg) < 0. Then the quadratic on the right-hand side of the last inequality
in (31) has a unique positive root

_ ave
Oy = (1 ’Yl::)akfk '
— min(sg)

Hence, if a) < 1, from (31) we must have o] > ay. This proves that

1— ave
(32) a] > min (1, %) .

Similarly, we can prove that

(33) ak > min <1, W) .

Combining (32) and (33), we obtain (29).
Finally, (30) follows from the facts that ||sk|lcc = max{— min(s,), max(s;)} and

1<1—m<1<T-1

This completes the proof. O
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4. Choosing the centering parameter. We will use the following notation:
e =X Az, @ =Y 'Ayy,
(34) oY = XAzl @ =Y Ay,
R =X1028,  qf =Y AyE,
and
(35) we = max ((or)*(a')'l, 1o )* (@)1, | ()" (a1, | (PR ) ()
LEMMA 4.1. If flin/fave > v then
wi < n/'72.

Proof. Multiply both sides of (6) by (XxYi)~% and consider the square of the
£2-norm of both sides. Using (8) and (34), we obtain
I(XkYe)2pE 113 + 1(XiYi) 2 af (13 = (T k) ?eT (XkYi) e;

or equivalently after dividing both sides by %w{yk,

~1 1
(36) 1T 22113 + 1T * € I3 = €7 Te,

where Ty = 1z7yp(XixYx)™! is a diagonal matrix. Our assumption implies that
the maximum diagonal element of {T}} is bounded above by 1/ and the minimum
diagonal element of {7}, '} is bounded below by «. Therefore, from (36) we have

I(pF)!I < vn/y and |(¢f)| < Vn/r.

Using the same technique, we can prove that

IR )| < V/n/y < vn/y and |(gf)'| < V/n/y < Vn/y.

From the definition of wy and the above estimates, Lemma 4.1 follows immed-
iately. O
We now state our procedure for choosing the centering parameter oy.

PROCEDURE 2 (centering parameter criterion). Given
2
o Yo
(37) ce@), A=%7 217

Step 1. Compute wy from (35).

Step 2. Compute p} = min(p*, o'/wk).
Step 3. Choose pi € [(p' + p¥)/2, Y.
Step 4. Let o), = prwy.

Since o = pxwr and pi € [0', p¥], we have o € [p'w, plwk]. In addition, we
require that o, be greater than the midpoint of the interval. This requirement is
needed in our proof of superlinear convergence. It is evident that o} is bounded away
from one because o}, < o < 1. The reasons why the centering parameter is so chosen
will hopefully become clear as our discussion proceeds.
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5. Algorithm description. Now we formally state our primal-dual interior-
point algorithm.

ALGORITHM 2. Suppose we are given a strictly feasible pair (zg,y0). Choose
positive constants v and I" such that (see (28))

0 <y <min(1/2, f§™/f5*°),  max(2, ff*/f5") <T <n,

and choose o € (0,1). Set p' = v%0/2n and p* > v25/n (see (37)). For k=0,1,2,...,
do:
Step 1. Compute the Newton step and the centering step from Algorithm 1.
Step 2. Choose oy by Procedure 2 and form (Azy, Ayg) from Algorithm 1.
Step 3. Choose oy by Procedure 1.
Step 4. Form (Zg+1,Yk+1) from Algorithm 1.

The procedure for determining the step length oy can be implemented in an ef-
fective manner. Its cost is somewhat higher than the ratio test that is used in most
of the practical implementations. On the other hand, our procedure for choosing the
centering parameter o requires extra work when compared to the more standard
method. The standard practice is to choose the centering parameter prior to comput-
ing the steps; then we only need to solve once for the combined step (Newton step
plus the centering parameter times the centering step). Since Algorithm 2 requires
the information obtained from both the Newton step and the centering step to choose

the centering parameter, it requires us to solve for the two steps separately and then
combine them.

6. Global linear convergence. The global linear convergence of Algorithm 2
is given in the following theorem.

THEOREM 6.1 (global linear convergence). Let {(zk,yx)} be generated by Algo-
rithm 2. Then

ol ykr1 < (1—6/n)zi i
for some 6 satisfying

ol —o)y*

>
62 16T

~ Proof. We need to estimate ||s |l in (30). Let the index j be such that ||si|lc =
|s1]. Observe that

lIsklloo = |ALAYL| = |(eipd) (vial)| = |(zhvi) (Phal)|
< max(XyYxe)||diag(pr) gkl oo
= [P diag(pl + oxpg) (gl + orpg)lloo
< fPowi(1 + o)
< A4 wy.

Hence it follows from (21), (30), and Procedure 2 that

ave
(38) oy, > min (1, g’}?ax) > min (1, Pk
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Substituting p' (see (37)) into the above expression, we obtain

ov?

16T'n’

ag >

The proof is completed by substituting the above inequality into (9) and noticing that
o, < 0. 0

The following corollary follows immediately from Theorem 6.1. By a standard
argument, it leads to polynomiality assuming integral data.

