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A THEORETICAL AND EXPERIMENTAL STUDY OF THE
SYMMETRIC RANK-ONE UPDATE*

H. FAYEZ KHALFAN?, R. H. BYRD,:, AND R. B. SCHNABEL:

Abstract. This paper first discusses computational experience using the SR1 update in conventional
line search and trust region algorithms for unconstrained optimization. The experiments show that the SR1
is very competitive with the widely used BFGS method. They also indicate two interesting features: the final
Hessian approximations produced by the SR1 method are not generally appreciably better than those
produced by the BFGS, and the sequences of steps produced by the SR1 do not usually seem to have the
"uniform linear independence" property that is assumed in recent convergence analysis. This paper presents
a new analysis that shows that the SR1 method with a line search is (n + 1)-step q-superlinearly convergent
without the assumption of linearly independent iterates. This analysis assumes that the Hessian approxima-
tions are positive definite and bounded asymptotically, which, from computational experience, are reasonable
assumptions.
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1. Introduction. This paper is concerned with secant (quasi-Newton) methods for
finding a local minimum of the unconstrained optimization problem

(1.1) min f(x).
R

We assume that f(x) is at least twice continuously differentiable, and that the number
of variables n is sufficiently small to permit storage of an n x n matrix, and O(n2) or
possibly O(n3) arithmetic operations per iteration.

Algorithms for solving (1.1) are iterative, and the basic framework of an iteration
of a secant method is"

Given the current iterate xc, f(xc), Vf(x), or finite difference approximation, and
B R symmetric (a secant approximation to vZf(x)):

Select the new iterate x+ by a line search or trust region method based on
the quadratic model m(x+ d)=f(xc)+Vf(x)rd +1/2drBd.
Update B to B+ such that B+ is symmetric and satisfies the secant equation
B+s yc, where s x+ x and y Vf(x+) Vf(x).

In this paper, we consider the symmetric rank-one (SR1) update for the Hessian
approximation

(yc-Bcs)(y-Bcs) T

(1.2) B+= Be+ sr (yc- Bcsc)

and, for purpose of comparison, the BFGS update

ycy cT BcScSTc Bc(1.3) B+ B+ ’r +---g"
Y Yc s Yc
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For background on these updates and others, see Fletclaer (1980), Gill, Murray, and
Wright (1981), and Dennis and Schnabel (1983).

The BFGS update has been the most commonly used secant update for many
years. It makes a symmetric, rank-two change to the previous Hessian approximation

TBe, and if Bc is positive definite and s y > 0, then B+ is positive definite.
The BFGS method has been shown by Broyden, Dennis, and Mor6 (1973) to be

locally q-superlinearly convergent provided that the initial Hessian approximation is
sufficiently accurate. Powell (1976) proved a global superlinear convergence result for
the BFGS method when applied to strictly convex functions and used in conjunction
with line searches that satisfy Wolfe conditions. The BFGS update has been used
successfully in many production codes for unconstrained optimization.

The SR1 formula, on the other hand, makes a symmetric rank-one change to the
previous Hessian approximation B. Compared with other secant updates, the SR1
update is simpler and may require less computation per iteration when unfactored
forms of updates are used. (Factored updates are those in which a decomposition of

B is updated at each iteration.) A basic disadvantage of the SR1 update, however, is
the fact that its denominator may be zero or nearly zero, which causes numerical
instability. A simple remedy to this problem is to set B/ Bc whenever this difficulty
arises, but this may prevent fast convergence. Another problem is that the SR1 update
may not preserve positive definiteness even if this is possible, i.e., when B is positive
definite and s cryc > 0.

Fiacco and McCormick (1968) showed that if the SR1 update is applied to a

positive definite quadratic function in a line search method, then, provided that the
updates are all well defined, the solution is reached in at most n+ 1 iterations.
Furthermore, if n + 1 iterations are required, then the final Hessian approximation is
the actual Hessian at the solution. This result is not generally true for the BFGS update
or other members of the Broyden family, unless exact line searches are used.

For nonquadratic functions, however, convergence of the SR1 is not as well
understood as convergence of the BFGS method. In fact, Broyden, Dennis, and Mor6
(1973) have shown that under their assumptions the SR1 update can be undefined,
and thus their convergence analysis cannot be applied in this case. Also, no global
convergence result similar to that for the BFGS method given by Powell (1976) exists,
so far, for the SR1 method when applied to a nonquadratic function.

Recent work by Conn, Gould, and Toint (1988a, 1988b, 1991) has sparked renewed
interest in the SR1 update. Conn, Gould, and Toint (1991) proved that the sequence
of matrices generated by the SR1 formula converges to the actual Hessian at the
solution V2f(x.), provided that the steps taken are uniformly linearly independent,
that the SR1 update denominator is always sufficiently different from zero, and that
the iterates converge to a finite limit. (Using this result it is simple to prove that the
rate of convergence is q-superlinear.) On the other hand, for the BFGS method Ge
and Powell (1983) proved, under a different set of assumptions, that the sequence of
generated matrices converges, but not necessarily to V2f(x.).

The numerical experiments of Conn, Gould, and Toint (1988b) indicate that
minimization algorithms based on the SR1 update may be competitive computationally
with methods using the BFGS formula. The algorithm used by Conn, Gould, and Toint
(1988b) is designed to solve problems with simple bound constraints, i.e., li-<xi-<_ u,

1, 2,..., n. The bound constraints are incorporated into a box constrained trust
region strategy for calculating global steps, in which an inexact Newton’s method
oriented towards large-scale problems is used. This method uses a conjugate gradient
method to approximately solve the trust region problem at each iteration, and also
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incorporates a new procedure that allows the set of active bound constraints to change
substantially at each iteration. In this context, Conn, Gould, and Toint (1988b) conclude
that the SR1 performance is generally somewhat better than the BFGS in terms of
iterations and function evaluations on their test problems. They point out that the use
of a trust region removes a main disadvantage of SR1 methods by allowing a meaningful
step to be taken even when the approximation is indefinite. They also point out that
the skipping technique used when the SR1 denominator is nearly zero was almost
never used in their tests. They attribute part of the success of the SR1 to the possible
convergence of the updates to the true second derivatives, as discussed above. Conn,
Gould, and Toint (1991) tested this convergence using random search directions. These
tests showed that, in comparison with other updates such as the BFGS and the DFP,
the SR1 generates more accurate Hessian approximations, and that, although the PSB
has the potential to give accurate Hessian approximations, the convergence is sometimes
so slow as to be almost unobservable.

The purpose of this paper is to better understand the computational and theoretical
properties of the SR1 update in the context of basic line search and trust region methods
for unconstrained optimization. In the next section, we present computational results
we obtained for the SR1 and the BFGS methods using standard line search and trust
region algorithms for small to medium sized unconstrained optimization problems.
We also report on tests of the convergence of the sequence of Hessian approximation
matrices {Bk}, generated by the SR1 and BFGS formulas, and on tests of the condition
of uniform linear independence of the sequence of steps which is required by the
theory of Conn, Gould, and Toint (1991). These results indicate that this assumption
may not be satisfied for many problems. Therefore, in 3, we prove a new convergence
result without the assumption of uniform linear independence of steps. Instead, it
requires the assumption of boundedness and positive definiteness of the Hessian
approximation. In 4, we present computational results regarding the positive definite-
ness of the SR1 update and an interesting example. Finally, in 5 we make some brief
conclusions and comments regarding future research.

2. Computational results and algorithms. In this section, we present and discuss
some numerical experiments that were conducted in order to test the performance of
secant methods for unconstrained optimization using the SR1 formula against those
using the BFGS update.

The algorithms we used are from the UNCMIN unconstrained optimization
software package (Schnabel, Koontz, and Weiss (1985)), which provides the options
of both line search and trust region strategies for calculating global steps. The line
search is based on backtracking, using a quadratic or cubic modeling of f(x) in the
direction of search, and the trust region step is determined using the "hook step"
method to approximately minimize the quadratic model within the trust region. The
frameworks of these algorithms are given below.

ALGORITHM 2.1. Quasi-Newton method (line search).
Step 0. Given an initial point Xo, an initial positive definite matrix Bo, and a 10-4,

set k (iteration number) 0.
Step 1. If a convergence criterion is achieved, then stop.
Step 2. Compu*e a quasi-Newton direction

pk --(Bk + tXkI)-IVf(Xk),
where ]d,k is a nonnegative scalar such that tLk 0 if Bk is safely positive
definite, else /.Lk 0 is such that Bk + tZkl is safely positive definite.
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Step 3. (Using a backtracking line search, find an acceptable steplength.
(3.1) Set Ak 1.
(3.2) Iff(xk/l)<=f(Xk)/aAkVf(xk)Tpk, then go to Step 4.
(3.3) If first backtrack, then select the new Ak such that Xk+I(Ak) is the

local minimizer of the one-dimensional quadratic interpolating
f(Xk), Vf(xk)Tpk, and f(xk/Pk), but constrain the new Ak to be
_->0.1, else select the new Ak such that Xk+I(Ak) is the local minimizer
of the one-dimensional cubic interpolating f(Xk), Vf(Xk)rPk,
f(Xk/l(Aprev)), and f(Xk/l(A2prev)) but constrain the new Ak to be in
[0.1/prev, 0.5/prev].
(Xk+l(A) xk + Apk and Aprev A2prev--previous two steplengths.)

(3.4) Go to (3.2).
Step 4. Set xk+ xk +
Step 5. Compute the next Hessian approximation
Step 6. Set k k + 1, and go to Step 1.

ALGORITHM 2.2. Quasi-Newton method (trust region).
Step 0. Given an initial point x0, an initial positive definite matrix Bo, an initial

trust region radius Ao, 71 (0, 1), and 72 >--1, set k- 0.
Step 1. If a convergence criterion is achieved, then stop.
Step 2. If Bk is not positive definite, set Bk- Bk / ta,kI where /Xk is such that

Bk--Bk / tZkI is safely positive definite, else set Bk-" Bk.
Step 3. {Compute trust region step by hook step approximation.}

Find an approximate solution to

by selecting

min Vf(Xk) rS + 1/2S r;kS subject to s
sER

Sk --(Jk / l"kI)-lVf(Xk),

such that [[Skl[ [0.75Ak, 1.5Ak], or

Sk --Jlf(xk)

if IIZlvf(x)ll 1.5Ak.
Step 4. Set aredk f(Xk + Sk) f(Xk).
Step 5. If aredk--<_ lO-4Vf(xk)TSk, then

(5.1) Set Xk+ Xk / Sk
(5.2) Calculate predk Vf(Xk)TSk +1/2SBkSk
(5.3) If (aredk/predk) < 0.1, then set Ak+l Ak/2, else if (aredk/predk) >

0.75, then set k+l 2Ak, otherwise Ak+ Ak
(5.4) Go to Step 7;

Step 6. Else
(6.1) If the relative steplength is too small, then stop; else calculate the

Ak for which Xk+AkSk is the minimizer of the one-dimensional
quadratic interpolatingf(xk),f(xk + Sk), and Vf(Xk)TSk set the new
Ak= 1k[lSk]l, but constrain the new Ak to be between 0.1 and 0.5
times the current Ak.

(6.2) Go to Step 3.
Step 7. Compute the next Hessian approximation, Bk/ 1.

Step 8. Set k= k+ 1, and go to Step 1.
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Procedures for updating Ak in Step 3 of Algorithm 2.1 are found in Algorithm
A6.3.1 of Dennis and Schnabel (1983). While a steplength Ak > 1 is not considered in
the reported results, in our experience permitting Ak > 1 makes very little difference
on these test problems. Procedures for finding /k in Step 3 of the trust region algorithm
are found in Algorithm A6.4.2 of Dennis and Schnabel (1983), and are based on
Hebden (1973) and Mor6 (1977). In both algorithms, the procedure for selecting ]d,k
in Step 2 is found in Gill, Murray, and Wright (1981). (They give an algorithm for
finding a diagonal matrix D, such that Bk d- D is safely positive definite. If D 0, then
/at,k is set to 0, else an upper bound bl on k is calculated using the Gerschgorin circle
theorem, and k is set to min{bl, b2} where b2=max{[D],, lin}.) In our
experience, when Bk is indefinite, k is quite close to the most negative eigenvalue of
Bk, so that the algorithm usually finds an approximate minimizer of the quadratic
model subject to the trust region constraint.

Both algorithms terminate if one of the following stopping criteria is met.
(1) The number of iterations exceeds a given upper limit.
(2) The relative gradient,

max {l[Vf.(xk)]il max {[[Xk+l]i[ 1}}
is less than a given gradient tolerance.

(3) The relative step,

[ max {l[Xk+l]il, 1}

is less than a given step tolerance.
All the algorithms used Bo L

2.1. Comparison of the SRI and the BFGS methods. Using the above-outlined
algorithms, we tested the SR1 method and the BFGS method on a variety of test
problems selected from Mor6, Garbow, and Hillstrom (1981) and from Conn, Gould,
and Toint (1988b) (see Table A1 in the Appendix). First derivatives were approximated
using finite differences. The gradient stopping tolerance used was 10-5 and the step
tolerance was (machine epsilon)/. The upper bound used on the number of iterations
was 500. As was done in Conn, Gould, and Toint (1988b), we skipped the SR1 update
if either

where r= 10-8, or [[Bk+ BII > 10a. The BFGS update was skipped if Syk < (machine
epsilon)l/211Skll IlYII. All experiments were run using double precision arithmetic on a
Pyramid P90 computer that has a machine epsilon of order 10-16.

For each test function, Tables A2 and A3 in the Appendix report the performance
of the SR1 and BFGS methods using the line search and trust region algorithm,
respectively. The tables contain the number of the function as given in the original
source (see Table A1), the dimension of the problem (n), the number of iterations
required to solve the problem (itrn.), the number of function evaluations (f-eval.)
required to solve the problem (which includes n for each finite difference gradient
evaluation), and the relative gradient at the solution (rgx). The last column (sp)
indicates whether the starting point used is Xo, 10Xo, or 100Xo, where Xo is the standard
starting point.
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In order to compare the performance of the two methods with respect to the
number of iterations and the number of function evaluations required to solve these
problems, we consider problems solved by both methods and calculate the ratio of
the mean of the number of iterations (or function evaluations) required to solve these
problems by the SR1 method to the corresponding mean for the BFGS method. Table
1 below reports the ratios of these means, using both arithmetic mean and geometric
mean. These numbers indicate that on the set of test problems we used, the SR1 is 10
percent to 15 percent faster and cheaper than the BFGS method.

TABLE
Ratio of SR1 cost to BFGS cost.

Line search Trust region

Mean Itrn. Function evaluations Itrn. Function evaluations

Arithmetic 0.82 0.83 0.84 0.88
Geometric 0.83 0.85 0.84 0.92

Table 2 gives the number of problems where the SR1 method requires at least 5,
10, 20, 30, 40, and 50 iterations less than the BFGS method, and vice versa. This table,
which is based on numbers from Table A2, also indicates the superiority of the SR1
on these problems.

TABLE 2
Comparisons of iterations.

Line search Trust region

Iterations different 5 I0 20 30 40 50 5 10 20 30 40 50
SR1 better 26 20 13 10 7 3 27 20 11 9 5
BFGS better 7 5 2 2 8 6 3

2.2. Error in the Hessian approximation and uniform linear independence. In an
attempt to understand the difference between the SR1 and the BFGS, we tested how
closely the final Hessian approximations produced by the line search and trust region
SR1 and BFGS algorithms come to the exact Hessians at the final iterates. Recall that
the Hessian error for the SR1 is analyzed by Corm, Gould, and Toint (1991) under
the assumption of uniform linear independence which we redefine here.

DEFINITION. A sequence of vectors {Sk} in R" is said to be uniformly linearly
independent if there exist ’> 0, ko, and m-> n such that, for each k->_ ko, one can
choose n distinct indices k <- kl <" < k, -<_ k / m such that the minimum singular
value of the matrix Sk--[Skl/llSkl[[,... Skn/[lSknl[ is >_-st.

Using this definition, Theorem 2 of Corm, Gould, and Toint (1991) proves the
following.

THEOREM 2.1 (Conn, Gould, and Toint (1991)). Suppose thatf(x) is twice con-
tinuously differentiable everywhere, and that V2f(x) is bounded and Lipschitz continuous,
that is, there exist constants M > 0 and

IlVZf(x)ll<-M and

Let Xk+ --Xk / Sk, where {Sk} is a uniformly linearly independent sequence of steps, and
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suppose that limk_,oo {Xk} x, for some x, R n. Let {Bk} be generated by the SR1 formula

Bk+ Bk d-
(Yk BkSk (Yk BkSk T

S(yk BkSk)

where Bo is symmetric, and suppose that for all k >-0, Yk and Sk satisfy

(2.1)

for somefixed re (0, 1). Then limk_o IIn -v=f(x,)ll =0.
We now present some computational tests to determine to what extent such Hessian

convergence occurs in practice. For these tests we used analytic gradients and a gradient
stopping tolerance of 10-1 and computed the quantity

B,- Vy(x,)II/IIV=f(x,)II,
where x is the solution obtained by the algorithm, and B is the Hessian approximation
at Xl. These results are reported in Tables A4 and A5 in the Appendix and summarized
in Tables 3 and 4. Tables 3 and 4 list, for each method, the number of problems for
which IIn,-v=f(x,)ll/llV=f(x,)ll lies in a given range.

While the SR1 seems to produce slightly better final approximations than the
BFGS, there is no evidence from Tables 3 and 4 that it significantly outperforms the
BFGS with respect to convergence to the actual Hessian at the solution. Also, in a
good number of cases, neither method comes close to the correct Hessian.

TABLE 3
Number of problems with IIB,-V=f(x,)ll/llv=f<x,)ll in indicated range (line search methods).

-----10-4 [10-4, 10-3) [10-31 10-2) [10-2, 10-) [10-1, 1) =>1

SR1 4 3 2 8 3 8
BFGS 3 0 10 6 8

The lack of convergence of the SR1 Hessian approximations to the correct value
in many of these problems may appear to conflict with the analysis of Corm, Gould,
and Toint (1991) given in Theorem 2.1. In fact, there are two possible explanations
for this apparent conflict: either the algorithm has not converged closely enough for
the final convergence of the matrices to be apparent (this is hard to test in finite
precision arithmetic) or an assumption of Theorem 2.1 must be violated. The two
assumptions of Theorem 2.1 that could possibly be invalid are (1) that the denominator
of the SR1 is not too small (2.1), and (2) the uniform linear independence condition.
In our experiments, (2.1) was violated at most once for each test problem, and so this
assumption does not appear to be a problem in the SR1 method. Thus we decided to
test whether the uniform linear independence condition is satisfied for these problems.

Since the uniform linear independence condition would be very hard to test due
to the freedom to choose m and " in the definition of uniform linear independence,

TABLE 4
Number ofproblems with IIBI- V2f(x,)ll/llV2f(xl)ll in indicated range (trust region methods).

10-4 [10-4, 10-3) [10-3, 10-2) [10-2, 10- [10-1 1) =>1

SR1 5 0 4 5 4 10
BFGS 0 0 5 7 7 9
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we have tested a weaker condition. For each value " 10-i, 1, 2,..., 8, we computed
the number of steps (say rn) required so that the smallest singular value of the matrix,,, composed of the final normalized m steps of the algorithm, is greater than "
(Sin--[sill[sill Sl_l/[[Sl_l[[,... ,Sl_(m-1)/l[Sl_(m_l)ll], where m-> n). Tables A6 and A7
contain the results of these experiments, which are summarized in Tables 5 and 6. A
"," entry in Tables A6 and A7 means that the smallest singular value is less than -even if all the iterates are used.

These results indicate that the uniform linear independence assumption cloes not
seem to hold for all problems, especially those with large dimensions. Therefore, in
the next section we develop a convergence result for the SR1 method that does not
make this assumption.

TABLE 5
Number of problems where O’min(m) > T for m/n in indicated range

(line search SR1 method).

m/n in

r 1, 2) [2, 3) [3 -4) [4- 5) [5 10) Never

10-1 7 3 3 6 8
10-2 12 0 3 5 7
10-8 12 0 4 4 7

TABLE 6
Number of problems where O’min(m)> "r for m/n in indicated range

(trust region SR1 method).

m/n in

[1,2) [2,3) [3-4) [4-5) [5-10) Never

10-1 4 3 0 3 6 12
10-2 12 0 3 5 7
10-8 13 0 0 3 5 7

3. Convergence rate of the SRI without uniform linear independence. As was indi-
cated at the end of the previous section, the condition of uniform linear independence
of the sequence {Sk} under which Conn, Gould, and Toint (1991) analyze the perform-
ance of the SR1 method may be too strong in practice. Therefore, in this section we
consider the convergence rate of the SR1 method without this condition. We will show
that if we drop the condition of uniform linear independence of {Sk} but add instead
the assumption that the sequence {Bk} remains positive definite and bounded, then
the line search algorithm, Algorithm 2.1, generates at least p q-superlinear steps out
of every n + p steps. This will enable us to prove that convergence is 2n-step q-quadratic.

The basic idea behind our proof is that, if any step falls close enough to a subspace
spanned by rn =< n recent steps, then the Hessian approximation must be quite accurate
in this subspace. Thus, if in addition the step is the full secant step -B-lVf(xk), it
should be a superlinear step. But in a line search method, for the step to be the full
secant step, Bk must be positive definite, which accounts for the new assumption of
positive definiteness of Bk at the good steps. In 4 we will show that empirically this
assumption seems very sound, although counterexamples are possible.
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Throughout this section the following assumptions will frequently be made.
ASSUMPTION 3.1. The function f has a local minimizer at a point x, such that

V2f(x,) is positive definite, and its Hessian V2f(x) is Lipschitz continuous near x,,
that is, there exists a constant 3’ > 0 such that for all x, y in some neighborhood of x,,

[[Vf(x) V2f(y)[[ <=
ASSUMPTION 3.2. The sequence {Xk} converges to the local minimizer x,.
We first state the following result, due to Conn, Gould, and Toint (1991), which

does not assume linear independence of the step directions and which will be used in
the proof of the next lemma.

LEMMA 3.1. Let {Xk} be a sequence of iterates defined by Xk+I Xk + Sk. Suppose
that Assumptions 3.1 and 3.2 hold, that the sequence of matrices {Bk} is generatedfrom
{Xk} by the SR1 update, and that for each iteration

(3.1) ]s(yk- BkSk)I >- rilSkll ]]Yk-- BkSk]],

for all i=>j+2, where r/,d max {I]xv xl[ lj s p i}, and 3" is the Lipschitz constant

from Assumption 3.1.
Actually, it is apparent from the proof of Lemma 3.1 by Conn, Gould, and Toint

(1991), that if the update is skipped whenever (3.1) is violated, then (3.2) still holds
for all j for which (3.1) is true.

In the lemma below, we show that if the sequence of steps generated by an iterative
process using the SR1 update satisfies (3.1), and the sequence of matrices is bounded,
then out of any set of n + 1 steps, at least one is very good. As in the previous lemma,
condition (3.1) actually must only hold at this set of n + steps, as long as the update
is not made when that condition fails.

LEMMA 3.2. Suppose the assumptions ofLemma 3.1 are satisfied for the sequences
{Xk} and {Bk} and that in addition there exists an Mfor which Bk <= Mfor all k. Then
there exists a K >- 0 such that for any set of n + 1 steps, 6f {Sk K <-- kl <--" <- kn+l},
there exists an index km with m {2, 3,..., n + 1} such that

where

and

II(Bkm V2f(x.))Sk.

max
ljn+l

Proof Given 5e, for j 1, 2,..., n + 1 define

[ s, s

We will first show that there exists m [2, n + 1] such that
has full column rank and is well conditioned, and w]] is very small. (In essence, either
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m n + 1, Sm_ spans n-space well, and w 0, or rn < n + 1, Sin_ has full rank and is
well conditioned, and Skin is nearly in the space spanned by Sm-1.) Then, using the
fact that (Bkm-V2f(x.))Sm- is small due to the Hessian approximating properties of
the SR1 update given in Lemma 3.1 above, and that w is small by this construction,
we will have the desired result.

For j {1,..., n}, let be the smallest singular value of Sj and define r,+ =0.
Note that

1 7-1 ,’1"2 7-n+l 0o

Let m be the smallest integer for which

(3.3) "1." 1In

7-"-1

Then since m _<-- n + 1 and "1.1 1,

(3.4) 7-"-1=7-1(7--1) \(7-"-I’’(ST"-2)/nE-I)/n7-"-2]
Since xk - x., we may assume without loss of generality that e (0, (1/4)’") for all

k. Now we choose z R" such that

(3.5) Smz 7-" z

and

where u R"-1. (The last component of z is nonzero due to (3.3).) Let w S"z. Then,
from the definition of S" and z,

Skin Sm_ll, W.(3.6)
I111

Since 7-m--1 is the smallest singular value of S"_ we have that

1
(3.7) I]ul]-_<

7-m

By (3.4) this implies that

(3.8) Ilull<

Also, using (.-3.5) and (3.7), we have that

llzll= "1.,.(1 + Ilull =) <_- , + (11 wll + 1).

Therefore, since (3.3) implies that "1." < eft", using (3.3),

(3.9) Ilwll = < / (11 wll / 1)- < 4/(11 w / 1)=.
This implies that

1In
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and hence Ilwll < 1, since e, < (1/4)". Therefore, (3.8) and (3.9) imply that

2
(3.10) Ilull < (n--1)/n,

1In(3.11) Ilwll <4e
This gives the desired result that w is small, as well as a necessary bound on Ilull.

Now we show that II(n-Vf(x,))_lll, je[2, n+l], is small. Note that this
result is independent of the choice of j. By Lemma 3.1 we have that

(3.12)

for all e {k, k2,... kj-jt}. Also, letting

G Vf(x + ts) dt,

we have

Gis V2f(Xi-1- tsi)s dt Vf(xi+l) -Vf(xi) Yi,

and by the Lipschitz continuity of V2f(x),

Ily,-V=f(x,)s, II(G,-V2f(x,))s,

I (V2f(x’+tsi)-V2f(x*) )si dt

(3.13) --< IIs, IIV=/(x,+ t,)-=f(x,)ll dt

--< lls, Ilxi + tsi x, dt

where 3’ is the Lipschitz constant. Therefore, using the triangle inequality and (3.12)
and (3.13), we have

(Bk.-V2f(x,)) lil
Si

--<- (2c + y)ese,

where

Z +1=2
and hence for any j e [2, n + 1 ],

(3.14) II(n-V=f(x,))S-ll =< v/-(2c + y) ese.
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Finally, using (3.6) and (3.14) with j-m, (3.11), and (3.10) we have that

[l(Bg V2f(x,))sg [[(B -V:f(x,))(Sm_,U- w)[[

--< Ilu 1l,/(2c + )o+ Ilwll(llB It + IIvf(x,) II)

<( )(2c+ y)ew+4e"(M+ Ilvzf(/,)ll)e 1)In

1In

e".

In order to use this lemma to establish a rate of convergence we need the following
result which is closely related to the well-known superlinear convergence characteriz-
ation of Dennis and Mot6 (1974).

LEMMA 3.3. Suppose the function f satisfies Assumption 3.1. If the quantities

ellx-x, and ll(B-V2f(x*))sll
IIsll

are sufficiently small, and if BkSk =--Vf(Xk), then

s e +

Proo By the definition of s,

f(x,s (f(x, s f(x,
so that

(3.5 s=-(x-x,+f(x,-[(f(x,-s-f(x+f(x,(x,-x,].
Therefore, using Taylor’s theorem and Assumption 3.1,

(3.16) IIx x, + sll [[vZ/(x,)-’[[ [[(v/(x,)- B)s[I+
Now it follows from (3.15) that if IIv=f(x,) ’1111(B-V2f(x,))sll/llsll, then by
Taylor’s theorem,

llsll lx-x,ll+lf(x,)-llllx-x,l 211x-x, ll,

ife is suciently small. Using this inequality together with (3.16) gives the result.
Using these two lemmas one can show that for any p > n, Algorithm 2.1 will

generate at least p-n superlinear steps every p iterations, provided that B is safely
positive definite, which implies that B is not peurbed in Step 2 and 0. In the
following theorem, this is proved and used to establish a rate of convergence for
Algorithm 2.1 under the assumption that the sequence {B} becomes, and stays, positive
definite. In a corollary we show that this implies that the rate of convergence for
Algorithm 2.1 is 2n-step q-quadratic. As we will see in the next section, our test results
show that the positive definiteness condition is generally satisfied in practice. We are
assuming here that if B is positive definite, then it is not peurbed in Step 2, i.e., we
are assuming that safely positive definite" just means positive definite.
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THEOREM 3.1. Consider Algorithm 2.1 and suppose that Assumptions 3.1 and 3.2
hold. Assume also that for all k >-O,

IST(Yk BkSk)l >= rllsl] IlYk BkSkll
for a fixed r (0, 1), and that there exists Mfor which B <= Mfor all k. Then, if there
exists a Ko such that Bk is positive definite for all k >-Ko, then for any p >-n + 1 there
exists a K1 such that for all k >-K1,

(3.17) ek+p <= aePk/,
where a is a constant and e is defined as IIx- x,

Proof. Since Vf(x,) is positive definite, there exists a K1,/31 > 0 and/3 > 0 such
that

(3.18) ,81[f(xk) f(x,)] ’/2 <----IIx x, II--< l[f(xk) f(x,)] ’/2

for all k >_-K1. Therefore, since we have a descent method, for all l> k >

</32

Now, given k> K we apply Lemma 3.2 to the set {s, s+,..., s+}. Thus there
exists 11 {k+ 1,..., k+ n} such that

(3.19) II(B"-Vf(x*))s"ll < o(2 )
(If there is more than one such index 11, we choose the smallest.) Equation (3.19)
implies that for llx,,- x,I sufficiently small, by Theorem 6.4 of Dennis and Mor6 (1977),
Algorithm 2.1 will choose Ah 1 so that xt,+l xh+ Sll. This fact, together with Lemma
3.3 and (3.19), implies that if e is sufficiently small, then

(3.20)

for some constant c. Now we can apply Lemma 3.2 to the set

{s. s+l. s+.. s+.+ l} { s,1}
to get l. Repeating this n-p times we get a set of integers 11 < l <... < lp_,, with
11 > k and lp_, < k +p such that

(3.21)

for each li. Now letting h [f(x)-f(x,)] 1/2, since we have a descent method,

(3.22) h+ <= h,
and using (3.18) we have that for our arbitrary k_->

(3.23) h + e + <=- ek/ e,, <--_ --l
for i= 1, 2,..., p-n. Therefore, using (3.22) and (3.23) we have that

h+p <= e l/ h,
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which, by (3.18), implies that

Therefore,

ek.

and 3.17 follows.
COROLLARY 3.1. Under the assumptions ofTheorem 3.1 the sequence {Xk} generated

by Algorithm 2.1 is n + 1-step q-superlinear, i.e.,

Ok+n+l
"O,

ek+2n
lim sup
k-, e

and is 2n-step q-quadratic, i.e.,

Proof. Let p n + 1 and p 2n in Theorem 3.1.
Note that a 2n-step q-quadratically convergent sequence has an r-order of (x/) 1/n.

Since the integer p in the theorem is arbitrary, an interesting, purely theoretical question
is what value of p will prove the highest r-convergence order for the sequence. It is
not hard to show that, by choosing p to be an integer close to en, the r-order approaches
e 1/en 1.441/n for n sufficiently large, and that this value is optimal for this technique
of analysis.

4. Positive definiteness of the SR1 update. One of the requirements in Theorem
3.1 for the rate of convergence to be p-step q-superlinear is that the sequence {Bk}
generated by the SR1 method be positive definite. Actually, the proof of Theorem 3.1
only requires positive definiteness of Bk at the p- n out of p "good iterations." In this
section, we present computational results to confirm that, in practice, the SR1 method
generally satisfies this requirement.

In Table A8 in the Appendix, in the fourth column, we report for each iteration
whether Bk is positive definite or not. The fifth column reports the percentage of iterates
at which the SR1 update is positive definite, and the sixth column contains the largest
number j for which all of B_(j_I,..., BI are positive definite, where B is the Hessian
approximation at the final iterate. The results of Table A8 are summarized in Table
7, which indicates that the SR1 formula was positive definite at least 70 percent of the
time on every one of our test problems. In light of this, and since Theorem 3.1 really
only requires positive definiteness at the "good steps" (at other steps all that is needed
is that f be reduced), the chances that superlinear steps will be taken at least every n
steps by the algorithm seem good. Another way of viewing this is the following. We
know from Theorem 3.1 that out of every 2n steps at least n will be "good steps" as
long as Bk is positive definite at these iterations. Thus if, for example, Bk is positive

TABLE 7
Percentage of iterations with B positive definite.

Percentage
Problems

<-70
0

[70, 90) [80, 90) [90, 100) 100
5 12 6 5
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definite at 80 percent of these 2n steps, at least 30 percent of the 2n iterates must be
"good steps."

We also tested the denominator condition that

(4.1) Is(Yk BkSk)l >= r Yk BkSk

where r 10-8 using standard initial points. The last column in Table A8, which reports
the number of times this condition was violated, indicates that this condition is rarely
violated in practice. This finding is consistent with the results of Conn, Gould, and
Toint (1988b).

Finally we present an example that shows that it is possible for a line search SR1
algorithm to fail to have Bk positive definite at all iterations, and to converge linearly
to the minimizer x.. This shows that the assumptions of Theorem 3.1 cannot be
guaranteed to hold. We then consider the same example in a trust region SR1 algorithm,
and show that it does not suffer from the same problems. This leads us to feel that it
may not be necessary to assume {Bk} positive definite in order to prove superlinear
convergence for a trust region SR1 method.

Example 4.1. Let

f(x)=x x, Xo= and B= 0

where tr < 0. At the first iteration, the algorithm will compute

1 + 6o 0 ]--1 80
Xl X0-- 0 O" + 8o

Vf(xo)
1 + 8o

Xo

for some 8o> -or, and accept this point as the next iterate. The SR1 update will produce
Yo-Boso 0, so that B1 Bo. The remaining iterates proceed analogously, so that for
each k, Bk Bo and

tk
l+6k

for some tk >--O, meaning that the rate of convergence is not better than linear with
constant Irl/(1 + I’1).

It is interesting to consider the behavior on the same problem of a trust region
SR1 algorithm that exactly solves the problem

(4.2) min 7f(x)7"s+1/2srBs subjectto [Is[l-<A
sR

at each iteration. If there exists /Zo such that Bo+/XoI is positive definite and ]](Bo+
tXoI)-lVf(xo)]] Ao, then as in the line search method,

=Xo and BI=Bo.Xl 1 +/Xo

Since aredo predo, the trust region radius is not decreased. Thus eventually at some
iterate k, we must have I1( / ,I)-f(x)ll <A for all/Xk > --Ak, where Ak < 0 is the
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smallest eigenvalue of Bk. In this case the solution to (4.2) is the step

Xk+ Xk--(Bk hkI)+Vf(Xk)- ve:
1

for a v 0 that makes IIs zx. (Here e (0, 1) r is the eigenvector ofB corresponding
to the negative eigenvalue.) It is then straightforward to verify that y-Bs
v(o-- 1)e, B/ I Vf(x), and x/= x,.

A practical trust region algorithm will not solve (4.2) exactly, but any algorithm
that deals with the "hard case" (when [[(Bk--hkI)+Vf(Xk)[l<Ak) well, such as
algorithms of Mor6 and Sorenson (1983), will have the same effect. That is, at some
point it will set

Xk+l Xk (Bk + tXkI)-IVf(Xk) Vk,

where v is a negative curvature direction for B. This implies that v[e O, which in
turn leads to B+ I and x+: x.. Thus the trust region method has the ability, for
this example, to correct negative eigenvalues in the Hessian approximation. This
indicates that it may be possible to establish superlinear convergence of a trust region
SR1 algorithm without assuming a priori either strong linear independence of the
iterates or positive definiteness of {B). This issue is currently under investigation.

5. Conclusions and future research. In this paper, we have attempted to investigate
theoretical and numerical aspects of quasi-Newton methods that are based on the SR1
formula for the Hessian approximation. We considered both line search and trust
region algorithms.

We tested the SR1 method on a fairly large number of standard test problems
from Mor6, Garbow, and Hillstrom (1981), and Conn, Gould, and Toint (1988b). Our
test results show that on the set of problems we tried, the SR1 method, on the average,
requires somewhat fewer iterations and function evaluations than the BFGS method
in both line search and trust region algorithms. Although there is no result for the
BFGS method concerning the convergence of the sequence of approximating matrices
to the correct Hessian like the one given by Conn, Gould, and Toint (1991) for the
SR1, numerical tests do not show that the SR1 method is more accurate than the BFGS
method in this regard. One reason for this, as indicated by our numerical experiments,
is that the requirement of uniform linear independence that is needed by the theory
of Conn, Gould, and Toint (1991) often fails to be satisfied in practice.

Under conditions that do not assume uniform linear independence ofthe generated
steps, but do assume positive definiteness and boundedness of the Hessian approxima-
tions, we were able to prove n + 1-step q-superlinear convergence, and 2n-step quad-
ratic convergence, of a line search SR1 method. We also gave numerical evidence that
the SR1 update is positive definite most of the time, and that one of the potential
problems of the formula, that of the denominator being zero, is rarely encountered in
practice.

An interesting topic for future research that was mentioned in 4 is the convergence
analysis of a trust region SR1 method, again without the assumption of uniform linear
independence of steps. It is possible that the assumption of the positive definiteness
of the Hessian approximations, which we showed is necessary and sufficient to prove
superlinear convergence in the line search SR1 method, may not be necessary to prove
superlinear convergence for a properly chosen trust region SR1 algorithm.
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Appendix.

TABLE A1
List of test functions, numbers, and names.

Number Dimension Name

MGH05 2
MGH07 2
MGH09 3
MGH12 3
MGH14 3
MGH16 4
MGH18 4
MGH20 6
MGH21 9
MGH22 10
MGH23 10
MGH24 10
MGH25 10
MGH26 10
MGH35 9
CGT01 8
CGT02 25
CGT04 20
CGT05 20
CGT07 8
CGT08 8
CGT10 30
CGTll 30
CGT12 30
CGT14 30

CGT16 30
CGT17 8
CGT21 30

Beale function
Helical valley function
Gaussian function
Box three-dimensional function
Wood function
Brown and Dennis function
Biggs Exp6 function
Watson function
Extended Rosenbrock function
Extended Powell singular function
Penalty function
Penalty function II
Variably dimensioned function
Trigonometric function
Chebyquad function
Generalized Rosenbrock function
Chained Rosenbrock function
Generalized singular function
Chained singular function
Generalized Wood function
Chained Wood function
A generalized Broyden tridiagonal function
Another generalized Broyden tridiagonal function
Generalized Broyden banded function
Toint’s seven-diagonal generalization of Broyden tridiagonal
function
Trigonometric function
A generalized Cragg and Levy function
A generalized Brown function

MGH: problems from Mor6, Garbow, and Hillstrom (1981).
CGT: problems from Conn, Gould, and Toint (1988b).

TABLE A2
Iterations and function evaluationsmline search.

Function

BFGS SR1

n itrn. f-eval rgx itrn. f-eval rgx sp

MGH05
MGH07
MGH09
MGH12
MGH14
MGH16
MGH18
MGH20
MGH21
MGH22
MGH23
MGH24

2 16 58 0.7E-06 14 52 0.1E-05
3 26 141 0.4E 05 30 142 0.4E 06
3 5 34 0.3E-05 3 26 0.2E-07
3 35 157 0.5E-06 21 99 0.6E-06
4 32 186 0.7E-05 26 160 0.5E-05
4 31 183 0.1E-05 21 133 0.3E-07
6 43 336 0.2E-05 37 302 0.6E -06
9 95 1020 0.2E-05 46 532 0.8E-05
10 34 461 0.9E-05 34 462 0.3E-05
8 45 464 0.7E 05 36 382 0.4E 05

10 135 1604 0.9E 05 204 2377 0.6E 05
10 25 358 0.7E-05 25 362 0.8E -05
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TABLE A2 (continued).

Function

BFGS SR1

n itrn. f-eval rgx itrn. f-eval rgx sp

MGH25
MGH26
MGH35
MGH05
MGH07
MGH09
MGH12
MGH14
MGH16
MGH18
MGH20
MGH21
MGH22
MGH23
MGH25
MGH26
MGH07
MGH14
MGH16
MGH20
MGH21
MGH22
MGH25
CGT01
CGT02
CGT04
CGT05
CGT07
CGT08
CGT10
CGTll
CGT12
CGT14
CGT16
CGT17
CGT21

10
10
9
2
3
3
3
4
4
6
9
10
8

10
10
10
3
4
4
9
10
8
10
8

25
20
20
8
8

30
30
30
30
10
8

20

16 259 0.7E 06 16 259 0.7E 06
27 374 0.3E- 05 27 375 0.2E- 05
25 320 0.2E-05 25 320 0.3E-06
47 154 0.3E-07 41 139 0.1E-06
29 136 0.6E 06 38 175 0.4E 07
20 98 0.1E-05 17 102 0.3E -06
66 286 0.5E-05 55 259 0.5E -05
58 316 0.6E-05 69 379 0.1E-06
59 322 0.3E-05 37 212 0.1E-05
45 361 0.3E-05 46 369 0.1E-05
95 1020 0.2E-05 46 532 0.8E-05
57 775 0.3E-05 60 813 0.4E-07
88 977 0.9E-05 67 793 0.3E-05

177 2080 0.9E-05 192 2235 0.9E-05
41 535 0.3E-05 23 337 0.3E-05
72 876 0.7E-05 43 560 0.9E-06
31 174 0.4E- 06 23 113 0.6E -07
118 625 0.5E-06 104 567 0.5E-05
89 472 0.2E 05 55 303 0.3E 06
95 1020 0.2E-05 46 532 0.8E-05
158 2185 0.8E-05 154 1906 0.5E-06
129 1227 0.4E 05 90 875 0.9E 05
472 5276 0.1E-04 335 3769 0.1E-04
71 707 0.5E -05 81 843 0.4E- 06
36 1315 0.7E-05 43 1505 0.6E-05
85 2049 0.9E 05 49 1291 0.5E 05

311 6797 0.8E-05 180 4055 0.9E-05
129 1273 0.3E 05 116 1132 0.4E 06
141 1348 0.5E-05 140 1347 0.1E-05
58 2328 0.9E-05 40 1770 0.7E-05
37 1686 0.3E-05 32 1526 0.8E-05

264 8734 0.6E-05 199 6734 0.5E-05
70 2699 0.5E-05 100 3640 0.9E-05
11 203 0.4E 05 11 204 0.2E 05

134 1269 0.8E 05 92 892 0.3E 05
12 504 0.2E-05 11 483 0.3E-09

10
10
10
10
10
10
10
10
10
10
10
10
10

100
100
100
100
100
100
100

TABLE A3
Iterations and function evaluations--trust region.

Function

BFGS SR1

itrn. f-eval rgx itrn. f-eval rgx sp

MGH05
MGH07
MGH09
MGH12
MGH14
MGH16
MGH18
MGH20
MGH21

2
3
3
3
4
4
6
9
10

15 57 0.3E- 06 16 68 0.5E- 05
27 133 0.1E-05 29 150 0.4E-06
5 38 0.3E 05 3 31 0.2E 07

32 150 0.3E-05 26 146 0.8E-05
46 265 0.4E-07 34 247 0.5E-05
33 188 0.1E-05 20 138 0.7E-05
43 341 0.9E-05 40 344 0.8E-05
88 957 0.3E-05 46 584 0.3E-05
42 555 0.2E-05 49 671 0.2E-06
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TABLE A3 (continued).

Function

BFGS SR1

itrn. f-eval rgx itrn. f-eval rgx sp

MGH22 8 41 428 0.6E 05 26 294 0.8E 05
MGH24 10 24 344 0.2E- 05 24 357 0.8E -05
MGH25 10 14 236 0.6E-05 14 236 0.6E-05
MGH26 10 27 373 0.2E -05 24 349 0.1E-05
MGH35 9 24 308 0.4E-05 21 285 0.3E-05
MGH05 2 45 160 0.9E-05 36 147 0.9E-06 10
MGH07 3 29 141 0.1E-05 33 171 0.4E -05 10
MGH09 3 21 112 0.8E- 05 15 84 0.9E 05 10
MGH12 3 62 292 0.9E- 06 19 122 0.7E- 05 10
MGH14 4 82 443 0.6E 06 74 467 0.8E 06 10
MGH16 4 59 324 0.5E-06 35 222 0.8E-07 10
MGH18 6 39 323 0.5E-05 51 437 0.6E-07 10
MGH20 9 88 957 0.3E-05 46 584 0.3E-05 10
MGH21 10 63 788 0.3E-05 58 800 0.2E-05 10
MGH22 8 94 913 0.5E-05 56 575 0.8E-05 10
MGH23 10 22 337 0.4E 05 113 1335 0.8E 05 10
MGH24 10 224 2609 0.1E -04 253 3140 0.1E-04 10
MGH25 10 36 488 0.7E-05 25 371 0.3E-05 10
MGH26 10 87 1040 0.7E- 05 48 650 0.1E- 05 10
MGH07 3 34 158 0.2E-05 22 118 0.2E-05 100
MGH14 4 85 471 0.1E-05 69 426 0.3E-05 100
MGH16 4 89 472 0.4E -06 52 311 0.1E-04 100
MGH20 9 88 957 0.3E- 05 46 584 0.3E- 05 100
MGH21 10 165 1941 0.2E- 05 149 2139 0.3E -06 100
MGH22 8 116 1127 0.8E-05 80 840 0.2E-05 100
CGT01 8 58 584 0.7E 05 80 848 0.8E 05
CGT02 25 45 1550 0.4E 05 46 1597 0.2E 05
CGT04 20 110 2579 0.3E- 05 89 2195 0.5E 05
CGT05 20 323 7048 0.5E-05 156 3645 0.8E-05
CGT07 8 123 1190 0.4E 05 139 1429 0.3E 06
CGT08 8 130 1255 0.9E-05 146 1524 0.5E-05
CGT10 30 58 2326 0.9E-05 42 1832 0.7E-05
CGTll 30 35 1619 0.3E-05 31 1493 0.5E-05
CGT12 30 62 2454 0.8E 05 44 1916 0.5E 05
CGT14 30 34 1582 0.8E-05 29 1452 0.5E-05
CGT16 10 11 204 0.4E 05 11 206 0.3E 05
CGT17 8 83 818 0.9E-05 74 802 0.8E-05
CGT21 20 12 504 0.2E 05 11 485 0.3E 09

TABLE A4
Testing convergence of {Bk} to V2f(x,)--line search.