COROLLARY 6.2. Assume that a strictly feasible pair (zo,yo), constants v and
', both independent of n, are chosen such that (28) is satisfied and zyo < 2¥%,
where L > 0 and v is a positive constant independent of n. Then in at most O(nL)
iterations, Algorithm 2 will produce (z,yx) such that z¥y, < 27L.

Proof. From Theorem 6.1,

m{yk <(1- 6/n)kwg1y0 <(1- 6/n)k2”L.

Let (1 — §/n)k2¥L = 2=L and take the natural logarithm of both sides. We have
k=-(nZ)(1+v)L/In(1 — §/n). Observe that for = € (0,1),

In(l1-2z)= —Z? < -z
k=1

Therefore,
k< (n2)(1+v)L/(6/n) = O(nL).
This completes the proof. O

7. Quadratic convergence. In this section, we apply Theorem 2.1 to estab-
lish that under strict complementarity and nondegeneracy assumptions our algorithm
converges (Q-quadratically. It can be shown that the nondegeneracy and strict com-
plementarity assumptions at optimality imply the uniqueness of both primal and dual
solutions. We have already established convergence of the duality gap sequence to zero
in the preceding section. With the uniqueness, it can be shown that the convergence
of the duality gap implies that of the iterates to the unique solution (z.,y.) > O.
What we must verify is assumption (iii) of Theorem 2.1; namely,

or=O(zfyx) and 7% =1—O(z} k).
Since 7y = ay/ay, for the latter it suffices to show that
(39) ar —1 and éx —ax = O(zF yg).

The following lemama will be useful. It is a slightly modified version of Lemma 3.2
in [11]. We refer interested readers to the original paper for its proof.
LEMMA 7.1 (see [11]). Let (z.,ys) be a solution of problem (3) and let {(zk,yk)}
be generated by Algorithm 2. Let pkN ,pg,q}cv , and q,? be defined by (34). Assume that
(i) strict complementarity holds at (., ys);
(i) z. is a nondegenerate vertez of (1).
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Then

=] _; | +0Gkw), of =] _ztw/n | +O(zFy),

and

QG = _E] + O(zL yk), qlf =1 Xy + O(zFyi),
0

where the number of zeros is m in p,’cv and pf, andn —m in q,lcv and q,?.

Now we are ready to state and prove our quadratic convergence theorem.

THEOREM 7.2 (quadratic convergence). Let (z«,y«) be a solution of problem (3)
and let {(zk,yx)} be generated by Algorithm 2. Assume that

(i) strict complementarity holds at (., yx);
(ii) z« is a nondegenerate vertez of (1);
(i) p* is sufficiently large, e.g., p* > 16T,
Then {(zk,yx)} converges to (z«,y.) Q-quadratically.

Proof. We first prove o = O(zIyx). Observe from Lemma 7.1 that for each
index i either the “p” terms ((p} ) and (p§)?) or the “g” terms ((¢)* and (g)¢) are
O(zTyx) while the other terms are bounded. Thus the quantity wy, (see its definition
(85)) is O(zEyx); so is ox because oy, < phwg.

Since wy — 0, from the choice of p} in Step 2 of Procedure 2 we have for k
sufficiently large

(40) pp=p" and pr > 3(p' +p%).

We observe that if p* is sufficiently large, e.g., p* > 16" (i.e., ok is not forced to
approach zero too quickly), then the step length ) will eventually be equal to or
greater than one, as can be seen from (38).

Since o), = O(z¥yx) and (z¥yx/n)/ min(XYke) is bounded, the elements of py
and gy are either O(zTyx) or —1 + O(z¥ yx). Therefore,

(41) min(Xk_lA:vk,Yk_lAyk) = min(pk, qx) = -1+ O(xfyk).

By examining the definition of &4 in Step 3 of Algorithm 1, we see & = 1+ O(zTyx).
Consequently, for k sufficiently large we have

1<ap<ép=1+ O(.’L’fyk)

This implies (39) and completes the proof. 0
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8. Superlinear convergence. In this section, we apply Theorem 2.2 to estab-
lish @-superlinear convergence of Algorithm 2 for general problems. We must show
that assumption (iii) of Theorem 2.2 holds; i.e.,

o, —0 and T — 1.

For the latter, it will suffice to show &, — 1 and &y — ar — 0. Without the non-
degeneracy assumption, we can no longer use Lemma 7.1. For technical reasons, we
must further restrict the choice of py.

Denote the length of the interval [p!, p¢] by m. It follows from (37), Step 2 of
Procedure 2, and Lemma 4.1 that

2
Yo
42 P> —
(42) Pk 2 n
Thus
2
def o Yo
(43) Tk épk—plZ%>0

Let Xk be the following set of 2n points
Tk = {~@)"/ @), ~ (@ )/ (@), i=1,2,...,n}
and define the distance from o to the set X as
dist(o, Xx) = min{|o —¢| : ¢ € Eg}.