Function

BFGS SR1

n itr IIH,- B, II/IIH, itr HI- Bl I/ IH,

MGH05
MGH07
MGH09
MGH12
MGH14
MGH16
MGH18

2 19 0.458E 04 16 0.686E 05
3 28 0.274E 04 33 0.175E 06
3 9 0.918E+00 4 0.918E+00
3 38 0.545E-04 24 0.147E-03
4 35 0.830E- 02 29 0.154E 04
4 34 0.928E 01 23 0.348E 04
6 47 0.234E + 01 40 0.234E + 01
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TABLE A4 (continued).

Function

BFGS SR1

n itr H, B, II/II H, itr IIH,- B, II/IIHII

MGH20
MGH21
MGH22
MGH23
MGH24
MGH25
MGH26
MGH35
CGT01
CGT02
CGT04
CGT05
CGT07
CGT08
CGT10
CGTll
CGT12
CGT14
CGT16
CGT17
CGT21

9 175 0.105E + 00 100
10 35 0.804E-01 34
8 74 0.161E+01 49

10 178 0.167E+04 215
10 348 0.177E-01 330
10 16 0.748E + 04 16
10 31 0.689E-01 31
9 28 0.834E + 00 26
8 73 0.393E-01 83

25 43 0.570E 01 50
20 500 0.133E +04 500
20 500 0.582E + 03 500
8 138 0.691E-01 124
8 147 0.425E 01 146
30 150 0.134E + 03 84
30 44 0.781E 01 37
30 273 0.384E +00 210
30 86 0.279E +00 107
10 18 0.466E -01 16
8 216 0.462E+00 125

20 16 0.124E+01 12

0.264E 02
0.645E-01
0.160E+01
0.167E+04
0.140E-03
0.748E+04
0.468E -01
0.833E +00
0.144E-01
0.317E-01
0.133E +04
0.503E+03
0.1lIE-01
0.492E 02
0.185E+03
0.448E-01
0.691E-01
0.303E + 00
0.385E-03
0.566E 01
0.120E+01

TABLE A5
Testing convergence of {Bk} to V2f(x,)--trust region.

Function

BFGS SR1

itr ]]Ht BtI]/]IH]]

MGH05
MGH07
MGH09
MGH12
MGH14
MGH16
MGH18
MGH20
MGH21
MGH22
MGH23
MGH24
MGH25
MGH26
MGH35
CGT01
CGT02
CGT04
CGT05
CGT07
CGT08
CGT10
CGTll
CGT12

2 17 0.235E-02
3 30 0.400E -02
3 9 0.918E +00
3 36 0.396E 02
4 47 0.216E 02
4 36 0.809E-01
6 47 0.234E + 01
9 157 0.261E-01
10 47 0.999E +00
8 77 0.277E+01
10 500 0.154E + 04
10 287 0.391E 02
10 15 0.103E+05
10 31 0.906E -01
9 28 0.880E+ 00
8 61 0.110E+00

25 51 0.228E + 00
20 500 0.314E + 04
20 500 0.104E +04
8 122 0.354E-01
8 138 0.532E-01
30 115 0.109E +03
30 40 0.982E-01
30 97 0.770E+03

18 0.102E-05
31 0.172E -05
4 0.918E +00
30 0.473E 02
41 0.290E -05
22 0.369E-04
40 0.234E + 01
99 0.176E-02
51 0.999E + 00
43 0.276E+01
149 0.218E+04
202 0.173E+02
15 0.103E+05
28 0.234E -01
23 0.880E + 00
81 0.275E-01
50 0.107E +00

500 0.248E + 04
500 0.671E +03
138 0.579E -02
139 0.405E 04
82 0.112E+03
34 0.690E 01
66 0.756E+03
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TABLE A5 (continued).

Function

BFGS SR1

n itr liB, B, II/IIHIII itr H, n II/II H,

CGT14
CGT16
CGT17
CGT21

30 46 0.220E + 00 40
10 16 0.523E-01 15
8 200 0.250E + 00 123

20 16 0.124E+01 12

0.160E-01
0.298E-02
0.117E-01
0.120E+01

TABLE A6
Testing uniform linear independence of {Sk}--line search.

f(x)

No. of steps so that O’mi (m)* >

n itr 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

MGH05 2 16 3 2 2 2 2 2 2 2

MGH07 3 33 4 3 3 3 3 3 3 3

MGH09 3 4 * * * * *
MGH12 3 24 14 5 3 3 3 3 3 3
MGH14 4 29 10 5 5 4 4 4 4 4

MGH16 4 23 6 4 4 4 4 4 4 4

MGH18 6 40 * * * * *
MGH20 9 100 74 70 67 64 63 62 61 60
MGH21 10 34 * * * * * * * *
MGH22 8 49 * * * * * * *
MGH23 10 215 77 77 77 77 77 77 77 77
MGH24 10 330 79 79 79 79 79 79 79 79

MGH25 10 16 * *
MGH26 10 31 30 16 10 10 10 10 10 10
MGH35 9 26 * * * *
CGT01 8 83 26 15 13 13 13 13 13 13
CGT02 25 50 47 28 25 25 25 25 25 25
CGT04 20 500 87 87 87 87 87 87 87 87
CGT05 20 500 87 87 87 87 87 87 87 87
CGT07 8 124 76 76 76 42 34 34 34 34
CGT08 8 146 45 45 45 45 45 45 45 45
CGT10 30 84 60 34 30 30 30 30
CGTll 30 37 35 33 30 30 30 30 30 30
CGT12 30 210 98 98 88 88 88 88 88 88
CGT14 30 107 59 36 36 36 36 36 36 36
CGT16 10 16 11 10 10 10 10 10 10 10
CGT17 8 125 67 45 42 34 34 34 34 34
CGT21 20 12 * * * * *

* [,/lls, ll, ,-,/11,-,11 s,-/ll,-ll], where m >- n.

TABLE A7
Testing uniform linear independence of {sk}--trust region.

f(x) n itr 10-
No. of steps so that O’min(m)*>

10-2 10-3 10-4 10--5 10-6 10-7 10--8

MGH05 2
MGH07 3
MGH09 3

18 3 2 2 2 2 2 2 2
31 5 3 3 3 3 3 3 3
4 * * * * * * * *
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TABLE A7 (continued).

f(x)

No. of steps so that O’min(m)*>

n itr 10- 10-2 10-3 10-4 10-5 10-6 10-7 10-s

MGH12 3 30 7 6 5 3 3 3 3 3
MGH14 4 41 8 5 4 4 4 4 4 4
MGH16 4 22 5 4 4 4 4 4 4 4
MGH18 6 40 *
MGH20 9 99 75 64 63 62 62 61 61 61
MGH21 10 51 * *
MGH22 8 43 *
MGH23 10 149 77 77 77 77 77 77 77 77
MGH24 10 202 79 79 79 74 74 74 74 74
MGH25 10 15 * *
MGH26 10 28 26 18 10 10 10 10 10 10
MGH35 9 23 * * * *
CGT01 8 81 32 17 13 12 12 12 12 12
CGT02 25 50 * 29 26 25 25 25 25 25
CGT04 20 500 88 88 88 88 88 88 88 88
CGT05 20 500 88 87 87 87 87 87 87 87
CGT07 8 138 76 76 50 43 41 41 41 41
CGT08 8 139 41 41 41 41 41 41 41 41
CGT10 30 82 * 59 36 32 30 30 30
CGTll 30 34 * 31 30 30 30 30 30 30
CGT12 30 66 * * * 60 40 31 30 30
CGT14 30 40 * 33 30 30 30 30 30 30
CGT16 10 15 12 10 10 10 10 10 10 10
CGT17 8 123 73 49 39 34 33 33 33 33
CGT21 20 12 *

[,/11,11, s,_,llls,_,ll ,-/11,-11], where m >- n.

TABLE A8
Testing positive definitenessmline search.

f(x) n itr 0: Indefinite; 1: Positive definite %pd 1" 2*

MGH05
MGH07
MGH09
MGH12
MGH14
MGH16
MGH18
MGH20

MGH21 10 34
MGH22 8 36
MGH23 10 204

MGH24
MGH25
MGH26

2 14 1111111111111 1.00 13
3 30 11111101111011110111111111111 0.90 12
3 3 11 1.00 2
3 21 11111111111111111111 1.00 20
4 26 1111111101111110111110111 0.88 3
4 21 10111111111111111111 0.95 18
6 37 111111100111111111111111011111111111 0.92 11
9 46 1111011111111111011111011101101111110

11111011
111011111110111101001111111111111
11111101011111111111111110111111111
111111111111111111101111111111101111
111011101101101001101001111011110111
111111011010001111100111111101110011
111101011111101111010100110101111110
111101101111111010011011101111011001
11111011111101111110111

25 111111101110111110111111
16 111111111111111
27 11101110111011101101110111

10
10
10

0.84 2
0.85 13
0.91 9

0.77 3 0
0.88 6
1.00 15 0
0.77 3
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TABLE A8 (continued).

f(x) n itr 0: Indefinite; 1: Positive definite %pd 1" 2*

MGH35 9
CGT01 8

CGT02 25

CGT04 20

CGT05 20 180

CGT07 8 116

CGT08 8 140

CGT10 30

CGTll 30 32
CGT12 30 199

CTG14 30 100

CGT16 10
CGT17 8

CGT21 20

25 111110110111110111111111 0.88 9
81 111111110011010011110101101111110100

110111111011011101100110111011111011
11111111 0.75 10

43 111111110011111110011011011011011111
111111 0.81 11

49 111111111101111111011111101111111111
111111111111 0.94 22
111111111011111011111111111101110111
111111111111111010111101111111110111
111111110111011010001110111111101111
111111111010111111011011111001110111
11111111111110111111111111111111111 0.87 21
111111111111111110111111101000011011
010010011111101011010011011101111011
011111111111111101111011110110111111
1111111 0.78 13
111111110110111110111011111101101101
111110011011111101101110011011110100
110110000000011110111111001110100111
1110110011010011011111010111111 0.70 6

40 111111111111111111111111101111111111
001 0.92
1111011101111111110111011111111 0.87 8
111111111110111111110110111101111111
111110110111110111011101110111110111
011111111110111011111101100111111010
110011111111111010101101111111101011
101111110011111011111110110011011111
110101011101111101 0.80
111010111110111011101110011110110111
111111101110111101101111111010101111
111111111111110111111111111 0.83 12

11 1111111111 1.00 10
92 111111011111111101111110111101101111

011111100111111111101111101111111101
1111111110111111111 0.87 9

11 1110101111 0.80 4

1"" Number of consecutive iterations where B was positive definite immediately prior to the termination
of the algorithm.

2*" Number of iterations where the SR1 update is skipped because condition (4.1) was violated.
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A CUTTING PLANE APPROACH TO THE SEQUENTIAL ORDERING
PROBLEM (WITH APPLICATIONS TO JOB SCHEDULING

IN MANUFACTURING)*
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Abstract. The sequential ordering problem (SOP) finds a minimum cost Hamiltonian path subject to

certain precedence constraints. The SOP has a number of practical applications and arises, for instance, in
production planning for flexible manufacturing systems. This paper presents several 0-1 models of the SOP
and reports the authors’ computational experience in finding lower bounds of the optimal solution value
of several real-life instances of SOP. One of the most successful approaches is a cutting plane procedure
that is based on polynomial time separation algorithms for large classes of valid inequalities for the associated
polyhedron.

Key words, traveling salesman problem, sequential ordering problem, linear ordering problem, pre-
cedence constraints, cutting plane algorithm, separation algorithm, polyhedral combinatorics
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1. Introduction and problem definition. Problems for the flexible manufacturing
systems we are considering (see, e.g., [6]) can be phrased in graph theoretical ter-
minology in the following way. We are given a directed or undirected graph where an
arc or edge represents the possibility of performing two tasks consecutively and where
a (e.g., transportation or set-up) cost is incurred by changing from one task to another.
In addition, some precedence relations are given that specify that some tasks have to
be executed before certain others. The problem is to schedule all jobs at minimum
cost, i.e., to find a feasible Hamiltonian path, say of minimum cost, where is
called feasible if it does not violate the precedence constraints.

In this paper (and in the real application that motivated this work) the given
graph is the complete directed graph Dn (V, An) on n nodes. (An application, where
the given graph is undirected, can be found in [22].) We denote an arc going from
some node to another node j by (i,j) and the associated cost by c0. The precedence
constraints are given by a digraph P (V, R), on the same node set V as Dn, where
an arc (i, j) R means that task has to be performed before task j. Clearly, this
precedence digraph P has to be acyclic (i.e., may not contain a directed cycle). Moreover,
if (i,j), (j, k) R then k cannot be performed before i; in other words, we can also
assume that P is transitively closed.

So the precedence constraints are given by an acyclic and transitively closed
digraph P (V, R). Using this notation we call a Hamiltonian path in Dn feasible if
(j, i) R holds for all i<j, where i<j means that there is a directed path from node
to node j in the Hamiltonian path.
Now we can state the sequential orderingproblern (SOP) formally. Given a complete

digraph Dn=(V, An) with costs cij for all (i,j)An and a transitively closed acyclic
digraph P (V, R), find a feasible Hamiltonian path in Dn that has minimum cost.

If the precedence digraph P V, R) has empty arc set, the SOP reduces to finding
a minimum cost Hamiltonian path in Dn. This is an NP-hard problem and so is the
SOP. Our main concern here, though, is not an algorithm for the "pure" Hamiltonian
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path problem (or, equivalently, the asymmetric traveling salesman problem, ATSP)
but a method that deals with precedences.

This paper is organized as follows. In 2 we present three different 0-1 models
ofthe SOP, in particular, some classes of inequalities valid for the associated polyhedra.
Polynomial time separation algorithms for some of these classes are described in 3.
Further classes of valid inequalities are discussed in 4. In 5 we present some
preprocessing procedures for our cutting plane algorithm that help reduce the instance
sizes. The implementations of the cutting plane algorithm are outlined in 6; our
computational results are reported in 7.

2. 0-1 Models. The SOP, in the form stated here, seems to have been formulated
for the first time in [4]. The aim of [4] and the subsequent paper [5] was the design
of a heuristic that performs well in practice with respect to running time and solution
quality. It was decided, however, to analyze the quality performance of the heuristic
before using its implementation in a production planning system.

Before describing the 0-1 model of the SOP introduced in [4], we introduce the
following notation.

Let Dn (V, An) be the complete digraph of n nodes and let P (V, R) be a
transitively closed, acyclic subdigraph of Dn. We set

(2.1a) / := {(j, i) Vx Vl(i,j)R},

(2.1b) / :- {(i, k) Vx V[::lj with (i,j), (j, k) R},

(2.1c) A := An\(/ /).
Note that a feasible Hamiltonian path can contain neither an arc from R nor an arc
from R, while for each arc in A there is some feasible Hamiltonian path containing
this arc. We thus call A the feasible arc set and D (V, A) the feasible subdigraph of
Dn. Furthermore, set

(2.2a) a:= l+l{il(i,k)R}l k V,

(2.2b) :=n-l{Jl(k,j)RI[, ke V.

It is clear that ak 1 (respectively, n--ilk) is the minimum number of predecessor
(respectively, successor) nodes for node k in any feasible Hamiltonian path.

Let us introduce the following two types of variables. For each arc (i,j) A, xo
is a 0-1 variable that indicates whether (i,j) is in the Hamiltonian path (i.e., x0= 1)
or not. (We do not need variables for the arcs from An\A.) The second type are 0-1
variables kh for k, h V, which are auxiliary variables that help to model the precedence
constraints, such that kh 1 means that node k is to be sequenced at level h for
ak <---- h <- flk and, otherwise, zero.

To obtain a compact formulation we introduce further terminology. If F is a
subset of A we abbreviate the sum Y(i,)F XO by x(F). If W is a subset of V then
A(W)={(i,j)Ali,j W}. Ifj V then 8+(j)={(j,k)A} and 6-(j)={(i,j)A},
and if, moreover, W_V\{j} then (j:W)={(j,k)AIkW} and (W:j)=
{(i,j) Ali W}. Let us now assume that, in addition to Dn V, An) and P V, R),
costs c E for all (i, j) A are given.

The model introduced in [4] is as follows.

(2.3) h* min c’x subject to

(1) x(A)=n-1,

(2) x(8-(j))-< 1 for all j V,
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(3) x(+(j)) <_- 1 for all j V,

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

xo>-O for all (i,j)6A,

x(A(W))<-[WI-1 for all Wc V, 2<=lWl<=n-1,
x0{O; 1} for all (i,j)A,

kh 1 for all h V,
klotk h fl

kh=l for all kV,

h,sCih, + 1 _--< hjh for all (i, j) g\R,
aihi -fli ajhjflj

:ih/j+,<_--I forall(i,j)A.\A, max{a,,cj-l)<-_h<-min{,,j-1),

kh(O;1) for all kV, Ck -<h--<ilk,

:/j+,_--<I/Xj forall (i,j) A, max {a,, j -1) <-_ h <- min {,, j-1).

We briefly indicate the logic of the model. In analogy to the well-known 0-1 model
of the ATSP, constraints (1)-(6) provide an IP-formulation of the Hamiltonian path
problem in D= (V, A). Inequalities (5) are called, as usual, subtour elimination con-
straints (SECs).

Constraints (7)-(12) ensure that the given precedence constraints are observed.
Constraints (7) (respectively, constraints (8)) force one node (respectively, level) per
level (respectively, node). Constraints (9) prevent reverse sequencing for pairs of nodes
that are linked by direct precedence relationships. Constraints (10) prevent illegal
immediate sequencings. Finally, constraints (12) are the so-called linking constraints

that integrate submodels (1)-(6) and (7)-(11).
Clearly, there are a number of model improvements possible, e.g., turning some

of the inequalities into equalities, etc., but we state here only the basic model.
The computational experience with this model reported in [4] and [5] was unsatis-

factory with respect to the integrality gap, i.e., in a number of cases the relative deviation
(AH- ALR)/ALR was rather large, where AH gives the cost of the solution found by the
heuristic algorithm, and ALR is the lower bound of the optimal value A* obtained from
the (restricted) Lagrangian relaxation of model (2.3) used in [4]. Such a gap has one
of the following causes. Either A H or ALR, or both, are far away from A*. The belief
was that AH was good and ALR poor. This belief motivated the introduction and
investigation of further 0-1 models of the SOP, which is the subject of the rest of the
paper.

The first new model requires two types of variables. The first type are 0-1 variables

xi with the same meaning as before. The second type are real variables Y0 for all
(i, j) A,, which are auxiliary variables that help to model the precedence constraints.

Our first new model of the SOP is as follows.

(2.4) A*=min c’x subject to x satisfies (2.3) (1)-(6) and

(7)

(8)

(9)

(10)

Y0=I for all(i,j) 6R,

Yo + YJi 1 for all (i, j) A.,

Yg + Yjk + Yk <---- 2 for all i, j, k V,

yj>=0 for all (i,j)eA,,

(11) xo-yo<-O for all (i,j)E A.
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If we add integrality constraints to (8)-(10), we obtain a well-known 0-1 formulation
of the linear ordering problem; see [10]. In our case, integrality stipulations for the
yi’s are not needed, since integrality of the x’s implies integrality of the y’s via (11).
Constraints (7)-(11) ensure that the given precedence constraints are observed. Clearly,
there are a number of model improvements possible, e.g., we can also skip some of
the variables Yij’s, turn some of the inequalities to equalities (see 5), etc. These obvious
modifications have been done in our implementation. We state here only the basic
model for notational ease.

A nice feature of model (2.4) is that it combines two well-known combinatorial
optimization problems in a natural way. Looking at this model we can say that the
SOP is the Hamiltonian path problem plus the linear ordering problem integrated
through the linking constraints (11). An obvious disadvantage of this model is the use
of the auxiliary variables yo’s. In fact, we can get rid of these by replacing (7)-(11)
by a new class of constraints of size exponential in n.

Our second new model of the SOP is as follows.

(2.5) A*=min c’x subject to x satisfies (1)-(6) and

(12) x((j: W)) + x(A(W)) + x(( W: i)) <-IWI
for all (i,j) R and all We_ V\{i,j}.

We call the inequalities (12) precedence forcing constraints (PFCs). It is obvious that
every feasible solution of (1)-(6) and (12) is the incidence vector of a feasible
Hamiltonian path and vice versa.

Although model (2.4) provides a nice interpretation of the SOP as a combination
of two other well-known problems, our computational experience (see below) shows
that model (2.5) is a more natural setting for the SOP, given the type of separation
algorithms that we propose.

Both models give rise to polyhedra associated with the SOP. We only introduce
here the one arising from (2.5). Let D --( V, A) be the complete digraph on n nodes,
let P V, R) be a transitively closed acyclic subdigraph of Dn, A := An\(/ U/), and
set

(2.6) SOP (n, P) := cony {x RA[x satisfies (1)-(6), (12)}.

SOP (n, P) is called the sequential ordering polytope associated with Dn and P, since
every point that satisfies (1)-(6) and (12) is an incidence vector of a feasible Hamiltonian
path, i.e., a feasible solution of the SOP. The study of the structure of this polytope
(dimensions, facets, etc.) is of course of particular interest for the solution of the SOP.
It is clearly closely related to the study of the ATSP polytope; see [16]. The scope of
the present paper is, however, computational and there is no space here to discuss
even some of the basic polyhedral facts about SOP (n, P).

3. Separation algorithms. The cutting plane algorithms we are going to describe
follow the standard scheme described in, e.g., [3], [8]-[10], [13], [16], [20], and [21].
One of the main ingredients of such an algorithm are routines that check whether a
given point (usually the optimum solution of the last LP relaxation solved) satisfies
all inequalities of some given class of constraints and, if not, output at least one
inequality of this class violated by the given point.

Such procedures are called separation algorithms; see 11] for some theory behind
this approach. Of course, we are interested in separation algorithms that run in
polynomial time.
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In this section we describe polynomial time separation algorithms for the subtour
elimination constraints (SECs) (2.3) (5) and the precedence forcing constraint (PFCs)
(2.5) (12); see also [1]. Note that both classes contain a number of inequalities that
is exponential in n. (Note also that constraints (1)-(6) of model (2.3) are inherited by
models (2.4) and (2.5).)