We choose oy, according to Procedure 2 with the additional restriction that
(44) dist(og, L) > mrwi/(8n + 4).
In other words, we require not only that
(45) ok € [0.5(p" + p}t)wk, Pwi],

but also that o be bounded away from the set i by at least mpwy/(8n + 4). Since
{mr} is bounded away from zero, we see from (44) that {dist(ox,Xk)} is bounded
away from zero if {wy} is bounded away from zero.

We introduce condition (44) to avoid the situation where pi, = (p)* + o4 (pg)"
(say) converges to zero but (pY)¢ and (p{)? do not. Although we believe that it is
extremely unlikely for this situation to occur, we have not been able to rule it out.

LEMMA 8.1. The set of oy, ’s satisfying (44) and (45) is nonempty.

Proof. The length of the interval in (45) is mxwy /2. Partition this interval into
2n+ 1 equal subintervals, each having length 7wy /(4n+2). If the interior of any one
of the subintervals does not intersect X, then the midpoint of that subinterval will
satisfy (44) and (45). Since X has only 2n points, it cannot intersect the interiors of
all the 2n + 1 subintervals. This proves the lemma. 0

Now we are well equipped to prove our superlinear convergence theorem.

THEOREM 8.2 (superlinear convergence). Let (z«,yx) be a solution of problem (3)
and let {(zk, yx)} be generated by Algorithm 2 with the restriction (44) on the centering
parameter or. Assume that

(i) strict complementarity holds at (z.,yx);
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(ii) p* is sufficiently large, e.g., p* > 16T
If {(xk,yx)} converges to (z.,Y«), then the duality gap sequence {zfyr} converges to
zero Q-superlinearly.
Proof. We first prove o, — 0. It suffices to show wy — 0. Let z¢ > 0. Obviously,

xt ‘
1= lim & = Jim (1 £).
kl»n;o x, kl»nc}o( + awpi)
This implies P — 0, because {ax} is bounded away from zero. On the other hand,
if 2 = 0, then y: > 0 by strict complementarity. The same argument, interchanging
the roles of p}, and g}, gives g;, — 0. Therefore, for each index 4, either

(46) pi=N) +0ok®F) =0 or qi=(q) +ox(gf) — 0.

We will prove wy, — 0 by contradiction. Suppose the opposite. Then there exists
a subsequence {wg,} C {wk} that is bounded away from zero. This in turn implies,
from (44), that {dist(ox,, Xk,)} is bounded away from zero (recall that 7, is bounded
away from zero).

We have shown that for each index 4, either pi — 0 or gi — 0. Without loss of
generality, assume pfc — 0. We now show that {(pgo)‘} converges to zero. Otherwise,
there exists a subsequence {(p§ )*} C {(p§, )} such that {|(p§ )|} is bounded away
from zero. For this subsequence,

pi, = (PR)* + o, (05,)' = (05 )'low, + (Ph.)*/ (PE.)'] — O.
This implies

ok, + (PR (P5.) — 0.

However, this cannot be true because {dist(ok,, Xk, )} C {dist(ok,, Xk,)} is bounded
away from zero. Hence (pkco)i — 0.

Now in view of (46) we also have (pkN0 )? — 0. Similarly, we can prove that if
g, — 0, then we have both (¢g)Y)? — 0 and (¢{)? — 0. Therefore, for each index
i, either (pfy)¢ and (pg ), or (¢f)* and (gf )" converge to zero. Since all these
sequences are uniformly bounded (see the proof of Lemma 4.1), this leads to wg, — 0
(see definition (35)), contradicting the hypothesis that {wg,} is bounded away from
zero. This proves that wy — 0. Consequently, o — 0.

Now we prove ai — 1. Note that (7) can be written as

Pr+qr = —e+ ak%m{yk(XkYk)—le.
Since %m{yk(XkYk)‘le is bounded above by 1/, as oy — 0, we have
Pk +qr — —e.

We have shown that for each i, either pi — 0 or g — 0. Therefore, all pi and g
converge to either 0 or —1. This again implies that éx — 1 (see (41)). In view of (38)
and (40), aj, will eventually be equal to or greater than one if p* is sufficiently large,
e.g., p* > 16I'. Hence

].Sakﬁflk—)]..

This completes the proof. o
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9. Concluding remarks. In this paper, we have shown that the two funda-
mental parameters in primal-dual interior-point algorithms for linear programming
can be chosen in such a way that both polynomiality and superlinear convergence are
achieved. If the solution is a nondegenerate vertex, then in addition to superlinear
convergence, we have quadratic convergence.

The current practices in some of the state-of-the-art implementations of primal-
dual interior-point algorithms have the following common fundamental features. First,
they allow iterates to be very close to the boundary of the positive orthant; second,
they phase out the centering steps at a fast pace. The theory established in Zhang,
Tapia, and Dennis [11] has already provided theoretical justification for such a prac-
tice from the viewpoint of fast convergence. This paper provides further theoretical
justification for such a practice from the viewpoint of polynomiality. In summary,
we can indeed, under reasonable conditions, accomplish both objectives: good global
behavior and good local behavior.