We begin with the SECs. The input of our separation algorithm is a point z QA.
We assume that z0 => 0 for all (i, j) A; we do not require that z satisfies constraints
(1)-(3) of (2.3), i.e., our algorithm will handle more general situations than those
arising in models (2.3), (2.4), and (2.5). The output of the algorithm provides either
the statement that z satisfies all inequalities

(3.1) x(A(W))=lWl-1 for all W_ V, 2lwln,
or it provides a node set W

_
V, 2 =<lwl =< n such that z(A(W)) >lwl- 1. In fact (this

will be clear from the description of the algorithm), we can even find a node set W
such that z(A(W))-IW[+ 1 is as large as possible, i.e., a most violated SEC can be
identified.

For this purpose we construct a (first) auxiliary digraph Do Vo, Ao) as follows.

(3.2a) Vo V LJ {0}, where 0 is a new node,

(3.2b)

(3.2c)

A := {(i,j) alzo > 0},

Ao:= AZ t_J {(0, v)lv V}t_J {(j, i)](i,j)6A and (j, i)AZ}.

In other words, we make Dz= (V, Az) symmetric by reversing arcs and add a source
zero that is linked to all nodes in Dz. We solve the separation problem for the SECs
(5) by reducing it to a sequence of min-cut problems. To do this we introduce (auxiliary)

o for the arcs of Do in the following way. First, we setcapacities cij

(3.3) ’ z(6-(j))+ z(6+(j)) for all j V
o byand we define the capacities c o

(3.4) Co := 1-1/2’ + M for all j V,

where M is a positive number chosen such that Co -> 0 for all j V. Furthermore, we set
o o(3.5) c j := c := 1/2(z + z) for all i, j) AZ.

(In case (j, i): A for some (i,j) A we assume zo to have value zero.)
Now we introduce n further auxiliary digraphs that are slight modifications of

Do as follows For every k V we define a digraph Dk (Vk, Ak) with capacities ckij
by setting

(3.6a)

(3.6b)

(3.6c)

(3.6d)

A,:=Ao(_J B, where B,={(v,k)]v V\{k}},
o for all (i,j) Ao,C/ :-- Cij

c := M for all (v, k) B.
(In (b) above 0 means disjoint union, i.e., if Ao contains an arc from Bk, we add a
parallel one.)

(3.7) SEPARATION ALGORITHM FOR THE SUBTOUR ELIMINATION CONSTRAINTS.
Input. A point z A satisfying z0. => 0.
Output. At least one node set of cardinality between 2 and n, such that the

corresponding SEC is violated by z, or the information that no such node set exists.
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For each k e V do:
1 Construct the digraph Dk (Vk Ak) with capacities ckij as outlined before; see

(3.6).
2. Use a max-flow algorithm to determine a (0, k)-cut 3-(Wk) in Dk (i.e., a cut

separating 0 and k such that k e Wk, 0_ Wk), SO that its capacity ck(6-(Wk))
is as small as possible.

3. If ck(6-(Wk))<nM+I then x(A(Wk))<=IWk]-I is a SEC violated by z.
End For

If the above procedure does not output a violated constraint then z satisfies all SECs.
LEMMA 3.8. If, for all k V, the minimum capacity of a (0, k)-cut in Dk is not

s,nalte than nM+ 1, then z satisfies all inequalities z(a( W)) <- WI 1, W
_

V, 2 <= WI <-_

n. lf, for some k V, there is a (0, k) -cut 6 (Wk), Wk
_

V, 2 <- Wkl <---- n with ck 6 (Wk)) <
nM+ 1, then z(a(Wk)) >lWk[- 1.

Proof The capacity cg(6-(Wk)) of any cut 3-(Wk) in Dk with 0 Wk, k Wk is
nothing but IWkl--z(A( Wk))+ nM. This can be seen as follows.

c(-(w)) 2 Cow+ C " 2 Cvk
W V\ W Wk{(V,w)A ve V\ Wk[(v,k)eB

2 Cw+ C -4r" 2 C vk
W V\W Wkl(V,w)A vG V\ Wkl(V,g)GB

1
+- (Zw+w)
2 (u,w)-

w (A( W)) + ..
Therefore, z(A(Wk)) Wk-- holds if and only if ck(-(Wg)) 1 + nM holds.

If there is a cut 6-(Wk) with ck(6-(Wk))< 1+ nM we still have to show that
2. But this is obvious. Since k Wk, Wg] 1. If Wk {k} then ck(6-(k)) 1 + riM.

And therefore, ck(6-(Wk)) < 1 +nM implies Wk] 2. Finally, note that by construction
Wk V is a possible solution.

Remark 3.9. The separation algorithm for the SEC (3.7) (plus nonnegativity
constraints) can be solved by calling n times a max-flow algorithm and is thus solvable
in polynomial time.

For the best running time of max-flow algorithms currently known, consult the
survey article [2].

Algorithm (3.7) handles a more general situation than we need in the present
application. If we assume that the given vector z QA satisfies the cardinality constraint
(2.3) (1) in addition to the nonnegativity constraints (2.3) (4) then the node set whose
related SEC is violgted is such that ]Wk n- 1. To see this, note that ck(6-(V))=
]V- z(A(V)) + nM 1 + nM and so Wk V from Lemma 3.8.

Conversely, if we assume that the given vector z QA satisfies the star constraints
(2.3) (2) and (3) we can reduce the separation problem to a min-cut problem in an
undirected graph (see 1]) and therefore apply the Gomory-Hu algorithm or any other
efficient algorithm to compute a minimum capacity cut. We outline this fuher reduction
briefly. Note that if z satisfies (2.3) (2) and (3), then 2 (see (3.3)) for all j V and
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thus the number M needed in (3.4) can be chosen as zero. This implies that the arc
sets Bk introduced in (3.6) and thus the auxili,ary graphs~ Dk, k V, are not needed.
Moreover, we can symmetrize Do to a digraph D Vo, A) with capacities (0 by setting

(3.10a) .:= AoU {(v, 0)lv V},
o o 1/2(zo + z,) for all (i, j) Ao(3.10b) g0 := i := ci cji

(3.10c) C’o := to for all v V.

Let G= (Vo, E) be the undirected graph underlying /= (Vo, ,) with capacities g’0
defined by

(3.11a) E {iji(i,j) ,2,},
(3.11b) g0 := c’0 for all ij E.

G has the property that g((W)) t(-(W)) t(/(W)) for any W V, where
+(W) -( V\ W). Thus a cut (W) in G with capacity g’((W)) as small as possible
corresponds to a minimum capacity cut -(W) in D and vice versa.

This construction shows that the separation problem for the SECsunder the
assumption that the given point satisfies (2.3) (2)-(4)can be solved by any algorithm
that determines a minimum capacity cut in an undirected graph.

Although the worst case complexity of algorithm (3.7) and the method outlined
above are about the same, the latter approach works much better in practice, at least
if one uses the method described in [18], as we did.

Let us now turn our attention to the precedence forcing constraints, the PFCs,

(3.12) x((j W)) + x(a( W)) + x(( W" i)) <_-Iwl
for all(i,j)R and all Wc__V\{i,j}.

As above, we reduce the separation problem for (3.12) to a series of min-cut problems.
We assume that a point z Ia satisfying zij >= 0 for all (i,j) A is given and we

want to find an inequality of (3.12) that is violated by z, if one exists. We do this by
constructing, for each arc (i,j) R, a min-cut problem that proves whether or not (3.12)
is satisfied for all W c_ V\{i,j}.

For every arc (i, j) R of the precedence digraph P V, R), we introduce a new
digraph Dij (Vj, Ao) with capacities d ’ as follows.

(3.13a) Vij:=(V\{i,j})U{vo} where vij is a new node,

(3.13b) A:={(i,j)A[zij>O},
(3.13c) A={(k,l)l(k,l)A,k, lff:{i,j}}U{(vo, l)l(j,l)A,lC:{i,j}}

I..J {(k, vi) (k, i) AZ, k C: {i,j}},

(3 13d) d := for all (k, l) A0 f’l Akl Zki

(3.13e) d ,jl := Zjl for all (j, l) Az,
(3.13f) d := Zk for all (k, i) Az.kt)ij

See Fig. 1 for an illustration. Observe that D; is obtained from D V, At) by deleting
all arcs directed into j, all arcs leaving i, all arcs between and j, and by identifying
the nodes and j. The capacities are just the values of the (positive) components
of z.

The PFCs concerning (i,j) R and D,

(3.14) x((j" W))+x(A(W))+x((W’i))<=IW[,
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FIG. 1. Original and shrinking graphs ofprecedence relationships.

can be written using this transformation in the form

(3.15) x(A( Wt3 {v/j})) =<]W[ W {vij}l- 1

with respect to the digraph Do. In other words, to check the PFCs concerning (i, j) e R,
we have to determine whether the SECs

(3.16) x(A(T))<_-II’[-1 for all I V0, v0 I and

for Do are satisfied by z. (Recall n VI and then n- 1= IV01.) If we can determine a
node set ff’_ V0 with v0 if, 2 [ff[ n 1, such that z(a(ff)) >ff]- 1 then, for
W:= {v0} z((j" W))+z(A(W))+z((W’i))>]W[ obviously holds. If no such
exists, all inequalities (3.14) concerning (i,j) R are satisfied.

By repeating this procedure for all (i, j) R we can solve the separation problem
for (3.12).

Our task now is to solve the separation problem for (3.15). This can be done by
a simplified version of algorithm (3.7). Let g vo. Normally, we only have to construct
in step 1 of (3.7) the auxiliary digraph D (V, A) with capacities c (associated
with the shrunk node g) from digraph D (E, Aij with capacities d , and perfor
steps 2 and 3 for this case. If in step c of (3.7) a node set W V with g W, 0 W
is identified with c(8-(W))< +(n-1)M then

(3.17) z(A())>ll- 1

holds and thus the associated precedence forcing constraint is violated. Otherwise,
these constraints are satisfied by z. We still have to check whether I"I->_ 2 holds. But
this is obvious since tr W and c(6-(tr)) + (n 1)M. This shows that the separation
problem for precedence forcing constraints can be solved in polynomial time for any
zQa (with z>=0). (Note that I= V0 is allowed in (3.16) and, then, W= V\(i,j) is
also allowed.)

If we require that the given ZQa satisfies (2.3) (2) and (3) in addition--as is
the case in our applicationmwe can set the number M equal to zero. This, in fact,
simplifies the algorithm a little.

The overall running time of our separation routine for the precedence forcing
constraints is at most O(IR[t) where is the running time for the max-flow algorithm
used in step 2. of (3.7). We use the algorithm given in [7].

4. Further inequalities. We note that the sequential ordering problem is closely
related to the ATSP and that any inequality valid for the ATSP polytope P can be
brought into a form that is valid for the SOP polytope SOP(n, P) and valid for the set
of solutions of (2.3), (2.4), or (2.5).
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The classes of valid and facet-defining inequalities for P- (known by 1985) have
been surveyed in [16]. In recent years further classes of valid and facet-defining
inequalities for P- have been discovered by Balas, Chopra, Fischetti, and Rinaldi,
among others. Surveying these achievements here is beyond the scope of this paper.
We simply mention those (few) classes of inequalities that we considered in our
computations.

The first class consists of the so-called Tk-inequalities (most of them facet defining
for P-) introduced in [8]. They are defined as follows. Let k => 2 and let W

_
V be a

node set such that [W[ k, w W, and i,j V\ W. Then, the inequality

(4.1) x,/X,w/Xw/x(A(W))<-_lwl
is called a Tk-inequality. Using algorithm (3.7) for the separation problem of the SECs
one can easily design a polynomial time algorithm for Tk-inequalities for all k. We
did not implement this procedure but used a heuristic to check this type of inequality
for k 2, 3, 4.

Other classes of inequalities, facet defining for P-, can be derived by lifting cycle
constraints (see [8], [12], and [16]); we use two of these. They are as follows.

For any ordered set of nodes {i, i2,..., ik} c V, 3 k <= n 1,
k-1 k-1 k-1 g-1

(4.2) xigig+l -- Xikil + 2 xigi| - 2 Xigih k- 1
g g =2 g =3 h =2

is called a D--inequality and

k-1 k k g-1

<k-1(4.3) Xigig+l "[- Xik, "q- 2 Xil ig
.ql_ Xigih

g g =3 g :4 h =3

is called a D--inequality. All D+
k- and D-inequalities are valid with respect to

We do not know how to solve the separation problem for D{- or D;-inequalities
in polynomial time unless we fix k and enumerate. This is a ridiculous procedure for
large k, but we implemented it for k {3, 4}.

There are two more liftings of four-cycle inequalities that are facet defining for
P- and that we checked by enumeration. These inequalities are of the following types.
Again let il, i2, i3, i4 be four nodes of V; then the inequalities

(4.4) Xigig+l "At- Xi4il - 2Xizq d- Xi2i4-Jf Xi3il-- Xi4i3--
g:l

(4.5) Xigig+l f- Xi4il-- 2Xi, i3-1- 2Xi3 q <-3
g:l

are valid for SOP (n, P). Clearly, they are only useful if all arcs used in (4.4) or (4.5)
occur in A.

We are aware of the fact that there are more valid and facet-defining inequalities
for P- that might be of interest for solving the sequential ordering problem. For
instance, the class of two-matching inequalities (in their asymmetric version) could
also be considered, in particular, since a polynomial time separation routine is available
that is a straightforward adaptation of the method of Padberg and Rao [17] designed
for the symmetric case. Moreover, comb and clique tree inequalities could be used in
their asymmetric form since they turned out to be very useful for solving the symmetric
TSP in practice (see [9], [19], and [20]). In our case, however, the scope was more
limited towards finding good lower bounds for not too large problem instances and,
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due to the requirements from practice, no attempt was made to solve the given problems
to optimality. Clearly, if one intends to attack truly large scale SOP instances all these
classes of inequalities have to be considered.

We should also mention that the idea to separate by enumeration the "small
inequalities" listed above was motivated by studying fractional solutions that could
not be cut off by SECs or PFCs. The "small inequalities" frequently did the job.

Let us remark, moreover, that most of the inequalities for P can be extended to
take care of precedences in the same way as the SECs were extended to PFCs. To give
an example, take the inequality (facet defining for P)

(4.6) Xili2"-[- Xi2i3 + Xi3il -[- 2Xi:i < 2.

Assume that (i,j) belongs to R and that the node vi obtained by identifying nodes
and j (see (3.13)) is the node i; then the inequality

(4.7) xi+ xi2i3 "qt- xi3i- 2xi2i 2

is valid for SOP (n, P). This type of SOP extension can be made in various ways. We
have implemented separation routines for a few of them but do not want to discuss
the simple but rather technical details.

5. Preprocessing. A (usually important) part of a cutting plane procedure consists
of analyzing the given problem instance in order to discover some structure that helps
to decompose the instance, to reduce its size, or to tighten the IP-formulation by
turning some inequalities into equations, fixing certain variables, etc.

We do not want to elaborate on all preprocessing routines that we have imple-
mented; we simply list a few of the straightforward cases. We concentrate here on the
IP-formulation (2.5) of the SOP. Suppose the complete digraph D (V, A) with cost

c for all (i, j) A, and the acyclic and transitively closed precedence digraph P V, R)
are given. In a first step we determine the node sets V- and V+ as follows:

(5.1a) V-= {v V]=l(i, v) R, v},

(5.1b) v+-{v Vll(v,j)R,jv},

i.e., V- is the set of nodes that have predecessors in P, and V/ is the set of nodes that
have successors in P. It is obvious that the inequalities (2) and (3) of (2.3) can be
transformed into

(2’) x(6-(j)) 1 for all j V-,

(2) x(6-(j)) _<- 1 for all j 6 V\ V-,

(3’) x(6+(j)) 1 for all j V+,
(3) x(6+(j)) -< 1 for all j V\ V+.

Since we drop all variables corresponding to arcs in A,,\A it may happen that by
logical implication some of the inequalities (2) or (3) can also be turned into equations.
This type of analysis is made not only in the preprocessing phase but also in all later
steps when certain variables can be fixed to zero or 1. due to reduced cost criteria.
Again, we do not want to discuss the obvious and well-known details of this technique.

Another preprocessing step that is based on an analysis of the precedence digraph
P and the cost values % turned out to be quite useful in solving some of our cases,
due to their special cost matrix structure. It sometimes happens that, for two nodes
and j that are unrelated for the given precedences, an "artificial" precedence, say (i, j),
can be introduced (by analyzing the cost matrix) in such a way that the optimum value
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of the SOP before and after introducing the relation (i,j) is the same. In such a case
we can repeat the other preprocessing steps such as variable fixing and inequality
tightening, and start the whole process anew.

To show how an "artificial" precedence can be created we consider a small example
on seven nodes. The cost matrix is shown in Table 1. The precedence digraph P V, R)
is given by R {(1,j)IJ 4, 5, 6, 7} {(i, 5)1i 1, 4, 6, 7}. Nodes 2 and 3 are not related
to any other node.

Consider the two unrelated nodes 2 and 7. We observe that c27 c72 0. Moreover,
C2k CTk and Ck7 Ck2 hold for all k V\{2, 7}. In addition, we can observe that
cu -< cu2 + c2 for all u, v V\{2, 7}, u v. Since node 2 is not related to any other node
in P we can either add the arc (2, 7) or the arc (7, 2) to P, and we can also set x7 1
or x72 1, without changing the objective function (cost) value of the optimal solution.

It is easy to see how to generalize this observation. If there are two nodes i, j V
such that

(5.2a) (i,j), (j, i)e:: R,

(5.2b) c, c, O,

(5.2c) Cik C./k and Cki Ckj for all k V\{i,j},

(5.2d) c,,,<-_c,i+c:, for all u, v V\{i,j}, uS v,

(5.2e) je::(V-t.J V+) (i.e.,j has neither a predecessor nor a successor in P),

then either (i,j) or (j, i) can be added to R, and either xo or x:i can be set to 1, such
that at least one optimum solution of the original SOP instance is still optimum for
the new case.

It turned out that this "precedence addition rule" helped in some cases to
substantially reduce the problem size and to increase the lower bound from the LP
relaxation.

6. Outline of the implementations. We have made three new implementations of
cutting plane algorithms that compute lower bounds for the SOP. Two algorithms use
model (2.5) and one uses model (2.4). Moreover, we compared this with the algorithm
for the LP relaxation of model (2.3) described in [4].

Implementation A is based on model (2.4) and implementation B is based on
model (2.5). Both were coded in FORTRAN, used Marsten’s simplex-based LP solver
XMP (see [15]), and were implemented and executed on a SIEMENS PC MX-2 (a
0.7 MIPS personal computer with UNIX operating system).

TABLE
Cost coefficients.

2 3 4 5 6 7

1.00 2.00 0.75 0.00 3.00 1.00
4.00 5.00 3.25 4.00 6.00 0.00
7.00 8.00 5.50 7.00 9.00 8.00
2.75 2.50 2.25 2.75 5.25 2.50
0.00 1.00 2.00 0.75 3.00 1.00
10.00 11.00 12.00 10.75 10.00 11.00
4.00 0.00 5.00 3.25 4.00 6.00
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Implementation C is based on model (2.5). It was coded in PL/I version 1.5, used
the algorithmic tools of the LP-solver MPSX (see [14]), and was implemented and
executed on an IBM 4381 (a 7.7 MIPS computer with VM/CMS operating system).

Implementations A and B were meant to determine which of the two models (2.4)
and (2.5) are superior from a computational point of view. We also wanted to see
whether or not SOP instances of the size coming up in practice (up to about 100 nodes
and 280 precedence relationships) can be solved in reasonable time on a PC.

We now briefly outline the basics of our cutting plane approach. We concentrate
mainly on the codes B and C that solve the LP relaxations of model (2.5).

The algorithm receives an n n cost matrix and an acyclic digraph of precedences
as input. We may assume that all cost coefficients are integral (for expository purposes).
In a first step we compute the transitive hull of this digraph to obtain the initial
precedence subdigraph. In a second step we try to add precedence relations by analyzing
the cost matrix as described in 5. If we add a precedence, we recompute the transitive
hull and repeat until no further precedence can be added. We denote the final
precedence subdigraph by P V, R).

Then we compute the arc set A An\(/ /) (see (2.1)) and we try to find out
whether further arcs can be deleted from A (or fixed) by analyzing logical implications.

Now we set up the initial LP consisting of (2.3) (1)-(4), taking care that (as
outlined in 5) some of the inequalities can be turned into equations.

To solve model (2.4) we also set up (7), (8), (10), and (11). In this case we project
away half of the variables yij’s using (8) and we fix some of the variables yi’s
appropriately according to the previous fixing of variables xi’s.

We now run the heuristic described in [4] and [5] to find a "good" feasible
Hamiltonian path. Let AH denote its cost. We use it to set up an initial basis for the
LP-solver.

We solve the present LP and obtain an optimum solution z with value ALp. If z
is the incidence vector of a feasible Hamiltonian path we are done. We are also done
if A H ALp < 1. In this case the heuristically found feasible Hamiltonian path is optimal.

Otherwise we enter the separation process. We first check whether z satisfies the
SECs and then the PFCs using the separation algorithms described in 3. We add all
inequalities found this way to the current LP. If z satisfies all SECs and all PFCs then
we call the separation algorithms for the further inequalities mentioned in 4. Again
we add all inequalities found to the current LP.

If the second stage of separation routines fails, we finish the cutting plane algorithm
reporting the lower bound ALp.

Otherwise we continue, but before resolving the augmented LP, we do the well-
known reduced cost fixing of variables. If some of the variables can be fixed, we
determine the logical implications in order to fix further variables. Moreover, we call
the preprocessing routines to tighten the current LP further. In addition, we delete
redundant constraints. After these preparations we call the LP solver using the modified
LP and the old (dually feasible) basis.

When solving model (2.4), we additionally check the triangle inequalities (9) by
enumeration and add all inequalities found to the present LP.

This finishes the outline of our implementations. There are many technical details
that we think are important, but it is impossible to report all of them here. The codes
B and C, although following the same ideas, do not always produce the same value
ALp, since they were written by different people, and some differences in the order of
performing certain steps, setting tolerances, etc., caused variations in the running times
and the LP values. In particular, implementation C does not use the Tk-inequalities
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(4.1), nor the mechanism for generating "artificial" precedences based on the cost
matrix structure (see 5). On the other hand, the D+

k- and D-inequalities (4.2) and
(4.3) as well as the other further inequalities were only used at selected LP problems,
where a given analysis ofthe point z may suggest a potential violation ofthe constraints;
of course, there is no guarantee that all violations were investigated. Additionally,
implementation C temporarily declares "neutral" certain currently nonactive
inequalities based on counting the number of previous consecutive LPs where they
have been nonactive.

For illustrative purposes let us consider the case described in 5; see also Table
1. The heuristic gives the feasible solution 1- 4- 2-7-65 3. The total cost is
A H 2125. The optimal value of the LP model (2.3) (1)-(4) is ,Le 1800; it gives the
solution 1 4 6- 5 3 and 2 7 - 2. By using our separation algorithm for model
(2.5) but without considering the cost matrix structure, the optimal solution of the
augmented LP is ,Le 2075 (then the gap is 2.40 percent). By exploiting the cost
structure as described in 5 we force the precedence (2, 7) R and then update
A := A\{(7, 2), (5, 2), (2, 5)}. It turns out that the optimal value ofthe new LP is precisely
,e 2125.

7. Computational results. We now report some computational experiences with
the three implementations of the cutting plane algorithms outlined in 6 and compare
these with the heuristic described in [4] and [5] and the lower bounding algorithm
described in [4].

The report covers 16 instances of the SOP where the number n of tasks ranges
from 7 to 98 and the number IR] of precedence relationships from 0 to 283. Six of
these cases are real-life and came up in a scheduling system for manufacturing. Four
further cases (P1, P1A, P4, and P9) were created (artificially) to test certain aspects
of the cut generation, mainly the performance of exploiting the cost structure. The
remaining six cases are obtained from the real-life cases by dropping all precedence
relationships. So these are, in fact, "pure" Hamiltonian path problems.

The artificial cases were constructed as follows. Cases P4 and P9 are created by
replicating case P1 p 2 and 14 times, respectively. (Case P1 is described in 5.)
Node in P1 has the counterparts nj i+7(j-1) for i= 1, 2,..., 7 in cases P4 and
P9, j 1, 2 in P4 and j 1, 2,..., 14 in P9. The sets of nodes {i 1, 2,..., 7} and
{nj 8, 9,..., 14} in case P4 have the same internal precedence relationships as the
set of nodes in P1 have; on the other hand, none of the nodes from one set has
precedence relationships with the nodes from the other set. The cost matrix has the
following structure for P4: Cp,q+ Cp+7,q Cp+7,q+7 Cp,q, p,q for p, q 1, 2,..., 7, p q
as in P1, and the other elements are zero. (A similar construction is used for P9.) The
optimal solution is N1 - N4- N2- N7NGN5 N3 with * =2125, where, e.g.,
N6 denotes any sequencing of the node set {6, 13,..., k} for k=6+7(p-1). Note
that, naturally, the optimal value of the LP relaxation (2.3) (1)-(4) is zero for P4 and
P9. By exploiting the cost matrix structure as in 5 (see (5.2)), implementation B gets
the optimal solution without adding any further cut. Additionally, we also analyze the
performance of our separation algorithm when the cost matrix structure is not exploited.

Table 2 reports some results on the performance of our algorithm. It gives
information about the objective function value and the gap between the best-known
upper bound (frequently, the optimal solution value) and the lower bounds obtained
by our implementations. The headings are as follows. H refers to the heuristic described
in [4] and [5]. E refers to the algorithm described in [4] for obtaining a lower bound
of the optimal solution value ,* in model (2.3). Finally, A, B, and C refer to our three



38 N. ASCHEUER, L. F. ESCUDERO, M. GR(TSCHEL, AND M. STOER

TABLE 2

Performance of our cutting separation implementations.

Objective function value

Case n IRI H E A B C

P1 7 7 2125 1950 2125 2125 2075
P1A 7 0 550 450 550 550 550
P2 11 5 2075 2021 2075 2075 2075
P2A 11 0 1866 1763 1866 1866 1843
P3 12 11 1675 1417 1598 1597 1535
P3A 12 0 1472 1386 1472 1472 1459
P4 14 14 2125 1525 2125 2125 2075
P5 25 11 1684 1518 1588 1577 1584
P5A 25 0 1145 1041 1134 1141 1118
P6 47 32 1288 1199 1219 1218 1219
P6A 47 0 915 856 872 872 871
P7 63 233 63 63 62 62 63
P7A 63 0 45 45 45 45 45
P8 78 283 18480 18205 18205 18205 18205
P8A 78 0 1845 1410 1305 1845 1712
P9 98 98 2125 1525 2125 2125 2075

Gap in objective function

E A B C

8.97 0.00 0.00 2.40
22.22 0.00 0.00 0.00
2.70 0.00 0.00 0.00
5.80 0.00 0.00 1.25

18.20 4.82 4.88 9.12
6.20 0.00 0.00 0.89

39.34 0.00 0.00 2.40
10.90 6.05 6.79 6.31
10.00 0.97 0.35 2.42
7.40 5.66 5.75 5.66
6.09 4.93 4.93 5.05
0.00 1.61 1.61 0.00
0.00 0.00 0.00 0.00
1.51 1.51 1.51 1.51

30.85 41.37 0.00 7.76
39.34 0.00 0.00 2.40

implementations A, B, and C (see 6). The first part of Table 2 reports the cost, say
AH, of the heuristic solution (except for P8A; see below) as well as the lower bound,
say Aa, obtained by implementation a for a A, B, C, and E. It is worth noting that
the heuristic gives 2325 as the cost value for P8A, but one of our implementations
found the (optimal) value 1845. The gap as reported in Table 2 is 100(AH-Aa)/Aa.
Note that frequently the gap is zero (i.e., implementations A, B, and C prove the
optimality of the heuristic solution). We should mention that the gap for P1, P4, and

Case

P1
P1A
P2
P2A
P3
P3A
P4
P5
P5A
P6
P6A
P7
P7A
P8
P8A
P9

TABLE 3
CPU time of our cutting separation implementations.

H E A B C
n IRI (see.) (sec.) (min.) (min.) (sec.)

7 7 0.08 0.10 0.14 0.10 0.05
7 0 0.13 0.24 0.18 0.10 0.05

11 5 0.26 0.55 0.17 0.20 0.04
11 0 0.22 0.55 1.05 0.15 0.09
12 11 0.16 0.36 9.59 1.27 0.89
12 0 0.25 0.56 1.06 0.18 0.21
14 14 0.31 1.10 0.17 0.10 0.71
25 11 1.17 1.19 23.34 0.43 0.55
25 0 0.35 1.28 13.25 0.46 0.45
47 32 3.05 4.78 87.39 4.51 1.14
47 0 1.98 3.85 100.10 1.20 1.08
63 233 4.35 3.38 340.43 27.27 5.63
63 0 0.06 3.47 109.37 1.42 4.08
78 283 27.62 12.93 443.13 153.01 12.05
78 0 8.93 6.94 250.52 9.36 18.41
98 98 28.47 25.01 0.23 0.20 6.20
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P9 is 2.40 percent when the cost matrix structure is not exploited (as with implementa-
tion C) and it is zero when it is exploited.

We should remark at this point that implementation A (using the largest number
of variables) was not able to finish all runs due to space limitations on the PC. (We
could not store all inequalities found.) In this case we report in Table 2 the lower
bound obtained before termination. (Further cutting plane steps might have led to
better lower bounds.)

Table 3 reports the CPU time required by the implementations. Implementations
H, E, and C were run on an IBM 4381 and the time is given in seconds. Implementations
A and B were run on a SIEMENS PC MX-2 and the time is given in minutes. All
times reported include input-output operations. Note that the PC-implementation B
solves the cases in less than 21/2 CPU hours. The mainframe version does this in a few
seconds.

Tables 4-6 report the dimensions of the instances and number of cuts that have
been generated by each of the three implementations. The headings are as follows.
F01 indicates the number of variables xo that are (permanently) fixed by reduced cost
fixing and logical implications. (Note that IA] gives the set of variables xo’s in the
model and, then, IAI-F01 is the number of xo’s in the last LP problem.) NAP is the
number of constraints (2.3) (1)-(3) (i.e., number of constraints in the initial LP
relaxation) in implementations B and C; NAP is the number of constraints (2.4) (1)-(3),
(7), and (8) in implementation A; NLP is the number of cutting plane separation steps
(i.e., number of LP problems); NSEC is the number of subtour elimination constraints
(2.3) (5) that have been generated; NYSC is the number of y-related constraints (2.4)
(9) that have been generated in implementation A; NPFC is the number of precedence
forcing constraints (2.5) (12) that have been generated in implementations B and C;
NLC is the number of further cuts generated from the class of inequalities described
in 4; NC is the total number of cuts that have been generated. One can observe that
the total number of constraints in any LP is rather small. By comparing NLP and NC
we can see the average number of cuts that are appended to the LP model at each
iteration.

TABLE 4
Problem dimensions and cut generation. Implementation A.

Case n IRI IA] F01 NAP NLP NSEC NYSC NLC NC

P1 7 7 35 10 39 2 10 0 11
P1A 7 0 0 63 26 57 0 0 0 0
P2 11 5 2 153 80 123 4 2 56 6 64
P2A 11 0 0 165 89 133 3 2 49 0 51
P3 12 11 4 172 53 135 7 4 64 29 97
P3A 12 0 0 198 98 157 2 2 41 0 43
P4 14 14 2 35 10 39 2 10 0 11
P5 25 11 2 876 496 629 8 4 667 11 682
P5A 25 0 0 900 0 651 6 3 434 0 437
P6 47 32 22 3157 1890 2199 15 2 1502 0 1504
P6A 47 0 0 3243 1949 2257 5 5 1800 0 1805
P7 63 233 138 5255 2134 3567 4 10 1800 13 1823
P7A 63 0 0 5859 2957 4033 0 0 0 0
P8 78 283 206 8237 2079 5597 3 12 600 8 612
P8A 78 0 0 9009 0 6163 200 8 209
P9 98 98 14 35 12 39 2 10 0 11
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TABLE 5
Problem dimensions and cut generation. Implementation B.

Case n ]RI ]AI F01 NAP NLP NSEC NPFC NLC NC

P1 7 7 23 10 15 2 0 2
P1A 7 0 0 42 28 15 2 0 0
P2 11 5 2 103 80 23 4 4 9 0 13
P2A 11 0 0 110 89 23 4 3 0 0 3
P3 12 11 4 117 53 25 12 9 6 22 37
P3A 12 0 0 132 98 25 3 10 0 0 10
P4 14 14 2 166 10 29 2 0 2
P5 25 11 2 587 498 51 3 5 12 0 17
P5A 25 0 0 600 550 51 4 5 0 0 5
P6 47 32 22 2108 1870 95 4 7 7 0 14
P6A 47 0 0 2162 1956 95 4 8 0 0 8
P7 63 233 138 3535 2802 127 7 8 63 65 136
P7A 63 0 0 3906 2957 127 0 0 0 0
P8 78 283 206 5517 2079 157 15 11 65 66 142
P8A 78 0 0 6006 1547 157 18 31 0 16 47
P9 98 98 14 9492 197 2 0 2

TABLE 6
Problem dimensions and cut generation. Implementation C.

Case n IR] / IAI F01 NAP NLP NSEC NPFC NLC NC

P1 7 7 23 14 15 2 2 2 3 7
P1A 7 0 0 42 31 15 2 2 0 0 2
P2 11 5 2 103 78 23 5 4 12 6 22
P2A 11 0 0 110 83 23 5 3 0 0 3
P3 12 11 4 117 25 25 11 9 6 12 27
P3A 12 0 0 132 74 25 3 9 0 0 9
P4 14 14 2 166 20 29 2 3 6 2 11
P5 25 11 2 587 469 51 3 5 9 0 14
P5A 25 0 0 600 505 51 4 4 0 0 4
P6 47 32 22 2108 1842 95 7 7 6 0 13
P6A 47 0 0 2162 1925 95 4 7 0 0 7
P7 63 233 138 3535 3227 127 7 9 0 0 9
P7A 63 0 0 3906 2603 127 3 4 0 0 4
P8 78 283 206 5517 4748 147 17 15 72 16 103
P8A 78 0 0 6006 2079 157 9 28 0 13 41
P9 98 98 14 9492 4723 197 2 3 11 3 17

Table 7 reports the gap reduction on the objective function value obtained by our
implementations. The headings are as follows. H is the best known upper bound of
A*. ALB is the objective function value of the LP relaxation (2.3) (1)-(3). A-GAP--
(H- ALB)/ALB percent. KLB is our best-known lower bound on A* (i.e., the objective
function value of the last LP). K-GAP=(H-KLB)/KLB percent and RK=
(KLB ALB)/(H ALB) percent.

The first analysis that we can draw from the results shown in Table 7 is the
observance of a big discrepancy in the value of A-GAP between the results reported
in the literature for randomly generated cases and our experience with real-life cases.
It is reported for ATSP cases that the value of ALB was found on the average to be
99.5 percent of the optimal value. We have obtained the optimal value in more than
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TABLE 7
Gap reduction on the objective function value.

Case n IR H ALB A-GAP KLB K-GAP RK

P1 7 7 2125 1800 18.06 2125 0.00 100.00
P1A 7 0 550 225 100.00 550 0.00 100.00
P2 11 5 2075 1946 6.63 2075 0.00 100.00
P2A 11 0 1866 1763 5.84 1866 0.00 100.00
P3 12 11 1675 1293 29.54 1598 4.88 79.58
P3A 12 0 1472 1240 18.71 1472 0.00 100.00
P4 14 14 2125 0 * 2125 0.00 100.00
P5 25 11 1684 1518 10.94 1588 6.05 42.16
P5A 25 0 1145 1041 9.99 1141 0.35 96.15
P6 47 32 1288 1199 7.42 1219 5.66 22.47
P6A 47 0 915 856 6.89 872 4.93 27.11
P7 63 233 63 62 1.61 63 0.00 100.00
P7A 63 0 45 45 0.00 45 0.00
P8 78 283 18480 18204 1.52 18205 1.51 0.36
P8A 78 0 1845 1305 41.37 1845 0.00 100.00
P9 98 98 2125 0 2175 0.00 100.00

50 percent of the cases and we have at hand the lower bound KLB for the other subset;
we have to report a big difference between H and ALB and even KLB and ALB.

We should point out the effectiveness of the separation algorithm for identifying
subtour elimination constraints that are violated by the current LP solution. See column
RK in Table 7 for the ATSP cases (i.e., cases with IRI- 0). It gives the gap reduction
obtained by appending violated SECs to the current LP model. On the other hand,
we may observe the performance of the preprocessing procedure based on (2.1) ([A.\AI
variables xij’s are fixed to zero) for tightening the lower bound ALB for the cases with
precedence relationships (i.e., cases with [RI > 0). Note also how effective the reduced
cost fixing can be whenever ALB and H are close enough. Finally, see that ALB is
zero for P4 and P9 in implementation C (i.e., the cost matrix structure is not exploited).

The column headed KLB in Table 7 gives our tightest lower bound on the SOP
optimal solution. It is the optimal value of the LP relaxation (2.3) (1)-(4) enlarged by
appending the cuts that our separation algorithm identifies as violated cuts. By compar-
ing the columns headed A-GAP and K-GAP and, in particular, analyzing the column
headed RK, we can see the effectiveness of appending violated cuts. Notice that the
optimality of the solution provided by the heuristic has been proved for 9 out of 16
cases. On the other hand, the largest gap is only 6.05 percent. Branch-and-bound has
not been used, since our only objective was to create (hopefully) good lower bounds
for the heuristic given in [4] and [5].

8. Conclusions. In this work we have presented two new 0-1 models for the
sequential ordering problem. Both are stronger than the model introduced in [4]. We
have also introduced polynomial time separation algorithms for subtour elimination
constraints and precedence forcing constraints. We have outlined the LP framework
of three implementations for tightening the lower bound of the optimal solution and
reported our computational results. More theoretical work is required mainly for
identifying (in reasonable time) violated further inequalities mentioned in 5. In any
case, our computational experience indicates that this LP-based approach is a quite
promising way to analyze the quality of a feasible solution and eventually to obtain
an optimal one.
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ERROR BOUND AND REDUCED-GRADIENT PROJECTION
ALGORITHMS FOR CONVEX MINIMIZATION OVER A

POLYHEDRAL SET*

ZHI-QUAN Luot AND PAUL TSENG$

Abstract. Consider the problem of minimizing, over a polyhedral set, the composition of an
afline mapping with a strongly convex differentiable function. The polyhedral set is expressed as
the intersection of an affine set with a (simpler) polyhedral set and a new local error bound for this
problem, based on projecting the reduced gradient associated with the affine set onto the simpler
polyhedral set, is studied. A class of reduced-gradient projection algorithms for solving the case
where the simpler polyhedral set is a box is proposed and this bound is used to show that algorithms
in this class attain a linear rate of convergence. Included in this class are the gradient projection
algorithm of Goldstein and Levitin and Poljak, and an algorithm of Bertsekas. A new algorithm in
this class, reminiscent of active set algorithms, is also proposed. Some of the results presented here
extend to problems where the objective function is extended real valued and to variational inequality
problems.

Key words, local error bound, convex minimization, linear convergence, reduced-gradient
projection algorithms
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1. Introduction. We consider the convex program

(1.1) minimize /(x)
subject to x X,

where X is a polyhedral set in the n-dimensional Euclidean space n and f is a
real-valued function defined on n. We assume that f is of the special form

(1.2) f(x) g(Ex) -b (q, x),

where E is some m n matrix, q is some vector in , and g is a continuously
differentiable function in }m with Vg Lipschitz continuous and strongly monotone in
the sense that there exist positive scalars p > 0 and a > 0 such that

(1.3) IlVg(z) Vg( )ll _< pllz Vz, w,

and

(1.4)

We also assume that the optimal solution set for (1.1), denoted by A’*, is nonempty
and denote by v* the value of f on A’*. In our notation, all vectors are column
vectors, superscript T denotes matrix transpose, (., .) denotes the usual Euclidean
inner product, and II" denotes the Euclidean norm induced by (., .).
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There are many optimization problems that satisfy the above assumptions, in-
cluding convex quadratic programs and a certain routing problem in data networks
(see [BEG87]). We remark that the assumption that g be real valued is made only to
simplify the analysis and can be relaxed so as to allow, for example, certain entropy
optimization problems and their dual to be captured by the problem framework. (See
6 for detailed discussions.)

A classical method for solving (1.1) is the gradient projection algorithm of Gold-
stein [Go164] and Levitin and Poljak [LeP65], which follows each gradient step by a
projection onto the feasible set X:

x :-Ix- cVf(x)],
where [’]+x denotes the orthogonal projection onto A’ and a is some suitably cho-
sen positive stepsize. This method has been well studied and, when combined with
second-order scaling, has been successful in solving large quadratic programs with box
constraints (see, e.g., [Ber76], [Ber82], [GaB84], and [Mor89]). However, when X is
not a box, the projection [’]+x cannot be easily computed and this method can suffer
from poor performance.

For the special case where X is the Cartesian product of simplices, Bertsekas pro-
posed a modification of the gradient projection algorithm which avoids the relatively
expensive operation of projecting onto the simplices (see [Ber80], [Ber82], [BeG83],
and [BeG87]). (A simplex in n isaset of the form{x e n ixi- c, x >_0}
for some c > 0.) Instead, the algorithm of Bertsekas moves an iterate opposite the
direction of a certain reduced gradient associated with the knapsack constraints and
follows this step with a projection onto the nonnegative orthant. This algorithm
has been successfully applied to solving a certain routing problem in data networks
(see [BeG83], [BeG87], and [BET89]) and can even be implemented in a distributed
asynchronous manner (see [Wsa89] and [WsB86]).

A key question concerns the convergence and the rate of convergence of the above
algorithms. For the gradient projection algorithm this question is largely resolved. It
was shown by Bertsekas and Gafni [BeG82], in the more general context of variational
inequality problems, and rediscovered by Luo and Tseng [LuT92b], that the gradient
projection algorithm for solving (1.1) attains a linear rate of convergence, provided
that the stepsize a is suitably chosen. Similar results were obtained by Dunn [Dun81],
[Dun87] and Gawande and Dunn [GaD88] for the general problem of minimizing a
differentiable function over a closed convex set, but under an additional assumption
that all local minimizers are isolated and that the objective function satisfies a certain
local growth condition. Central to their analysis is a certain local error bound for
estimating the distance from a point x E A’ to A’*, defined as

(1.5) (x) min [Ix x*][.
x*EX*

In particular, it was shown in [LuT92b] that (x) can be bounded above by some
constant times

II - ix-
the norm of the "natural residual" at x, provided that the latter quantity is small.
The same local error bound also extends to affine variational inequality problems
(see [Rob81] and [LuW92c]) and holds globally if f is strongly convex [Pan87]. For
the Bertsekas algorithm, however, no comparable result was known. We remark that
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bounds for have been studied quite extensively, although the focus has been on
global bounds and on using the bounds to terminate iterative algorithms and to
extract sensitivity/stability information near the optimal solution set (see [MaS87],
[MAD88], [Pan87], and [Rob82]).

The goals of this paper are twofold. First, we propose a generalization of the
above error bound based on a certain decomposition of the polyhedral set A’. More
specifically, let us express A’ as

(1.6) X C (x e .n Bx c},

for some (simpler) polyhedral set C n, some n matrix B, and some vector c in
t. We will show that (x) can be bounded above by some constant times

(1.7) ]Ix- Ix- Vf(x)+ BTp]-ll + I[Bx- cl]

for any x E C and any p E {R for which the above quantity is "sufficiently" small.
Here [.]c+ denotes the orthogonal projection onto C. Some obvious advantages of this
new local error bound, relative to the earlier one, are (i) x is only required to be in
C, not a’, and (ii) instead of projecting onto A’, we project onto the simpler set C.

Second, we propose a class of feasible descent algorithms for solving the special
case of (1.1) where C is a box. At each iteration of these algorithms, we compute a z
according to the projection step

z := Ix- (Vf()- B)]c+,
for some stepsize a > 0 and some multiplier vector p, and then adjust a subset of
the coordinates of z to obtain a new iterate in A’. Both the gradient projection
algorithm and the algorithm of Bertsekas described earlier can be shown to belong to
this class. By using the new local error bound, we show that the iterates generated
by any algorithm in this class converge at least linearly to an optimal solution. (Here
and throughout, by linear convergence we mean R-linear convergence in the sense
of Ortega and Rheinboldt [OrR70].) We also propose a new algorithm in this class
reminiscent of active set algorithms.

The remainder of this paper is organized as follows. In 2 we prove some technical
facts concerning the problem (1.1); in 3 we use these facts to establish the new local
error bound. In 4, we describe the class of feasible descent algorithms mentioned
above and relate them to the gradient projection algorithm and to the algorithm of
Bertsekas. In 5, we use the error bound of 3 to show that any algorithm in this
class which uses an Armijo-like stepsize rule is linearly convergent. In 6, we give our
conclusion and discuss extensions.

Throughout this paper, we ,adhere to the following notations. For any vector x
in k, we denote by xj the jth component of x and, for any subset J C_ {1,... ,k},
we denote by xj the vector with components xj, j J. For any matrix A, we
denote by I]A]I the matrix norm of A induced by the vector Euclidean norm I1" I], i.e.,
IIAI]- maxllxll=

2. Technical preliminaries. In this section we will prove a number of interest-
ing facts concerning the solution set X* and the level sets of f over certain subsets of
(:. These facts will be used in the analysis of subsequent sections.