We recently learned of a new result by Giiler and Ye [4]. When applied to linear
programming, it says that condition (11) will guarantee strict complementarity for
any limit point of the iteration sequence generated by an interior-point algorithm.
This result nicely complements the Zhang-Tapia-Dennis theory (i.e., Theorems 2.1
and 2.2) and, therefore, the strict complementarity assumptions in Theorems 7.2 and
8.2 are no longer necessary.

Acknowledgments. We gratefully acknowledge Florian Potra and Michael Todd
for their useful comments on an earlier version of this paper. We also thank Yinyu
Ye and two anonymous referees for their constructive suggestions.
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NUMERICAL CONTINUATION AND SINGULARITY
DETECTION METHODS FOR
PARAMETRIC NONLINEAR PROGRAMMING*

BRUCE N. LUNDBERG! anp AUBREY B. POORE}

Abstract. Numerical methods are developed for continuation, solution-type determination,
and singularity detection in the parametric nonlinear programming problem. This problem is first
converted to a closed, “active set” system of equations F(z,a) = 0, which includes a nonstandard
normalization of the multipliers. A framework is then developed for combining various numerical
continuation methods with a large number of null and range space methods from constrained opti-
mization. By exploiting the special structure in the parametric optimization problem, solution-type
classification and singularity detection are shown to require minimal additional expense beyond that
involved in the continuation procedure itself. Due to the special structure of these problems, singu-
larity detection methods are more comprehensive than those for general nonlinear equations. In this
development, the Schur complement and related results play an important and unifying role. As an
illustration, these methods are used to produce a “global” parametric analysis for a model problem
from design optimization. This example exhibits an extensive number of solution paths, each of the
basic types of singularities, multiple optima, regions of sensitivity, and jump phenomena.

Key words. active set system, numerical continuation, bifurcation, singularities, parametric
optimization, Schur complement, null and range space methods

AMS(MOS) subject classifications. 65H10, 65K05, 90C31

1. Introduction. The parametric nonlinear programming problem is that of
determining the behavior of solution(s) as a parameter or vector of parameters o € R"
varies over a region of interest for the problem

(1.1) Minimize {f(z,a): ce(z,a) =0, ci(z,a) <0},

where f : R"'" - R, cg : R""" — RY, and ¢; : R — RP? are assumed to be
at least twice continuously differentiable. Some of these parameters may be fixed but
not precisely known and others may be varied or treated as control parameters. At a
regular point for this system, we may use the implicit function theorem to rigorously
justify the computation of the derivatives of the primal and dual variables with respect
to the parameter a. These derivatives provide the basis for local sensitivity analysis
as presented in the work of Fiacco [5], [6] and references therein. Many authors [2],
(12]-[17], [27], [33] have used bifurcation and singularity theory to investigate the local
behavior and persistence of minima at the singular points of (1.1), which are char-
acterized by a loss of strict complementarity, a violation of the linear independence
constraint qualification, or the singularity of the Hessian of the Lagrangian on the tan-
gent space to the active constraints. The importance of these singularities is that they
define the stability boundaries where a minimizer may be lost and where catastrophic
failure, extreme sensitivity, and jumps to undesirable operating states can occur.
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Similar theoretical investigations have occurred within the fields of general nonlin-
ear equations, dynamical systems, and for certain types of partial differential equations
[10], [11], [23]. Numerical continuation and bifurcation techniques have been exten-
sively and systematically developed for these latter fields and have played an integral
part in investigating various phenomena [3], [4], [19]-[24], [31], [32]. Indeed, these
methods should be equally helpful in the large areas of parametric nonlinear program-
ming, abstract optimization, and control; however, only recently have these methods
begun to appear in parametric nonlinear programming and in various applications [12],
[25], [28]-[30]. Thus the overall objective in this work is to combine the analysis of the
singular points in parametric nonlinear programming [14]-[17], [27], [33], numerical
linear algebra methods from constrained optimization, and predictor-corrector contin-
uation techniques to produce a collection of numerical methods specifically tailored to
the parametric nonlinear programming problem. It is the utilization and modifications
of the numerical methods from constrained optimization and the emphasis on numer-
ical critical point classification and numerical singularity detection that differentiate
this work from that of other authors [12], [28]-[30]. Numerical methods for branch
switching, fold following, and singularity unfoldings will be treated in future work.

Since numerical continuation procedures are designed to follow solution paths of
parameterized systems of nonlinear equations, the parametric nonlinear programming
problem is first converted to a closed system of equations F(z,a) = 0, which con-
tains the complementarity slackness conditions and a nonstandard normalization of
the multipliers [27]. For numerical purposes these equations are then converted to the
“active set” system used by Lundberg and Poore in an earlier work [25]. These fea-
tures, along with a brief discussion of the singular points, are presented in §2. For the
single parameter problem (r = 1 in (1.1)), §3 describes a general class of predictor-
corrector continuation schemes tailored specifically to the active set system for the
parametric nonlinear programming problem. The solution of the linear systems aris-
ing in the continuation procedures is based on the bordering algorithm introduced
by Keller [19]-[21]. This bordering algorithm, along with the modifications by Keller
[20] and Chan (3], [4], allows us to exploit the large number of null and range space
methods developed for constrained optimization, even when the systems are ill con-
ditioned. To efficiently present numerical methods for determining critical point-type
and singularity detection in §§5 and 6, respectively, we briefly review these null and
range space methods in §4 along with the necessary modifications required on nonop-
timal solution paths. In this development, the Schur complement and related ideas
from linear algebra will play an important and unifying role.

The numerical determination of the solution type as an inexpensive by-product
of the modified null or range space methods used in the continuation procedure is
developed in §5. The special structure of the parametric programming problem is used
in §6 to derive singularity detection tests that are more comprehensive and efficient
than those for general nonlinear equations. In fact, the detection of singularities
due to the loss of strict complementarity or the violation of the linear independence
constraint qualification is shown to be immediately available from the computation of
the solution points. The detection of a singularity of the Hessian of the Lagrangian
on the tangent space to the active constraints is based on the inertia of the reduced
Hessian, and we show how this may be computed at little additional expense when
using either range or null space methods.

In §7, we illustrate these methods with a simple model problem arising from design
optimization [30]. For this parametric nonlinear programming problem we produce a
“global” analysis of sensitivity, stability, and multiplicity of minima which exhibits an
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extensive number of solution paths, each of the basic types of singularities, and jump
phenomena arising from a loss of the linear independence constraint qualification.

2. Singularities and formulation of the active set system. The first objec-
tive is to convert the parametric nonlinear programming problem to a closed system of
nonlinear equations whose solutions contain all local minima as well as saddle points,
local maxima, and feasible and infeasible solutions. Following a characterization of the
singular points in this system, an equivalent active set system [25] for the numerical
continuation process will be presented.

The following notation will be needed. For a function f : R"*" — R, the gradi-
ent of f(x, ) with respect to z € IR™ will be a column vector denoted by V. f(z,a).

The differential operator
o 0 0
Dy=|—,—, -, —
(6.’1:1 3(32 6.’L‘n)

denotes a row operator whose transpose is DI = V.. Thus D,f(z,a) is a row
vector, DT f(z,a) = [Dyf(z,a)]T = Vi f(z,a) is a column vector, and V2 f(z,a) =
D;(Vyf(z,a)) = Dy[DE f(x, )] denotes the Hessian of f. Also, if F : R"*" — R™,
then D F(z,a) is an m-by-n matrix whose element in the ith row and jth column is
OF;(z,a)/0z;.

Given the parametric nonlinear programming problem
(2.1) Minimize {f(z,a) | ci(z,a) =0 for ¢ € E ¢;i(z,0) <0 for i € I'}

where E = {1,...,p} and I = {p+1,...,p + ¢} represent the index sets for the
equality and inequality constraints, respectively, the Fritz John first-order necessary
conditions are that there exist p + ¢ + 1 real numbers in the scalar v and the vector
A= (A1, Ap, Ap+1,. .. Aptq), Not all zero, such that

(2.2) VL(z, A\ v,a) =0,
(2.3) Ac(z, ) =0,

(2.4) ci(z,a) <0 foriel,
(2.5) Ai>0 foriel, v>0,

where £ = L(z,\,v,a) = vf(z,a) + Zf:f Aici(z, @) is the Lagrangian and A is a
diagonal matrix with A;; = 1 for ¢ € E and Ay; = \; for ¢ € I. Observe that
equations (2.2) and (2.3) represent n + p + ¢ equations in the n +p + ¢+ 1 unknowns,
z € R",\ € RPY, and v € R. The usual normalization is to choose v = vy > 0;
however, this can lead to infinite multipliers when the linear independence constraint
qualification is violated. To resolve this difficulty, the normalization 12+ TA— 32 = 0,
where [y is a fixed positive real number, is included with the equations (2.2) and (2.3)
to obtain the closed system

Vi L(z, A\ v, )
(2.6) F(z,\v,0) = Ac(z, ) =0.
v2+ AT — 32

In the sequel, the variable z will be used to denote the n+p+ g+ 1 variables (z, \,v),
ie., z= (z,\v).
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The next theorem gives necessary and sufficient conditions for D, F(zp, ap) to be
singular at a solution of F(z,«) = 0. This requires the concept of an eigenvalue on a
tangent space to the active constraints: Let L : R™ — IR™ be a linear operator and
let V denote a k-dimensional subspace of IR™. The restriction of L to V is denoted
by Ly and defined on V as PL where P is an orthogonal projection of R™ onto V.
A scalar A is an eigenvalue of Ly provided there exists a nonzero vector y € V such
that Lvy = Ay. Thus we say that L is singular on the subspace V provided zero is an
eigenvalue of Ly. If L also denotes the matrix representation of the operator L and
the columns of a matrix Z € R™** form an orthonormal basis for V,then P = ZZT
is such a projection and the eigenvalues of Ly are those of the matrix ZT LZ, which
are invariant under changes in Z as long as the columns form an orthonormal basis
for V.