First, by using the strict convexity of 9 (cf. (1.4)) and the special structure of f
(cf. (1.2)), we have the following simple lemma which says that the linear mapping
x Ex is invariant over the solution set X* (also see [LuT92a] and [Tse91]).
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LEMMA 2.1. There exists a t* E Nm such that Ex* t* for all x* 2,*.

From (1.2) and the chain rule for differentiation, we have

(2.1) Vf(x) ETVg(Ex) h- q,

Then, (1.3) yields that Vf is Lipschitz continuous with Lipschitz constant
that is,

(2.2) [IVf(x) Vf(y)[[ _< p[[ETII[[EII[Ix YI[, Vx,

and Lemma 2.1 yields that Vf is invariant over 2,* or, more precisely,

(2.3) Vf(x*) d*, Vx* e X*,

where we let d* ETVg(t*) -b q.
The optimality conditions for (1.1), together with (2.3), imply that 2,* is equiv-

alently the solution set of the linear program minxex(d*, x). Then, as we shall see in
the next section, the question of finding a local error bound for (1.1) translates into
a perturbation analysis on the solution set to this linear program. To perform this
analysis, we will need the following result, due originally to Hoffman [Hof52] (see also
[Rob73] and [MaS87]), on the Lipschitzian continuity of the solution set to a linear
system as a multifunction of the right-hand side. This result will be used in the proofs
of Lemma 3.1 and Theorem 3.2 which follow.

LEMMA 2.2. Let C and D be any r k and s k matrices. Then, there exists
a constant 0 > 0 depending on C and D only such that, for any Nk and any
(d, e) r x s such that the linear system Cy d, Dy > e is consistent, there is a
point fl satisfying Cfl d, Dfl >_ e with

5c 91[ <- O(I[C, d[I + [ID, ell).

For each v >_ v* and 6 _> O, define the level set

{x e C]]IBx-c[] < 6, f(x) < v}.

(Note that 9r’* 2,* and ’,’ C -’ whenever v’ < v, 6’ < 6.) By using the
polyhedral structure of 2’ (cf. (1.6)) together with the strict convexity of g (cf. (1.4)),
we can show the following boundedness property of E’’. This property will be used
in the proofs of Lemma 3.1 and Theorem 5.3. Its proof is patterned after that of
Fact 4.1 in [Tse91] and is based on the observation that a strictly convex function has
bounded level sets whenever its infimum is attained at some point.

LEMMA 2.3. For any v >_ v* and any > O, the set E: is nonempty and
bounded.

Proof. Fix any v > v* and any 6 _> 0. The set E’’ is clearly nonempty since ’’is nonempty. If E-’ were not bounded, then the closed convex set

C {(t,X,) e mq-nh-1 t Ex, x e C, IIBx-cll < , f(x) <

would have a direction of recession (v, u, 0) with v 0 (see [RocT0]). Let x* be any
element of 2"*. Then, by Lemma 2.1, (t*,x*, v*) is a point in /2, so (t*,x*, v*)+
O(v, u, 0) is also in/2 for all 0 >_ 0. This implies x* + Ou C and f(x* + Ou) < v* for
all 0 >_ 0. Moreover, we see from the structure of/2 that Bu 0 and Eu v. The
former implies B(x* + Ou) Bx* c for all 0 _> 0, so x* + Ou 2"* for all 0 _> 0.
On the other hand, the latter, together with v 0, implies that E(x* + Ou) is not
constant for 0 _> 0, a contradiction of Lemma 2.1.
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3. A new local error bound. In this section we show that the distance from
a point x in C to X’* can be bounded above by the quantity (1.7) when the latter
quantity is small and f(x) is bounded. The proof of this is analogous to an argument
used in [LuW92b] and is based on a certain property of (1.7) for identifying (locally)
those constraints which are "active" at some optimal solution. By treating these active
constraints as equalities, we then apply Hoffman’s result (Lemma 2.2), together with
the Lipschitz continuity and strong monotonicity properties of Vg (cf. (1.3) and (1.4)),
to establish the desired bound.

First, since C is a polyhedral set, we can express it as

C {X E n Ax >_ b},

for some k n matrix A and some b E k. For convenience, we denote by Ai the
ith row of A and, for any subset I c_ {1,... ,k}, by AI the submatrix of A obtained
by removing all rows i of A with I. Then, for any (x,p) C L, the vector
z Ix- Vf(x) + BTp] satisfies, together with some multiplier vector/k k, the
following Kuhn-Tucker conditions:

(3.2) x z + BTp + AT) Vf(x), Ai=0, Viii, Az b, Viii,

(3.3) Az >_ b, > O,

where I is some (possibly empty) subset of {1,..., k}. We say that an I c_ {1,..., k}
is identifiably basic at a vector (x, p) C L if (x, p), together with z [x Vf(x) +
BTp] and some A E [0, oc) k, satisfies (3.2).

By using Lemmas 2.1, 2.2, and 2.3, we show the following lemma which roughly
says that if x C is sufficiently close to X*, then those indices which are identifiably
basic at (x, p) for some p are also identifiably basic at some element of ,* t.

LEMMA 3.1. Fix any v >_ v*. There exists an > 0 such that, for any (x, p)
jz with IIx Ix Vf(x) +BTp] < and any I C_ {1,..., k} that is identifiably
basic at (x, p), there is some (x*, p*) A’* t at which I is identifiably basic.

Proof. We argue by contradiction. If the claim does not hold, then there would
exist an I C_ {1,... ,k} and a sequence of vectors {(xr,p)}r=l,2 in ’’ with I
identifiably basic at (xr,p) for all r and

(3.4) x z --+ 0, Bxr --+ c,

where we let

(3.5) BT_rl+x -vf( Vr,

and yet there is no (x*, p*) A’* L at which I is identifiably basic.
Since x E -’ for all r, it follows from Lemma 2.3 that {Ex} is bounded. Let

t be any cluster point of {Ex} and let R be a subsequence of {1, 2,...} such that

(3.6) {Ex}R --. t.
We show below that t is equal to t*.

Since Vg is continuous everywhere, then we obtain from (3.6) (and using the fact
Vf(x) ETVg(Ex) + q for all r) that

(3.7) {Vf(x*)}R ETVg(t) + q.
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For each r E R, consider the following linear system in x, p, z, and A"

BTp W ATA Vf(xr) T zr xr, Az >_ b,
Ai=0, /i I, Aiz =bi, Vi E I,
Ex= Exr, z-x= zr-x, Bx= Bx.

The above system is consistent since, by I being identifiably basic at (x, pr) and by
(3.2)-(3.3), (xr,p,z), together with some A e k, is a solution of it. Then, by
Lemma 2.2, it has a solution (&,i5r, $, r) whose size is bounded by some constant
(depending on A, B, and E only) times the size of the right-hand side. Since the
right-hand side of the above system is clearly bounded as r - cx, r R (cf. (3.4),
(3.6), and (3.7)), we have that {(&,ih, St, )}R is bounded. Moreover, every one of
its cluster points, say (x,p,z,A), satisfies (cf. (3.4), (3.6), and (3.7))

BTp + ATA ETvg(t) + q, Az >_ b, A >_ O,

A O, i I, Az b, i I,
Ex t z x 0, Bx c.

Upon using (cf. (2.1)) ETVg(Ex)+q Vf(x), we can simplify the above relations
to

BTp + ATA Tf(x), Ax _> b, A _> 0,

A---0, i

_
I, Aix bi, Viii, Bx c.

This shows that x e A’ and that (Vf(x),x- x) >_ 0 for all x e A’ (cf. (1.6) and
(3.1)). Thus x A’* and, by Lemma 2.1, t t*. Moreover, I is identifiably bic
at (x,p) (cf. (3.2)), so a contradiction is established.

Lemm 2.1, 2.2, and 3.1 together yield the main result of this section.
THEOREM 3.2 (local error bound). Fix any v v*. There exist scalars e > 0

and > 0 (depending on v and the problem data only) such that

for any (x,p) e x z with ]lx Ix- Vf(x)+ BTp]
Proof. Let e be the scalar in Lemma 3.1 corresponding to v. Consider any

(x, p) t satisfying the hypothesis of the theorem and let I be any subset of
{1,... ,k} that is identifiably basic at (x,p) and let z [x--Vf(x)+STp]. By (3.2)
and (3.3), there exists some A k satisfying, together with x, p, and z,

BTp + ATA z x + Vf(x), Ax b + A(x z), A O,
Ai=0, Viii, Aix bi + Ai(x- z), Viii.

By Lemma 3.1, there exists an (x*, p*) X* t such that I is identifiably bic at
(x*,p*), so the following linear system in x*, p*, and A*"

BTp + ATA d*, Ax* b, A* 0,

A=0, Vi I, Ax* b, Viii, Ex* t*, Bx* c

is consistent (cf. (2.3), (3.2)-(3.3), and Lemma 2.1). Conversely, it can be seen that
every solution (x*,p*, A*) to this linear system satisfies x* A’*. Upon comparing
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the above two systems, we see that, by Lemma 2.2, there exists a solution (x*, p*, A*)
to the second system such that

II(x,p,)-(x*,p*,*)l <_

where 0 is some scalar constant depending on A, B, and E only. By (2.1), the
definition of d*, and the Lipschitz condition (1.3), we also have IIVf(x)- d*ll
IIETVg(Ex) ETVg(t*)ll <_ plIETIIllEx t*ll, so the above relation yields

II(x,p,A) (x*,p*,A*)l <_ O((IIAII + 1)llx zll + (plIETII + 1)llEx t*ll + IIBx ell ).
Upon rewriting some of the above relations and by using the fact d* Vf(x*)

(cf. (2.3)), we have

(3.8) x- z + BTp + AT AI Vf(x), BTp + A/TA; Vf(x*),

(3.9) Aiz bi, Aix* bi, Bx* c,

and

(3.10)

where we let 7--IIx -zll + Bx -ell and, for convenience, use the notation a <_ 0(/3)
to indicate that a _< w for some scalar w > 0 depending on v and the problem data
only. In addition, I is identifiably basic at (x*, p*) and (cf. (1.4))

(3.11) allEx t*ll < <Ex t*, Vg(Ex) Vg(t*)>.

We will use (3.8)-(3.11) to show that IIx-x* II <- O(7), which would then complete
the proof. Since Ex* t* (cf. Lemma 2.1) and Vf(x)- Vf(x*) ETVg(Ex)-
ETVg(Ex*) (cf. (2.1)), then (3.11), together with (3.8)-(3.9), yields

allEx t*ll 2 <_ (Ex Ex*, Vg(Ex) Vg(Ex*)>
(x x*, Vf(x) Vf(x*))

<B(x x*),p p*) + (A,(x X*),,I
<Bx c, p p*> + (Ai(x z),

<_ IIBx IIIIP- P*II + IIx zll(llAIIIl- *11 + IIx x*ll)
-< IIAII(IIP- P*II / IIA- A*II / IIx- x*ll),

where the last inequality follows from the definition of 7. Applying the above relation
once and (3.10) twice then gives

lix x*[I e < O((llEx t*ll / /))
< O(llEx- t*ll u +)
_< O((llp p*ll / I1 *11 / IIx x*ll) / 2)
< O((llEx t*ll /) / =).

Since IIEx *11 -< IIEII IIx x* II, the bove relation implies that there exists a scalar
constant w > 0 (depending on v and the problem data only) such that

IlEx t*ll _< (llEx t*ll + ).
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This is a quadratic inequality of the form a2 _< w(a/-F /2), which implies a <_ 1/2 (w -F
x/w2 -F 4w)- and therefore

][Ex t* ][ _< 1/2 (w + V/(M2 -- 4W)’.Combine this bound with (3.10) and we obtain
We note that the proof of Theorem 3.2 in fact yields the stronger result that, for

any (x,p) e ’" x N satisfying [Ix- Ix- Vf(x) + BTp]-[[ <_ e and any I C_ {1,... ,k}
that is identifiably basic at (x,p), there exists an (x*,p*) E A’* x N such that I is
identifiably basic at (x*,p*) and [Ix- x*[[ _< a([[x-Ix- Vf(x)+ STp][[ +
for some scalar a depending on v and the problem data only. Roughly speaking, we
can bound and identify the active constraints at the same time. Finally, we remark
that, at the price of forgoing this stronger result, the proof of Theorem 3.2 can be
simplified further by appealing to a result of Robinson [Rob81] on the local upper
Lipschitzian nature of polyhedral multifunctions.

4. RGP algorithms. In this section, we introduce a general class of feasible
descent algorithms for solving the special case of (1.1) where C is the nonnegative
orthant in !ln, i.e.,

(4.1) C [0, oo)n.
An algorithm in this class updates an iterate by first moving it opposite a certain
reduced-gradient direction, then projecting it onto C, and finally adjusting a subset of
the coordinates with zero reduced gradient, so that the new iterate remains in X’. We
will show that both the gradient projection algorithm and the algorithm of Bertsekas
mentioned in 1 belong to this class. We also propose a new algorithm in this class
reminiscent of active set algorithms and, in particular, of a projected Newton method
of Bertsekas [Ber82]. Unlike most active set algorithms, this algorithm can add/drop
many constraints from its active set at each iteration. We remark that the above class
of algorithms readily extends to the case where C is a box in n, i.e., the Cartesian
product of closed intervals, but, for simplicity, we will not consider this more general
case here.

In what follows, we denote by Bj the jth column of B and, for each J C_ {1,..., n},
by Bj the matrix obtained by removing all columns Bj, j J, from B. We define
Vjf and Vgf analogously. We also denote by J the complement of J with respect
to (1,...,n}.

To motivate our algorithms, consider an iteration of the gradient projection algo-
rithm: x’= Ix- (Vf(x)]+x, where x is the current iterate, is the stepsize, and x’ is
the new iterate. Let [.]+ denote the orthogonal projection onto [0, oo)n. By using the
structure of A’ given by (1.6) and (4.1), we can rewrite this iteration as x’ E A’ and,
for some p ,
(4.2) x’ Ix (Vf(x) BTp)]+.

(It can be seen that p is in fact an optimal Lagrange multiplier vector associated with
the constraints Bx c in the problem of projecting x/- Vf(x) onto A’.) Thus, the
above iteration is equivalent to the problem of finding a p so that x given by
(4.2) is in A’. Can the restriction (4.2) be relaxed so it would be relatively easy to
find such a p?

To answer this question, suppose that, in addition to (4.1), we have B [1 1 1]
and c-- 1 (so A’ is the unit simplex). Consider the algorithm of Bertsekas mentioned
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in 1 for solving this special case of (1.1), which operates as follows: Given an iterate
x E X, it chooses an index j E {1,..., n} for which

(4.3) Vjf(x) min Vkf(x),
k

and computes a new iterate x’ A" according to

(a.a) [ -(VI() VI())]+ Vk j,

> 0 follows from the observationwhere c is some positive stepsize. (The fact that xj
> xj.) A momentthat x’k <_ xk for all k j, so the fact ,k xk 1 Y’t: X’k yields x

of reflection shows that the iteration (4.4) is simply the following relaxed version of

(4.6) Xk [Xk o(Vkf(x) B/p)]+, Vk = j,

with p-- Vf(x). Moreover, by combining (4.4) with (4.5), we see that

(4.7) IIx’- xl[ < v llx Ix  (Vf(x) STp)]/ll.

We remark that, for simplicity, we considered only the unscaled version of the Bert-
sekas algorithm. See [BEG87, 5.7] for a description of the full algorithm; see [Ber82,
3] and [BEG83] for a related algorithm in which j is chosen by the maximum compo-
nent rule: j arg maxk Xk. This latter algorithm is closely linked to the active-set-
type algorithm to be described below.

The formulas (4.6) and (4.7) suggest the following generalization of the gradient
projection algorithm and the Bertsekas algorithm for solving (1.1) (under the condi-
tion (4.1)) whereby, given an iterate x ,, we choose a positive stepsize and we
compute a new iterate x’ which, together with some p , satisfies

(4.8) X’k [Xk o(Vkf(x) B’p)]+, Vk with ’kf(x) # Bkp,T

and

(4.9) IIx’- xll  xllx Ix c (Vf(x) BTp)]+II,

with T1 some scalar constant. In order to maintain feasibility, we assume that the
new iterate x has the property that

(4.10) x’ A’ whenever c < ItVf(x)ll’

with T2 some scalar constant (possibly T2 OC). Thus x’ is feasible whenever a is
chosen to be sufficiently small.

We will call any iteration a reduced-gradient projection (RGP) iteration if it gen-
erates, for a given iterate x E A’ and a stepsize c > 0, a new iterate x satisfying
(together with some p t) the relations Roughly speaking, at each
RGP iteration we take a step opposite the reduced-gradient direction Vf(x) BTp,
project onto [0, cx3)n, and then adjust those coordinates with zero reduced gradient
so as to remain in A’. Any algorithm that generates iterates in A’ by successive ap-
plications of RGP iterations will be called an RGP algorithm. We now describe three
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example RGP algorithms, the first two of which we have encountered earlier. The
issue of stepsize rules will be addressed in the next section.

Example 4.1. Gradient projection algorithm. By (4.2), the gradient projection
algorithm is an RGP algorithm with T1 1, T2 OO, and p an optimal multiplier
vector associated with Bx c in the problem of projecting x/( Vf(x) onto A’.

Example 4.2. Bertsekas algorithm. By (4.6) and (4.7), the Bertsekas algorithm
(4.3)-(4.5) is an RGP algorithm with T1 V/-, T2 (X), and p-- mink Tkf(x).

Example 4.3. An active-set-type algorithm. Consider the following algorithm for
solving (1.1), under the condition (4.1): Fix any 7 > 0. Given an iterate x 6 A’, we
choose a positive stepsize c and a (possibly empty) subset J c_ { j e {1,..., n} xj >_
7 } with Bj having full column rank, and we compute a new iterate x’ as the (unique)
solution of a convex quadratic program, given by

1
(4.11) x’ arg min Vkf(x)(k Xk) ’]’- " Ik (Xk OVkf(x))l2.

with B--c
k>_O VktiJ keJ k_J

We will show that the iteration (4.11) is well defined and the x thus generated,
together with some p, satifies (4.8)-(4.10) for some scalar constants T1 and T2.

The above algorithm may be viewed as a generalization of the gradient projec-
tion algorithm in which projection is omitted for coordinates that are far from the
boundary. In particular, if we take J to be the empty set, then we recover the gradi-
ent projection algorithm (see Example 4.1). A key advantage of the algorithm is its
flexibility. For example, we can choose the set J so that the work in solving (4.11)
is less than that for performing the full projection (see discussions to follow). The
parameter 7, however, needs to be chosen with care. If 7 is too large, the choices for
J would be restricted; if 7 is small, then, as we shall see, may need to be small (cf.
(4.14)), in which case the algorithm would take small steps. Finally, we note that 7
need not be fixed but can be adjusted dynamically, provided that it remains bounded
away from zero.

We now show that the iteration (4.11) is a well-defined RGP iteration. If J is the
empty set, then (4.11) reduces to a gradient projection iteration, so it is well defined
and the x’ generated by it, together with some p, satisfies (4.8)-(4.10) with T1 1
and r2 c (cf. Example 4.1). Thus, it remains to prove the above assertion for the
case where J is nonempty. First, notice that the feasible set for the minimization in

(4.11) is nonempty (since it contains A’) and bounded (since the objective function is
strongly convex in and, by virtue of Bj having full column rank, g is determined
uniquely by # on the feasible set). Thus, the minimization in (4.11) has an optimal
solution. It is easily seen that this optimal solution is unique, so (4.11) is well defined.
From the optimality conditions for the minimization in (4.11) we have that Bx c
and

T BTBjp)]+, Vjr(x)(4.12) xj [xj c(vjf(x) gp,

where p is any optimal Lagrange multiplier vector associated with the constraints

B c in (4.11). The former, together with the fact Bx c, implies 0 B(x’-x)
Bj(xg xj) + B(x x) so, multiplying both sides by B and using the fact that
Bj has full column rank, we can solve for x xj to obtain

xj xg -(ByBj)-IByBj(x x#),

implying

(4.13)
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Relations (4.12) and (4.13) show that x’, together with p, satisfies (4.8) and (4.9) with

T1 1 +
It only remains to show that x’ satisfies (4.10) for some scalar constant T2. For

any subset I of {1,..., m} and any subset J of {1,..., n}, let Big denote the matrix
obtained by removing from Bj all rows i with i I. We show below that x’ 6 A"
whenever

(4.14) ce < minkeg{Xk}
Bi(Big)-Vgf(x)ll

where I is any subset of (1,..., m} such that Big is invertible. This, together with the
fact xj >_ 5 for all j 6 J, would then complete the proof. First, we observe that the
constraints B c can be rewritten as BIjj +B#j cI and Bijj +Bij ci,
where is the complement of I relative to (1,..., m}. Using the first set of constraints
to eliminate j from the second set and from the objective function in (4.11), we reduce
the minimization in (4.11) to the following problem:

1
minimize Ik (Xk oVkf(x))l 2 (rgf(x), (BIj)-IBIj)

k.J

subject to (Si# Bij(BIj)-BI#) ci Sig(Big)-c, > O,

satisfies the optimality conditions:is an optimal solution. Then, x#to which x#
T T --I +BI#(BIj f(x))]

where 7:) denotes the feasible set for the reduced problem. This, combined with the
observation that x# 6 7:) (cf. x A’), implies

IIx xjI II[xj oz(Vjf(x) BTIj(BTIj)-Vjf(x))]+z:
<  llv f(x) Bzs(BL) Vsf(x)ll,

where the last inequality follows from the nonexpansive property of the projection
mapping [’]+z). Combining this with (4.13) gives

]IXj Xjl[ < o.I](BBj)-IBBjIIIIVjf(x) T T

and it follows that x5 _> 0 whenever satisfies (4.14). Since Bx’: c and (of. (4.12))
x:_’> 0, this shows that x’ 6 A" (cf. (1.6) and (4.1)) whenever c satisfies (4.14).

The iteration (4.11) admits an interesting interpretation as an active-set-type
iteration. To see this, let us assume for simplicity that the matrix Bj therein is
invertible. Then, since Vjf(x) Bp (cf. (4.12)), we can eliminate p from the first
expression in (4.12) to obtain

B (Ba)

Also, since Bx’ c, we can solve for x5 to obtain

x5
Thus we may interpret (4.11) an iteration in which we first take a reduced-gradient
projection step, and then we adjust those coordinates for which the reduced gradient
is zero so that the new iterate x’ satisfies Bx’ c. This philosophy of taking a descent
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step with respect to those coordinates "active" at their respective bounds (i.e.,
is reminiscent of active set schemes for solving problems with simple bounds. In fact,
it can be seen that the above iteration is very similar to an unscaled version of a
projected Newton method studied by Bertsekas [Ber82, 3] and Bertsekas and Gafni
[BeG83]. In contrast to conventional active set schemes, the above scheme has the
advantage that it can add and drop many elements from its currently active set J at
each iteration.