THEOREM 2.1 (see [27]). Let (20, 0) = (o, Ao, Y0, @0) be a solution of F(z,a) =
0, i.e., a solution of equation (2.6), which combines (2.2), (2.3), and the normalization
v2 + XTX — 32 = 0. Assume that f and c are twice continuously differentiable in
a neighborhood of (zo,c0) and define two index sets A and A and a corresponding
tangent space T by

o7 A=EU{i€eI:ci(zo,a0) =0}, A=EU{ie ANTI:\ #0},
@7) T ={y € R": Dyci(xo,a0)y = 0 for all i € A}.
Then a necessary and sufficient condition that D, F(z0,a0) be nonsingular is that each
of the following three conditions hold:

(i) A=4

(i) 8 := {Vazci(xo,a0)}ica is a linearly independent collection of |A| vectors
where |A| denotes the cardinality of A,

(ii) The Hessian VZL(20,0) of the Lagrangian is nonsingular on the tangent
space T'.

If D, F(20,0) is nonsingular, there exist neighborhoods B1 of a = ap and B2 of
20 = (o0, Ao, v0) and a function ¢ € C1(B1) such that F(¢(a),a) = 0 for all a € By
and ¢(aw) = zo0. This solution is unique in the sense that if z € By and F(z,a) = 0,
then (z,a) belongs to the manifold defined by ¢, i.e., z = ¢(c). Furthermore, if f
and ¢ are Ck(k > 2) (C or real analytic) then ¢ is Ck—1 (C> or real analytic,
respectively, on Bi).

The importance of conditions (i)—(iii) in Theorem 2.1 is that they provide a set
of necessary and sufficient conditions for a singularity in the system F' = 0, and thus
an initial classification into which all singularities and bifurcation problems fit. The
term critical point will refer to any solution of system (2.6), regular point will describe
any solution of (2.6) for which conditions (i)—(iii) of Theorem 2.1 are valid, and the
term singular point is reserved for any solution of (2.6) at which D, F is singular, i.e.,
one or more of (i)-(iii) is violated. Since these singularities have been investigated
theoretically by many authors [14]-[17], [27], [33], we will focus only on the numerical
aspects.

Since a multiplier corresponding to an inactive constraint is zero, the system (2.6)
can be reduced in complexity by using an active set strategy. The inactive constraints,
i.e., those ¢; for which ¢ € I — A are thus removed, yielding the active set system

B VL(z,0) z
(2.8) F(z,a)=| ¢(z,0) | =0 where 2= || € R™,
B(A,v) v
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m=mn+|A+1, A= (A1,...,Ap, Aicanr), and ¢ = (c1,...,Cp, CiicanI), L(2,0) =
vf(x, o)+ ;c4 dici(x, @), and B(A,v) = v2 + ATX — 33. Continuation for the active
set system (2.8), along with detecting zeros in one or more of the active, inequality
multipliers A, ¢ € ANI, or in an inactive constraint ¢; for i € I — A and changing the
active set appropriately, is then equivalent to continuation for the full system (2.6).

3. Numerical continuation methods. The subject of general numerical con-
tinuation methods has a formidable literature, and excellent introductions can be
found in Allgower and Georg [1], Keller [21], and Rheinboldt [32]. Thus we forego a
survey of this area and concentrate on building a framework for combining numerical
linear algebra methods in optimization with predictor-corrector continuation meth-
ods. (This combination should also augment the work of several authors [12], [28]-
[30], who also use predictor-corrector methods for parametric optimization.) Schur
complements and related results [26] will be used to rederive the bordering algorithm
of Keller [19]-[21] in a form more suitable for singularity detection and continuation
in the parametric nonlinear programming problem.

3.1. Bordered matrices for predictor-corrector continuation. The nota-
tion w = (2, @) is convenient for a discussion of predictor-corrector continuation and
will be used in this section. Assume that F(w) is continuously differentiable and
F(w) = 0 has a smooth solution path P = {w € R™" : w = ¥(s),s € I, ¥ € C'}
where I is an interval of real numbers. Most path-following algorithms generate a
sequence {(wk, sk)}i_, where wy is a point on or near the path and wo is a known
solution of F(w) = 0. To go from a point wi to a point wk1, we first obtain a
predicted point of the form wpg+1 = wi + Asd(As) where the predictor direction d
is typically the current oriented unit tangent T} or a combination of this and pre-
viously computed tangents [24]. In either case d(As) is continuous at As = 0 and
limas—0 d(As) = Ty. The predicted point is then used as the initial approximation
for a Newton-like correction iteration back to the path, terminating with a solution
wg+1. At each point wy on the path, the tangent T} is a solution to

(3.1) [Dow F(wi)] Tk = 0.

The correction back to the path can be achieved in many ways [1], [21], [32], but the
work described here is based on solving the augmented system

(3.2) Gw) = [ ]I‘\;((:Z%] —0 where N(w)= (w— wprs1)Td(As),

which confines the correction to a hyperplane orthogonal to the prediction direction
d(As) [21], [24]. If {w} ,, }i>0 denotes the Newton-like corrector iterates for (3.2) with
wg 4+1 = WPk+1, then a correction step Aw = w}c‘fl — w}'c 41 is computed by solving a
linear system of the form

(3.3) JAw = —-G(wj,,),

where J = D, G(w}, ) is the Jacobian of G or some approximation to it.

The primary linear algebra requirements in a predictor-corrector step are thus the
computation of the tangent vector T} in (3.1) and corrections Aw in (3.3). Central to
this linear algebra is the Lagrangian matrix W defined by
H A}

)

(3.4) W = { o
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where H = V2L(z,a) or some approximation to it, AT = D.&(z,ca), and &(z, )
denotes the equality and active inequality constraints, as in (2.8). The reason for this
is that the (m + 1) x (m + 1) Jacobian matrix J = DG can be partitioned by

I W wa
(3.5a) J= [% D;‘F] where M = D,F(z,a) = 0
# * 0 2T 2v
and by
W B
am [ 2
where
| Vaf DoVl r_ |0 2T _|2v 0
(3.5c) B= [ 0 Dails, a)] , CT= & dar | and D= 4 da |-

The matrices M, B, CT, and D have dimensions m x m, (m—1) x2, 2x (m—1), and
2 x 2, respectively, and df = (dF,df,d,) where dg,dx,d,, and d, denote the z, \, v,
and a components of the prediction direction d, respectively. Note that the function
F corresponds to the active set system (2.8) and that it is this Lagrangian matrix W
that plays a central role in nonlinear constrained optimization [7], [8], [18].

3.2. The Schur complement and the bordering algorithm. The partition-
ing of the Jacobian J given in (3.5b) suggests a block elimination algorithm for solving
the systems (3.3) and (3.1) that exploits the underlying structure of the Lagrangian
matrix W. Schur complements will be used in this subsection to rederive the border-
ing algorithm of Keller [19]-[21] in a form more suitable for singularity detection and
continuation in nonlinear parametric programming. The following two theorems will
be used repeatedly in this and the next three sections and can be found in the survey
on Schur complements by Ouellette [26].

THEOREM 3.1 (see [26]). If L is a nonsingular matriz and S = D — CTL-1B is
the Schur complement of L in

L B
o-[x o)

then

(3.6a) det(®) = det(L) - det(S),

where det(-) denotes the determinant. If ® is also real symmetric, then
(3.6b) in(®) = in(L) + in(S),

where in(-) denotes the inertia (the number of positive, negative, and zero eigenvalues).
THEOREM 3.2 (see [26]). Suppose L and ® in the previous theorem are nonsin-
gular. Then the Schur complement S of L in ® is nonsingular and

(3.7a) -1 = [Lal 8] + [LZIIB] §-1[CTL-1, —1]

L-14+ [-1BS-1CTL-1 —L-1BS-1
(3.7b) = [ —-§-10T[-1 S-1 ] :
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With this background, a version of the bordering algorithm [20] for solving (3.3)
can be briefly described as follows. Consider partitioning (3.5b) and let §, 9,4 € R™ !
be solutions of
(3.8)

A et B MR e s

Define ¢, y, v, and u € R™! by

2 y v u
(3.9) £= , y=10}, v=1{(1}, and u=]|0],

2v

0 0 0 1

where the bottom two entries in these vectors are scalars and (20>\) € R™™'. Then the
Schur complement Sy of W in J is given by

Ty (Ty
(310) SW it [dTU dTU] ’

so that the correction step in (3.3) is given by
(3.11a) Aw =y + sv + tu,

where s and t solve the two-dimensional system

s|_ | B+/{Ty
wim st = [2ram)

(This formula is the result of applying (3.7a) to equation (3.3) for the partitioning
(3.5b).)
If the vectors in (3.9) are computed at w1, then the tangent Ty is given by

(3.12) Tit+1 = £ [((Tv)u — ((Tu)v] /||(Tv)u — (LTu)v||2.

The sign in this formula determines the orientation of the continuation and is typically
chosen so that T Tx4+1 > 0 [21]. (This representation of the solution of (3.1) can
be derived by forming J —1[(1)] using (3.5b) and (3.7b) to obtain a scalar multiple of
[((Tv)u — (¢Tu)v] and then normalizing to obtain Tky1.)

The above formulas are theoretically valid if W, Sy, and J are nonsingular. Facts
regarding the nonsingularity of these matrices, together with the matrix M = D, F,
are given in the following theorem and subsequent discussion.

THEOREM 3.3. Let wx+1 = (Tk+1, Ak+1, Vk+1, Qk+1) be a solution of the active set
system (2.8), assume the objective function f(z,c) and constraints ¢(x, o) are twice
continuously differentiable in a neighborhood of (Tk+1,ak+1), and let W, J, M, Sw,
and Ti+1 be defined as in (3.4), (3.5), (3.10), and (3.12) with all derivatives being
evaluated at wiy1. Then the following are equivalent:

(i) A = Dz&(zk+1,ak+1)T has full rank and H = V2L(wk41) is nonsingular
on N(AT).