5. Convergence of RGP algorithms. In this section we show, by using the
local error bound of 3, that every RGP algorithm with the stepsizes chosen according
to an Armijo-like rule is linearly convergent. The proof of this is analogous to a proof
given in [LuT92b].

First, we describe the rule for choosing the stepsizes a. This rule is based on the

e.fficient Armijo-like rule proposed by Bertsekas for the gradient projection algorithm
[Ber76]. Let T1 and 7"2 be the parameters of a given RGP iteration (cf. (4.9) and
(4.10)). We fix two parameters e (0, 1) and T3 > 0 and we let

ET )2Ta 5[[ II[IE[Ip(TI + T3.

Given an iterate x e A’, we choose a number a0 with a0 _> min{1/T4, T2/[[Vf(x)[[}
and we set

(5.1) a col3k,

where k is the first nonnegative integer for which an x and a p generated by the RGP
iteration with a given as above (i.e., x’ and p together satisfy (4.8)-(4.10)) satisfies
x E A’ and the sufficient descent condition

f(x) f(x’)
_

 : o tlx- Ix- Vf(x) + BTp]/ 2.

We remark that, instead of the Armijo-like rule given above, we can also use a stepsize
rule analogous to one proposed by Goldstein [Gol74] and the analysis can be adapted
accordingly.

We next show that the stepsize rule (5.1)-(5.2) is well defined and that the stepsize
generated is sufficiently large.

LEMMA 5.1. The stepsize rule (5.1)-(5.2) is well defined. Moreover, the stepsize
a generated by this rule is bounded below by min{1/T4, T2/[]Vf(x)[[}.

Proof. First, we show that, for a given x E A’ and a positive number a strictly
less than min{1/T4, T2/[]Vf(x)[]}, any x’ and any p e Nl that together satisfy (4.8)-
(4.10) also satisfy x’ A’ and (5.2). Since Vf is Lipschitz continuous with Lipschitz
constant [IET[][IE[[p (cf. (2.2)), we have

(5.3) f(x) f(x’) > (Vf(x) x x’) ]IETIIIIEIIP IIx’- xll 22

Let J {j e {1,...,n}]Bfp Vjf(x)}. Then, by (4.8), xr is the orthogonal
projection of xj- a(V]f(x) B-p) onto the nonnegative orthant. Since x _> 0, this
implies

(x xj + a(Vjf(x) TB p), xh) > o.
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Since Bx Bx’ (cf. x E ,’ and x’ E A’), we have from the definition of J and the
above relation that

(Vf(x), x x’> (Vf(x) BTp, x x’
(5.4) (Vf(x) Bp,x x’)

1 2_> -IIx- xll
Upon combining (5.3) with (5.4), we obtain

f(x) f(x’) > lllx xll 2 IIETIIIIEIIPlIx x’ll 2

so (4.8), (4.9) together with the definitions of J and Ta yield

f(x) f(x’)> (1 Ta / Ta IIx IX o(Vf(x) BTp)]+]I 2.

Since IIx- [x- d]/ll _> llx- Ix- d]/ll for any d (see, for example, Lemma 1
in [GaB84]), this shows

f(x) f(x’) > (1 ’at + Ta)IIx [x Vf(x) + BTp]+II 2,

Thus x’ together with p satisfies (5.2) whenever a is less than 1/ra. Since x’ satisfies
(4.10), we also have that x’ q X whenever a is less than ’2/llf(x)ll.

The above result implies that, for a given x A’, if the integer k is sufficiently
large, then any x’ and p satisfying (4.8)-(4.10), with a given by (5.1), also satisfies
x’ e A’ and (5.2). There must be a first k for which this occurs, so the stepsize rule
(5.1)-(5.2) is well defined. Now we prove the second claim. Let t be the stepsize
given by this rule. Then, either a0 or t < a0. In the former case the second
claim holds trivially (by choice of a0). In the latter case, there must exist some x’
and p .satisfying (4.8)-(4.10), with a set to /fl, such that either x’

_
, or (5.2) fails

to hold. By the result proven above, this means that /fl must be greater than or
equal to min{1/Ta, T2/llVf(x)ll} or, equivalently, ( is greater than or equal to/ times
the latter quantity. The second claim then follows.

Our final lemma bounds the cost difference f(xt) -v* in terms of the inexact
residual x -Ix- Vf(x) + BTp]+. This bound is analogous to the cost bounds used
in the convergence analysis of gradient projection methods (see [Dun87, eq. (23)],
[GAD88, Lemmas 2 and 3], and [LuW92b, Whms. 2.1 and 3.1]).

LEMMA 5.2. Fix any v >_ v* and let e be the corresponding scalar given in
Theorem 3.2. For any x 2, any p and any x 2d satisfying f(x)

_
v,

IIx- [x- Vf(x)+ BTp]+II <_ e and (4.8)-(4.9), we have

f(x’)- v* _< T 1 + IIz- [- vI()+

where ’ > 0 is some scMr constant dependin9 on v nd the problem dt only.
Proof. Fix any z, :d, and p satisfying the hypothesis of the lemma. Let z

[x- Vf(x)+ Brp]+. Then, (x,p) ’ x and IIx- zll _< e, so (x,p) satisfies the
hypothesis of Theorem .2. Upon invoking Theorem a.2, we have that there exists
some x* ,-’* such tha

(5.5)
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where t is the scalar in Theorem 3.2.
Since Bx’= Bx*, then

(v:f(x) -x)Bp,x
is the orthogonalwhere we let J {j e {1,...,n} Bfp Vjf(x)}. Since xj

projection of xj- a(Vf(x)- Bp) onto the nonnegative orthant (cf. (4.8)) and
xj_*> 0, we also have

(x) x + a(Vgf(x) Bjp),T x’ x> _< O,

which, when combined with the previous relation, yields

<Vf(x), x’- x*> -< -al <x X’-g, X’ x>
Also, by the Mean Value Theorem, there exists some lying on the line segment
joining x’ with x* such that

f(x’) f(*) <Vf(), ’ x*>.
Summing the above two relations and rearranging terms give

1
f(x’) f(x*

< IIvf(c) Vf(x)ll / -Ilx- x’ll IIx’- x*ll

<

<_ PlIETIIIIEIIIIx xll / -IIx- x’ll IIx’- x*ll,

where the third inequality follows from the Lipschitz continuity property of Vf (cf.
(2.2)). Using (5.5) and the fact IIx-x’ll < -llx-zll (cf. (4,9)) to bound the right-hand
side of the above relation completes our proof. 0

Upon using Lemmas 5.1 and 5.2, we can now establish the linear rate of conver-
gence for RGP algorithms employing the Armijo-like stepsize rule.

THEOREM 5.3 (linear convergence). Let {x,xl,...} be a sequence in A" gen-
erated by a RGP algorithm (cf. (4.8)-(4.10)) using the Armijo-like stepsize rule (cf.
(5.1)-(5.2)). Then, {xr} converges at least linearly to an element of X* and {f(xr)}
converges at least linearly to v*.

Proof. For each index r > 0, let c and p denote, respectively, the stepsize and
the multiplier vector associated with the generation of x+1 by the RGP algorithm
using the Armijo-like stepsize rule. In other words, the conditions (4.8)-(4.9) and

X xr+l (r pr(5.1)-(5.2), as well as x’ e X, are satisfied by x x, a and p
for every r. By (5.2), we have

(5.6) f(xr) -/(xr+l) >_ T3Crl]Xr --[Xr XTf(xr) -4- BTpr]+I]2, r,
and, by Lemma 5.1, we have

(5.7)
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Relation (5.6) implies f(xr) < f(x) for all r. Since in addition xr E A’ for
all r, we obtain from (1.6) that x e ’’ for all r where we let v f(x). Then,
Lemma 2.3 implies that the sequence {Exr} is bounded. Since Vg is continuous, this
in turn implies that {Vg(Ex)} is bounded, so that (cf. (2.1)) {Vf(xr)} is bounded.
Combining this with (5.7), we see that {at} is bounded below by some positive scalar
constant.

Since {a} is bounded away from zero and f is bounded below on X, the relation
(5.6) implies x -Ix Vf(x) + BTp]+ O. Then, by Lemma 5.2, there exist a
scalar constant T5 > 0 and an index such that

r
lxr [xr Vf(xr) + BTp]+I[2 > (f(xr+l) v*) Vr > ,

T5(1 +at)
which, when combined wib (.6), ields

f(xr) f(xr+l) k T3(ar)2 (xr+l *)Tb(1
Upon rearranging terms in the above relation, we obtain

+ (i(x+ ), w ;

Since {a} is bounded away from zero, this shows that f(x) v* at let linearly,
which, together with (5.6), shows that x -Ixr Vf(x) + BTpr]+]] 0 at let
linearly. Since ]Ix+1 x] TI]]X Ixr Vf(x) + BTp]+[ (cf. (4.9)), it follows
that ]Ix+1- xr 0 at least linearly, so {x } converges. Since f(x) v*, the limit
poim of {x} is in X*.

We have just shown that any RGP algorithm using the Armijo-like stepsize rule
attains a linear rate of convergence. Upon applying Theorem 5.3 to the algorithm
of Bertse and to the active-set-type algorithm of 4, we immediately obtain the
following new convergence results.

COROLLARY 5.4. Suppose that C [0, )n, B [1 1 1], and c 1. Then,
any sequence of iterates generated by the Bertsekas algorithm (cf. (4.3)-(4.5)), with
stepsizes determined by the Amijo-like rule (cf. (5.1)-(5.2)), converges at least linearly
to an element of X*.

COROLLARY 5.5. Suppose that C [0, )n. Then, any sequence of iterates gen-
erated by the active-set-type algorithm (cf. (4.11)), with stepsizes determined by the
Armijo-like rule (cf. (5.1)-(5.2)), converges at least linearly to an element
of X*.

6. Concluding remarks. In this paper, we studied a (new) local error bound
for certain convex minimization problems over a polyhedral set. We then used this
error bound to prove linear convergence for a cls of reduced-gradient projection
algorithms.

There are several directions in which our results may be generalized. We briefly
describe two main ones below.

1. Problems with extended-real-valued cost function. In many situations,
g is defined only on some open subset G of m and Vg is Lipschitz continuous and
strongly monotone on any compact subset of G. All of our results can be extended to
this situation provided that, for some > v*, the level set {x e X f(x) }
satisfies
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(Notice that the above condition holds automatically if dom g is open and g tends to
x) at the boundary of dom g.) In particular, Theorem 3.2 still holds provided that v
therein does not exceed (C). The proof of this is based on an interesting fact that, for
i > 0 sufficiently small, E’ is a compact subset of , where ’ is defined as in 2.
(The proof of this is similar to that of Lemma 9.1 in [Tse91].) By using this fact in
place of Lemma 2.3, we can verify that all the steps in the proof of Theorem 3.2 go
through, provided that we take v _< (C). Linear convergence of the algorithms described
in 4 also holds, provided that the stepsize is taken sufficiently small so as to ensure
that each new iterate remains within ’. (The proof of the latter uses the boundedness
of Vf on " and the strict inclusion of E" by .)

2. Variational inequality problems. The error bound in 3 readily extends
to the following variational inequality problem, first studied by Bertsekas and Gafni
[BeG82], of finding an x* satisfying

x* Ix* F(x*)]+x,
where F(x) ETG(Ex) + q and G m m is a Lipschitz continuous strongly
monotone function. However, it is unclear whether the bound would help in the
development of algorithms for solving such a problem. The error bound also readily
extends to ajfine variational inequality problems (where F in the above problem is any
affine mapping). This follows from a result of Robinson [Rob81] on certain Lipschitz
continuity properties of polyhedral multifunctions.

There remain many open questions which we plan to investigate. Specifically,
can the local error bound described in 3 be extended to problems with general con-
vex constraints? Can the linear convergence result of Corollary 5.4 be extended to
an asynchronous version of the Bertsekas algorithm proposed by Tsitsiklis and Bert-
sekas [TsB86]? Some progress along this latter direction has already been made (see
[LuT91]). Are there other reduced-gradient projection algorithms, different from those
described here, to which our convergence analysis can be fruitfully applied?

It was pointed out to us by one of the referees that, although RGP algorithms
typically require less work per iteration than the gradient projection algorithm, their
rate of convergence may be slower, thus offsetting any saving in the per iteration
workload. In particular, a careful examination of the convergence analysis in 5 shows
that, in the worst case, the rate of convergence of an RGP algorithm may depend on
n, whereas the gradient projection algorithm does not. Does this dependence exist
in practice and, if yes, what are its effects on the performance of an RGP algorithm?
This is yet another question that we hope to address in the future.

Acknowledgment. We thank Professor D. P. Bertsekas and an anonymous ref-
eree for their many helpful comments, which led to a number of improvements in the
presentation.
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BLACK-BOX COMPLEXITY OF LOCAL MINIMIZATION*

STEPHEN A. VAVASISt

Abstract. The complexity of local minimization in the black-box model, that is, the model
in which the objective function and its gradient are available as external subroutines, is stud-
ied. The black-box model is used, for example, in all the optimization algorithms in Dennis and
Schnabel [Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-
Hall, Englewood Cliffs, NJ, 1983]. The first main result is that the complexity grows polynomially
with the number of variables n, in contrast to other related black-box problems (global minimization
and Brouwer fixed points) for which the worst-case complexity is exponential in n.

The second contribution is the construction of a family of functions that are bad cases for all
possible black-box local optimization algorithms.

Key words, optimization, local optimality, black-box model, information-based, complexity

AMS(MOS) subject classifications. 90C60, 65K10, 65Y20, 68Q25

1. Black-box model. Numerical optimization refers to the problem of mini-
mizing a continuous function f D --+ R where D is a subset of Rn. For nonconvex
problems, most optimization algorithms will not return global minima; instead, they
will return (at best) local minima.

It is therefore natural to inquire about the complexity of local minimization for
general nonconvex objective functions. In order to make general statements about
local optimization, it is necessary to have definitions of valid objective functions and
of "approximate" local minima. These definitions will be the subject of most of this
introduction. To our knowledge, this paper is the first attempt to define approximate
local minimization.

The remainder of the paper is organized as follows. In 2 we present the first
main result of this paper, that is, a simple algorithm to find an approximate local
minimum. Its running time is polynomial in n (the number of variables) and
(see below for an explanation). In 3 we present the second main result, a family of
functions that constitutes a bad case for minimization algorithms. These functions
lead to a lower bound that is polynomial in M/. In 5 we give an algorithm with
a better bound for some values of the parameters. In 6 we compare our bounds to
the bounds known for global minimization and Brouwer fixed points (a closely related
problem).

The model of computation will be a real-number model. We assume that the
algorithm can store and compute exact real numbers. We assume that the objective
function f is provided by the user via a subroutine. This subroutine takes as input
a vector x E Rn and returns a real number f(x). We assume for this work that f
is continuously differentiable. We assume that the gradient Vf is also available as
a subroutine (see further remarks on this in 2). Some of the algorithms for uncon-
strained problems that fall into this category are the steepest descent method, the
Powell-symmetric-Broyden method, the Broyden-Fletcher-Goldfarb-Shanno method,
and the line-search and trust-region modifications of these algorithms. See Dennis and
Schnabel [1] for more information.
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This model of computation is known as a "black-box" model, a "function-evalua-
tion" model, or an "oracle" model. The key limiting feature is that global information
about f is not available to the minimization algorithm (unlike, for instance, the special
case of quadratic programming).

Because our focus is on the objective function rather than the constraints of the
problem, we will assume the simple case that the domain of f is the n-dimensional
unit cube denoted by In (the n-fold Cartesian product of the interval I [0, 1]). It
would perhaps be easier to assume simply that f is unconstrained (i.e., the domain is
In), but this leads to difficulties of scale as well as to the problem that local minima
might not exist. Since In is compact, there is always a global (and hence a local)
minimum.

An algorithm to find a local minimum takes as input a function f and its gradient
Vf as black-box subroutines. It must repeatedly evaluate f and Vf at points in In

until it has found a local minimum. It is easy to see that in the real-number function-
evaluation model, there will always be some uncertainty about the exact position of
the local minimum. Accordingly it is useful to define approximate local minima.

Recall that x* E In is said to be a global minimum of f if f(x*) < f(x) for all
x In. The point x* is said to be a local minimum of f if there exists an open set N
containing x* such that f(x*) _< f(x) for all x N N In.

DEFINITION. A point x* In is said to be an e-approximate local minimum of a
continuous function f In I if there exists an open set N containing x* such that

f(x*) < f(x) +  llx x*

for all x N N In.
Below we give an alternate characterization of this definition. First, we explain

this definition and also point out its shortcomings. The motivation for this definition
is that while x* may not have the smallest function value in the neighborhood N, the
value of f decreases slowly (at a rate no faster than e) as one moves away from x*.

The most obvious shortcoming of this definition is that an interior local maximum
or interior saddle point would also qualify as an e-approximate local minimum under
this definition. We do not feel that this property is a severe flaw in the definition,
however. For example, examining the local minimization algorithms of Dennis and
Schnabel, we see that it is possible for these algorithms to converge to saddle points.
Indeed, distinguishing local minima from other kinds of stationary points in general
is a computationally difficult problem; see, for example, Murty and Kabadi [3].

We observe that it is required to select a norm in the above definition. For this
paper we will assume that the one-norm is used in that definition. The norms in this
paper have been selected to make the analysis simple.

We now give an alternative characterization of an approximate local minima. We
will say that x* (x,..., x) is an e-KKT point of f In -- I if

1. For all i such that x > 0, Of/Ox(x*) <_ .
2. For all such that x < 1, Of/Oz,(x*) >_ -e.

(Note that if e 0 these conditions are the KKT (Karush-Kuhn-Tucker) necessary
conditions for local optimality.) If x* is interior, these conditions are equivalent to
the requirement that ]]Vf(x*)]]oo _< e.

If f is continuously differentiable, then there is a close connection between its
e-KKT points and its e-local minima, as proved by the following lemma.

LEMMA 1.1. Suppose f" In --+ is C1. If x* I is an e-approximate local
minimum of f, then it is an e-KKT point. Conversely, if x* is an e-KKT point, then
it is an e-local minimum for all e > e.
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Proof. We start with the first claim made by the lemma. We verify condition
1 in the definition of e-KKT point for a particular index i (condition 2 is similar).
Assuming x* > 0, the point x* -tei is feasible for small enough t > 0, where e is the
ith column of the identity matrix. For small enough t, this point is contained in N
hence f(x*) f(x* -tei) _< te by definition of approximate local minimum. Since
this holds for all t small enough, by definition of the partial derivative this implies
o/o(x,) < ,.

To prove the second statement of the lemma, recall that the definition of a deriva-
tive is that for all d,

f(x* + d) f(x*) + Vf(x*)Td + o(lldll).

Suppose that x > 0 for some i; then we know

Off(x* -tei) f(x*) t _-d::-__ (x*) + o(t)

so

f(x* re,) >_ f(x*) te + o(t)

so

f(x* re,) _> f(x*) $e’

for all t small enough. This inequality holds not only for x* but for every x in
neighborhood of x* since we are assuming that f is continuously differentiable. Then
we see that we can get a lower bound on f(x* + d) for an arbitrary d that is small
enough by expressing d as a sum of small steps of the form te.

We next ask the question: Given a continuously differentiable function f I
and given a number e > 0, what is the complexity of finding an e-approximate local
minimum? It turns out that the number of steps required is infinite. In particular, for
any finite sequence of test points xl,..., xk, there exists a continuously differentiable
function f: [0, 1] --+ I such that f(x) 0 and f’(x) 1 at all test points (except
if xi 0 then f’(0) -1). Moreover, -1 < f’(x) < 1 for all x E [0, 1]. Figure 1
illustrates an example of a sequence of test points and the bad-case function for these
points. To construct this function, put the x’s into increasing order, and then let f
be a correctly chosen cubic Hermite function on each interval.

An algorithm trying to find approximate local minima for this family of functions
will always completely fail (i.e., it will discover that f(x) 0 and f’(x) 1 at all of
its test points) for at least one function in the family after any finite number of steps.

The problem with this family of functions is that the first derivatives can vary too
much over short intervals, so that no algorithm can get a bound on the first derivative
of the function.

Accordingly, we place additional restrictions on the function. In particular, we
require that the first derivative satisfy a Lipschitz condition, that is, there exists
constant M such that

IlVf(x) Vf(y)lloo < MIIx- ylloo

for all x, y E In.
We now ask the question: What is the complexity of finding an e-approximate

local minimum for a function in this class? Clearly the answer depends on e, M, and
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FIG. 1. An impossible case for local minimization.

n. In the next section, we give an algorithm for this problem, which yields an upper
bound on the complexity.

We remark that none of our complexity bounds depend on M or e individually;
instead, they all depend on the ratio M/e. This is expected because the problem
of finding an e-approximate local minimum for f is the same problem as finding a
ce-approximate local minimum for cf (where c > 0). Therefore, we would expect the
complexity to be unchanged if M and e are scaled by the same amount.

2. An algorithm for local minimization. In this section we propose an al-
gorithm for approximate local minimization, along with a complexity analysis. We
call this algorithm LOCAL1. We assume that e, M, and n are given. We assume also
that M/e is an integer. We are given a starting point x() E In, which is assumed
to have each coordinate equal to an integer multiple of elM. If no starting point is
given, the origin can be used.

Given a function f(x), we define the vector-valued function g(x) as follows. The
ith entry of g(x) is defined by

(0, 0,

g(x) (x) if 0 < x < 1, or

max (0, 0/ (x)) ifxi=l.

Notice that if x is interior to In, then g(x) Vf(x). This function g(x) could be
called the "projected gradient," although this terminology is not standard.

Algorithm LOCAL1 begins by testing whether [Ig(x())ll > M. If this inequal-
ity holds, then for some i we know Iof/ox(x(O)l > M. Take the case in which
Of/Ox(x()) > M (the negative case is similar). We claim that Of/Ox(x) > 0 for
all x E I’. This follows from the Lipschitz bound on Vf.
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This means in particular that any local minimum of f must occur on the face
T {x E In xi 0} of In. Moreover, if f0 T --. R denotes the restriction of f to
T, then it suffices to find an e-approximate local minimum of f0. Therefore, we can
project x() onto T and work on the restricted problem. The restriction operation
has the effect of deleting the ith entry from the vector g(x).

Accordingly, we can continue to reduce the dimensionality of the problem coor-
dinate by coordinate. Therefore, without loss of generality, we can assume that our
starting point satisfies IIg(x())]loo _< M.

Let x* be a global minimum of f. We can use the upper bound on g to derive
an upper bound on the difference f(x()) f(x*). Let s I[x* x() II1. Then we
can construct a path made up of segments parallel to the coordinate axes from x* to
x(); the length of this path will be exactly s. Assume that the path is made up of n
segments P1,..., Pn such that Pi is parallel to ei.