(ii) W is nonsingular.

(iii) M is nonsingular.
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Furthermore, if W is nonsingular and dy, is the prediction direction at wg, then
the following are equivalent:

(iv) J is nonsingular.

(v) Sw is nonsingular.

(vi) d¥Tyy, is nonzero.

Proof. The equivalence of parts (i) and (ii) is shown in [18] and is a corollary of
Theorem 5.1 in §5. The equivalence of (i) and (iii) follows as a special case of Theorem
2.1. Thus (ii) and (iii) are equivalent. If W is nonsingular, Theorem 3.1 implies the
equivalence of (iv) and (v). Finally, dTTk41 = 2dT [(€Tv)u — ({Tuw)v] /||(£Tv)u —
(Tu)vllz = £ [(€Tv)dTu— ((Tu)dIv] /||((Tv)u — ((Tu)vllz = +det(Sw)||(¢Tv)u —
(€Tu)v||5*, which implies the equivalence of (v) and (vi). O

Geometrically, condition (vi) states that the previous predictor direction is not or-
thogonal to the path w(s) at wg+1. If wy is a regular point of the smooth solution path
P and if dy = T} or di, = dk(As) with limas—.0 dk(As) = T}, then ({;{‘Tk+1 > 0 holds
at wi+1 for a sufficiently small stepsize As [24]. The corrector procedure developed
by the authors [24] terminates when df Ty, becomes small, and the corrector is reini-
tiated with a smaller predictor step As. Hereafter, we will assume that df Tx+1 > 0
holds at every continuation point wgy1, so that the bordering formulas above are all
theoretically valid as long as the Lagrangian W is nonsingular. Numerically, these
formulas perform well as long as W is well conditioned.

3.3. Ill-conditioned Lagrangian matrices. An ill-conditioned Lagrangian ma-
trix W can occur at or near a singularity or may occur all along a path of singularities
arising, e.g., from fold following [20], [21]. In these cases the procedures described in
the work of Keller [20], or in the generalized deflated block elimination algorithm of
Chan (3], [4] can be used to solve (3.1) and (3.3). Both procedures allow us to exploit
the structure of the Lagrangian matrix W, even when W is ill conditioned.

4. Linear algebra for the Lagrangian matrix. The linear systems that arise
in the continuation steps are of the form JAw = —G and must be solved for several
different values of G. The bordering algorithm (3.8)—(3.12) applied to the active set
system (2.8) reduces the linear algebra requirements in the continuation procedure to
the solution of systems of the form

(4.1) W[if\] = [g] where W = [i‘; ‘3].

This section contains a brief review of the direct methods for solving systems of this
form, since this allows an efficient presentation of the determination of critical point-
type and singularity detection in the next two sections. Three classes of methods
for solving these linear systems in constrained optimization [7], [8] are the symmetric
factorization, null space or generalized elimination methods, and range space methods.
It is important to stress that the formulas to be presented involve the inverses of certain
matrices and that these formulas are not used directly in computation. Instead, when
an inverse is required, a factorization is computed and the computations are rearranged
to simplify the operations. We do not discuss the various iterative methods.

Since the Lagrangian matrix W is generally symmetric indefinite, a symmetric
factorization algorithm such as either the Bunch—Parlett or Bunch-Kaufman algorithm
[9] can be used to produce the factorization PW PT = LDLT where P is a permutation
matrix, L is unit lower triangular, and D is block diagonal with 1 x 1 and symmetric
2 x 2 blocks.
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For range space methods, both W and H are assumed to be nonsingular. Then
the Schur complement of H in W is

(4.2) S=—ATH-14,

which is also nonsingular by Theorem 3.2. Using (3.7b), the inverse of W can be
expressed in the form

K T
-1 —
(4.3a) W-1l= [TT U] ,
where
(4.3b) K=H-14+H-1AS-1ATH-!,
(4.3¢c) T=-H-1A5-1,
(4.3d) U=S5-1.

Range space methods, which are recommended for problems with few constraints {7],
(8], make use of this representation of W1 to solve (4.1). As an example, suppose the
Bunch-Kaufman algorithm [9] is used to factor an indefinite H by PHPT = LDLT,
so that H-1 = PTL-TD-1L~1P and ATH-1A = (L-1PA)T D-1(L-1PA). Next let

L-1PA = QR = [Ql : Qz] [ISI] = QlRl
be the QR factorization of L-1PA. Then
S = ~(ATH-14) = R QT D-'Qu) Ry

and we must factor the expression Q7 D-1Q; to complete the computation; however,
this has small dimension when the number of active constraints (row size of AT) is
small. Finally, range space methods can also be viewed as a form of Keller’s bordering
algorithm applied to the system (4.1), which suggests that Chan’s deflation algorithm
[4] can be applied in case H is ill conditioned.

Null space methods, which are recommended for problems with many constraints
[7], [8], may be described by constructing matrices Y <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>