Then we can write a line integral for the change in function values:

(1)

n

’ /p, Of.= ai-x dxi,

where ai =t=1 depending on the orientation of Pi with respect to ei. We now derive
an upper bound on each integral in (1). There are two cases. In the first case,
gi(x()) Of/Oxi(x()). In this case, we can apply the Lipschitz bound directly. We
know that Igi(x())l- IOf/Oxi(x())l <_ M. Since the distance from x() to any point
of Pi is at most 1 in the cx>norm, we know that the magnitude of Of/Oxi along Pi is
at most 2M. Therefore, the above integral has magnitude at most 2M.

In the second case, gi(x()) Of/Oxi(x()). Examining the definition of g, we

see that there are two possible subcases: either x) 0 and Of/Ox(x()) > 0, or

x) 1 and Of/Ox(x()) < 0. We treat the first subcase since the second subcase is

analogous. Since x) 0 and Of/Oxi(x()) > 0, we know that Of/Oxi cannot drop
below -M at any point on Pi. Moreover, we know that Pi is oriented in the negative
direction with respect to ei, because x) 0. Therefore, the ith integral in the above
summation is at most M (this argument does not give a lower bound, but only an
upper bound is needed).

We conclude that all the integrals in (1) are at most 2M, and hence

f(x()) -f(x*) _< 2Mn.

This gives an upper bound on how much the objective function can decrease.
We now return to the main part of LOCAL1 under the assumption that

is at most M. The algorithm operates on an imaginary grid of nodes spaced
apart in each dimension of In and aligned with the coordinate axes. By our earlier
assumptions, there is an integer number of mesh cells in every dimension, and the
initial point x() is one of the mesh points.

.We now use the following iteration. Assume that the current iterate is x(k). We
compute g(x(k)). If IIg(x(k))lloo < e, then we halt. The justification for halting is as
follows. If IIg(x(k))lloo e’ and e’ < e, then it is easy to verify from the definition of
g that x(k) is an e-KKT point and is therefore an e-approximate local minimum.
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Otherwise, suppose IIg(x(k))l]oo _> e. Then we identify a component, say g,(x(k)),
whose absolute value is at least e. Say, for example, that gi(x(k)) >_ e (the negative
case is similar). This means by definition that Of/Ox(x(k)) > e and that xk) > O.
Then we set x(k+l) x(k) (e/M)e. If g(x(k)) had been negative then we would
have instead added (e/M)ei. Notice that, under this definition, x(k+l) will be a mesh
point lying in In

With this formula for x(k+), we claim that f(x(k+)) _< f(x(k)) -0.5e2/M. To
see this, observe that in the case in which Of/Ox(x(k)) is positive,

(x(k) +tei) dtOff(x(k))- f(x(k/l))
e/U OXi

> (e + Mr)dt
e/M

>_ 0.52/M.

To derive the second line we used the fact that Of/Oxi(x(k)) > e as well as the
Lipschitz bound on Of/Oxi.

We conclude that the objective function decreases by at least 0.5e2/M per iter-
ation. As noted earlier, the most that the objective function can decrease is 2Mn.
Therefore, the maximum number of iterations is 4n(M/e)2. Let us state this as a
theorem.

THEOREM 2.1. Let f In -- R be a C function whose gradient satisfies a
Lipschitz condition with bound M. Then an e-approximate local minimum can be
found with at most 4n(M/e)2 function and gradient evaluations.

We remark that if gradient values are not available, the first part of the algo-
rithm (the restrictions to subproblems) can be carried out by estimating the gradient
via finite differences. A bound can be derived on the accuracy of finite difference
approximations to the gradient using the hypothesis that the gradient is Lipschitz
bounded.

If gradient values are not available, then the main local-search step of the algo-
rithm can be replaced with a comparison of the objective value at x(k) to the objective
values at the neighboring grid points. This requires 2n function evaluations per local
search step.

3. A lower bound for local minimization. In the last section we saw poly-
nomial dependence on both n and M/e. The polynomial dependence on n is to be
expected in general (since f depends on n variables, it presumably takes at least
n operations merely to evaluate f). The polynomial dependence on M/e is clearly
unavoidable with that algorithm since the step size is elM.

It is natural to inquire whether the polynomial dependence on M/e is actually
necessary for all algorithms. Indeed, for the case n 1 there is a simple bisection
approach solving the problem in O(log(M/e)) steps. Could an algorithm with large
steps (say, steepest descent combined with line search) achieve better complexity for
n>l?

The purpose of this section is to give a lower bound in the n 2 case showing
that polynomial dependence on M/e is inherent in the problem of black-box local
minimization. The lower bound applies to all algorithms based on the function eval-
uation model (not merely to the algorithm of the last section). The .lower bound
is based on a family of functions that could fool any algorithm until it has made
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at least f(x/M/e) function and gradient evaluations. Here the notation
means that the worst-case running time is bounded below by a constant multiple of
v/M/e for some sequence of values of M/e tending to infinity. The construction of
this family has two parts: an algebraic/geometric part and a combinatorial part. No-
tice that because we are trying to provide a "bad case" (lower bound) for all possible
information-based algorithms, we need a whole family of bad-case functions rather
than a single function.

These functions are bad cases in the sense that an algorithm for local minimization
will require many steps. There are other senses in which a local optimization example
could be bad (for instance, it may be that local minima are easily found but have
large objective function values with respect to the global minimum).

We focus on the n 2 case since the interest here is the dependence on M/e.
This lower bound is based on the same ideas of a lower bound for Brouwer fixed points
in two dimensions due to Hirsch, Papadimitriou, and Vavasis [2]. We assume that M
and e are given. In this section we work with [[. 112 norms because we use two rotated
coordinate systems (other norms could lead to confusion).

The lower bound is based on how much information any algorithm could get about
f. We argue informally in this section about what the algorithm "knows" from its
function evaluations, but the information model can be cast into formal terms. See,
for example, Traub, Wasilkowski, and Wolniakowski [6].

We divide the unit square 12 into K x K subsquares, where K is an integer on
the order of x/M/e (the exact value will be selected below). Besides K, we also have
the parameters and , which are both on the order of e (the exact formulas are
below). Number the subsquares with ordered pairs /u, v/, u, v 0,..., K- 1. Two
subsquares are said to be adjacent if they have a common edge.

We will embed 12 in the plane diagonally, i.e., with corners at (0, 0), (V/2,
+/-V/2), and (x/, 0). The relationship between the subsquare numbering and coordi-
nate system is as follows. The vertex of subsquare (u, v/with minimum x coordinate
is at

1
(u+v v-u)j

where J Kv/. The embedding along with some numbered subsquares is indicated
in Fig. 2.

A southeast track is a sequence of adjacent subsquares with increasing first coor-
dinates, and a northeast track is a sequence of adjacent subsquares with increasing
second coordinates.

The west subsquare is subsquare /0, 0). Define a riverbed to be a sequence of
adjacent subsquares starting at the west subsquare, proceeding along a northeast
track, and then following a sequence of alternating southeast and northeast tracks,
and ending somewhere inside the square. This terminology is used because the mesh
plot of function f based on this construction resembles the top view of a riverbed on
a hillside. An example of a riverbed is indicated in Fig. 3. Note that the riverbed
will have at most 2K- 1 subsquares. The last (closest to the east) subsquare of the
riverbed is called the sink. The subsquares of 12 not in the riverbed are called hillside
subsquares.

Our functions will be defined based on K, 5, and 5 (i.e., based on M and e) and
on a particular choice of riverbed. The function f will be constructed below so that
all e-approximate local minima lie in the sink subsquare.
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FIG. 2. Embedding 12 in the plane with subsquares indicated.

FIG. 3. An example of a riverbed for K 4.

Notice that there is a large but finite set of possible riverbeds for each particular
value of K. The functions on 12 in our family will be in correspondence with choices of
riverbeds. The particular riverbed to choose will depend on the algorithm at hand-
this is the combinatorial part of the construction described below.

For now, we assume that a particular riverbed is selected, and we proceed with
the construction of f. All the properties that f should have are stated in the lemmas
below. The reader uninterested in the geometric details can skip ahead to Fig. 7 and
read the lemmas.

The first part of the construction is the function s(x) that traces the shape of the
riverbed. The path defined by (x, s(x)) as x varies from 0 to xe passes through all the
subsquares of the riverbed (xe is defined below). It enters and leaves each subsquare
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through the midpoint of the edge between adjacent subsquares of the riverbed.
In particular, s(x) is defined piecewise on intervals of the form [(i + 0.5)/J, (i +

1.5)/J] where i is an integer. If x is the endpoint of one of these intervals, s’(x) =kl.
The pieces are matched so that s(x) is continuously differentiable. The formulas for
s(x) are as follows. In the west subsquare, for x between 0 and 1.5/J, we define

s(x):
4

(jx)3

We notice that this function leaves the west square through the point (3/(2J), 1/(2J)),
i.e., the midpoint of the edge between subsquares (0, 0) and (0, 1). This means
that the subsquare after (0, 0) in the riverbed will always be (0, 1) (as mentioned
above, a riverbed is defined to start with a northeast track). Also, we can check that
s’(3/(2J)) 1.

In a subsquare (u, v) that is interior to a northeast track, s(x) is a linear function
with slope 1. Specifically, (x, s(x)) linearly joins the point

1
(u + v + 0.5, v u 0.5)J

to the point

-1(u+v+1.5 v-u/0.5).
j

Similarly, in a subsquare interior to a southeast track, s(x) is linear with slope -1.
In a subsquare (u, v in which the riverbed makes a turn, say, from northeast to

southeast, the formula is

s(x) -1 (Jx u v 0.5)(u + v + 1.5 Jx) + v u 0.5.

This function starts at

1
(u + v + 0.5 v u 0.5)

j

and ends at

_1 (u + v + 1.5, v u 0.5).J

Function s(x) has slope +1 at the first point and -1 at the second. A turn from
southeast to northeast is analogous.

In the sink subsquare, s(x) is defined by the linear function of slope 1 if the sink
subsquare is the terminal of a northeast track, otherwise s(x) is a linear function of
slope -1.

The end xe of the domain of definition of s(x) is the x-coordinate of the midpoint
of the edge of the sink square where the riverbed terminates. If (uc, vc/ is the sink
subsquare, this coordinate is

1
+ +

An example of this construction with K 4 is plotted in Fig. 4. Here, the
riverbed is given by (0, 0), (0, 1), (0, 2), (1, 2), (1, 3).
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FIG. 4. An example of s(x).

We observe that s(x) has the following properties. It is C and piecewise C2.
The maximum value of [s’ (x)l is 1, and the maximum value of Is"(x)l (where defined)
is 2J.

We have now defined a function to specify the shape of the riverbed. The next
step is to define the two functions controlling the value of function f on the riverbed
portion of 12. The first function indicates how f varies in the direction across the
riverbed, and the second indicates how f varies parallel to the riverbed. The first
function is defined by

0 for w < -1,
c(w)= -w4+2w2-1 forTe [-1,1],

0 forT>_ 1,

which is plotted in Fig. 5.
It is easily checked that this function has the following properties: c is C1, c(-1)

c(1) 0, c(0) 1, and c’(- 1) c’(0) c’(1) 0. Also, the maximum value of
Ic(w)l is 1, of Ic’(w)[ is approximately 1.54, and of Ic"(w)] (which is undefined at +1)
is 8.

Next we define the function p(x), which determines how f varies as the riverbed
is followed. The value of p(x) depends on the position of the sink. Specifically,
suppose (ue, ve) is the sink subsquare. Then the formulas for p(x) are as follows. Let
Xb (Ue -- Ve -]- 0.5)/J, that is, the x-coordinate of the point where path (x, s(x))
enters the sink square. Let xc (ue + v + 0.75)/J and Xd (u + v + 1.0)/J. Let
bo 6 + Xb. Then

p(x)

i + ix for x E [0, Xb],
-26J(x Xb)2 + 6(x Xb) + bo for x e [Xb, xc],
(b0 + 6/(8J)) [2 (4J(x Xc))3

3 (4J(x Xc))2 + 1[ for x e Xd] and

0 forx>_Xd.
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FIG. 5. The graph of c(x).
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FIG. 6. An example of p(x); the right plot shows a detail.

It can be checked that p(x) is C1. In particular, p(xb) b0, p(Xc) b0 + i/(SJ), and
p(xd) 0. Also, p’(xb) 6 and p’(xc) p’(xd) 0. The maximum value of
is b0 + i/(8J), which is at most 36. Also, it can be checked that Ip’(x)l is at most
186J, and Ip"(x)[ (where defined) is at most 2886J2. An example of p(x) is plotted
in Fig. 6.

From c(w), p(x), and s(x) we now assemble the function f(x, y),which is defined
as follows:

f(x, y) p(x) c(2K(y s(x))) + 6’x.

A MATLABTM mesh plot of f(x,y) is illustrated in Fig. 7. MATLAB, an interactive
package for numerical computation, is a trademark of The Mathworks, Inc. Many of
the other figures in this paper were also produced using MATLAB.

We now establish some properties of this function.
LEMMA 3.1. If (x, y) lies in the hillside, then f(x, y)= 6’x.
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(0,1)

(1,1)

FIG. 7. An example of f(x, y).

Proof. We must show that the first term vanishes outside the riverbed. If (x, y) is
not in the riverbed, either x > Xd or lY- s(x)l >_ 3/(4J). This latter inequality arises
from the fact that the distance from (x, s(x)) in the y-direction to the boundary of
the riverbed is always at least 3/(4J) by definition of s(x). If x > Xd then p(x) O, so

the claim is true. Similarly, if ly-s(x)l >_ 3/(4J)then 2gly-s(x)l >_ (3K)/(2J) >_ 1,
hence c(2g(y- s(x))) O. D

At this point, we choose an d to be slightly larger than e, and we let

6 32x/e’

and

6’= 19e’.
These choices are made so that we can prove the following lemma.

LEMMA 3.2. Let (x,y) be a point not in the sink square. Then I]Vf(x,y)ll2 >_

Proof. Let w denote 2K(y- s(x)). We compute

Vf(x, y) (p’(x)c(w) 2gp(x)c’(w)s’(x) + ’, 2gp(x)c’(w)).

We now take cases to prove a lower bound on the size of Vf(x, y). The first case is
that we are not in the riverbed, which was handled by the previous lemma and by the
fact that 6’ > v/e’. This is the case in which Iw] >_ 1 or x > Xd. For the other cases
we assume that ]w _< 1 and x <_ Xb. (We can assume that x <_ Xb since (x, y) is not in
the sink.) We now take subcases. The first subcase is that Iwl e [1- 1/(64K), 1]. In
this case, Ic(w)l and Ic’(w)[ are at most 1/(8K). Then, we observe that for x not in
the sink, Ip(x)l < 26, If(x)] <_ 6, and Is’(x)l < 1. Thus the term Ip’(x)c(w)l above is
at most 6/16, and the term 12gp(x)c’(w)s’(x)l is at most 6/2. The third term of the
first entry of Vf is exactly 6’; therefore, the first entry of the derivative has magnitude
at least 6’ (9/16)6. Using the above formulas for 6, 6’, this is a magnitude of at least

In the second subcase, [w[ e [1/(64K), 1-1/(64K)]. In this case, we observe that
Ic’(w)l >_ 1/(10g). This means that the second entry 12gp(x)c’(w)l of Vf(x, y) is at
least Ip(x)/51, i.e., at least 6/5. This quantity is greater than e’.

In the third subcase, Iwl e [0,1/(64K)]. In this case, Ic(w)] >_ 7/8, whereas
Ic’(w)l <_ 1/(16K). Therefore, the first term Ip’(x)c(w)] is at least (7/8)6. The second
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term 12Kp(x)c’(w)s’(x)l is at most (1/4)5. The last term is exactly 5’. Thus the first
entry has magnitude at least (7/8)5- (1/4)5- 5’, which is x/e’.

LEMMA 3.3. Let (x, y) be a point not in the sink square. Then (x, y) is not an
e-approximate local minimum of f.

Proof. This follows from the previous lemma, with special attention paid to the
boundaries. Region 12 has four boundaries and four corners. We must check whether,
if (x, y) is on a boundary, the projection of Vf(x, y) onto the boundary will be at least
e’. The argument is as follows. Along a boundary we know that Vf(x, y) (5’, 0) from
the construction, except in the west subsquare. The gradient (5, 0) has magnitude at
least e when projected on every boundary except the point (0, 0). This takes care of
the whole boundary outside the west square.

Therefore, we only have to examine the exterior boundary of the west subsquare.
A calculation shows that every point has a projected gradient of size at least

Note that we have not established the existence of an e-approximate local mini-
mum in the sink square. We know by compactness, however, that such a point exists,
and the previous lemma forbids its existence anywhere else.

It is now time to select the value of K, which will be

The reason for this value of K is to establish the following lemma.
LEMMA 3.4. The gradient Vf(x,y) for f defined above is continuous and has

Lipschitz constant at most M.
Proof. The gradient exists everywhere and is continuous because f is assem-

bled from C functions of one variable. Because f is continuously differentiable and
piecewise C2, then the following inequality holds:

IlVf(xl,Yl) vf(x:,y:)ll: </ IID2f(x,y)ll2 II(x2, y2)- (xl,yl)ll2dP,

where P is a straight-line path from (xl,yl) to (x2,y2), and D2 denotes the second
derivative. This inequality holds for almost all pairs of points (the only exception
being the case when P intersects a continuum of points where D2f fails to exist).
Thus, to get a Lipschitz bound on Vf(x, y) it suffices to establish an upper bound on
the two-norm of the second derivative wherever it is defined. Since the two-norm of
a matrix is hard to work with, we instead put an upper bound on the infinity norm,
and then multiply it by v/.

We compute the second derivative entry by entry:

OxOy

Oy2

p"(x)c(w) 4Kp’(x)c’(w)s’ (x)

+ 4K2p(x)c’’ (w)s’ (x)2 2Kp(x)c’(w)s" (x),

2gp’(x)c’ (w) 4g2p(x)c’’ (w)s’ (x),

4K2p(x)c"(w).

We can go through each term and use the crude estimates made earlier to get an
upper bounds of 1116K25 on 02f/Ox2, 312K25 on 02f/OxOy, and 96K25 on 02f/Oy2.
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Estimating 5 _< 45.3d gives an upper bound of about 6.5. 104K2e for the cx>norm

of the second derivative, which translates to an upper bound of about 9.2.10aK2e
for the two-norm. Therefore, with the above choice of K we are guaranteed to have a
Lipschitz bound of at most M. Note that the true Lipschitz bound for our construction
grows proportionally to K2e but with a much smaller constant.

LEMMA 3.5. Suppose that (x,y) lies in subsquare (u,v). From f(x,y) and
Vf(x,y) it is not possible to determine any information about the riverbed except
possibly whether or not (u, v) lies in the riverbed and, if so, what the positions of the
two neighboring riverbed squares are.

Proof. This follows from the definition of f(x, y). If x >_ Xd or lY-- s(x)l >-- 1/(2K)
then we cannot determine anything about the riverbed except that (u, v) is not in the
riverbed. If lY- s(x)l <- 1/(2K) and x <_ Xd then we might be able to determine
the values of s(x), s’(x), and p(x) from f(x,y) and Vf(x,y). This means we can
determine that the particular square is in the riverbed, and we can determine what
kind of turn the riverbed makes. Nothing else can be determined.

We now prove a general lower bound for finding approximate local minima for
this family of functions. We imagine an algorithm A that makes function and gradient
evaluations. We want to find a pair of functions f(x,y), f’(x,y) in our family with
disjoint sets of approximate local minimum such that algorithm A cannot distinguish
them until g function/gradient evaluations (i.e., gt(v/M/)) have been made. Notice
that the only approximate local minima for functions in our family occur in the sink
square, and therefore f and f will have different sinks. We start by assuming that
the algorithm knows M and e (and therefore K).

The combinatorial argument that constitutes the remainder of this section is iden-
tical to the argument of [2], but we present it again here for the sake of completeness.

To construct f and f we need to specify riverbeds R, R. The riverbeds for these
two functions will be almost identical. The riverbeds are constructed "adaptively."
In particular, we fix more and more of R, R as we observe the test points made by A.
The idea is that f and f will agree at all test points, so R and R will agree almost
until the end.

We assume that A makes a deterministic sequence of test points, and that at each
test point it evaluates f and Vf. The sequence of test points is denoted (xi, yi). Each
one may depend on previous test points in any way possible. Thus A has unlimited
computational power. Note that there is no advantage for A to make a test point
exactly on a boundary of a subsquare for our family (i.e., no more information about
the riverbed can be gleaned from a boundary than from a nearby interior point), so we
assume that all test points lie in a unique subsquare. Once a test point has been made
in a subsquare, we assume that A has complete information about the subsquare (i.e.,
all the values of f(x, y) are known to A for (x, y) lying in the subsquare).

The riverbeds R, R are constructed as a sequence of tracks alternating northeast
and southeast. They are built up as the limit of the sequence Ro, R1,R2,..., where
each Ri c Ri+l, and Ri denotes the partial riverbed that is determined after test
points from A (note that R0 { (0, 0)} since this subsquare is in every riverbed).

We know that R starts from (0, 0); denote its last square as (u, v}. In our
construction R and R will agree with Ri all the way up to subsquare (ui, vi), and
moreover, that R, R will make a bend in subsquare (ui, vi). We let Ti denote the
track starting from (ui, vi) following the direction of the bend and proceeding to the
border of 12. The invariant property of the upcoming construction is that no test
points have been made in Ti on iterations 1 up to i. Note that To is the northeast
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FIG. 8. The three cases for test points.

track of subsquares with first coordinates equal to 0.
We now give the rules for extending Ri-1 to Ri. There are three cases for test

point i. In the first case, (xi, yi) lies in the part of 12 that is already determined. To
be specific, suppose, for example, that Ri_l ends at subsquare (ui_, vi_) and that
Ti-1 is a northeast track emerging from this subsquare. Suppose that (xi, yi) lies in
subsquare (ut, vt). If u < ui_ or v <_ vi_l then the behavior of R is entirely known
in (u, v), and hence f, ft are determined already. In this case, we set Ri Ri_,
T T_, and (u, v) (ui_, v_).

The second case is that (xi, Yi) lies in a subsquare of 12, not in Ti-, but through
which R or R might eventually pass. This is the case in which u > ui- and
v > vi-1. In this case, we mark all subsquares with first coordinate equal to u as
"forbidden" and the same with subsquares with second coordinate equal to v. In
this case we again set Ri Ri-1, Ti Ti-i, and (ui, vi) (ui-, vi-). We also set
f(x, y) 5x in this subsquare (i.e., we "tell" the algorithm that the riverbed does
not pass through this subsquare).

In the third case, (xi, yi) lies in Ti-1. In this case (assuming as above that
is a northeast track), we let vi be the smallest integer coordinate greater than vi-1
that has not yet been forbidden in the construction procedure described above. Then
we let Ri be the union of Ri_ and the portion of Ti-1 connecting (Ui_l,Vi_l) to
(Iti--1, Vi}. We let ui lti-1 and Ti be the southeast track starting at {ui, vi} and
including subsquares with increasing first coordinates. Finally, we assign values to
f(x, y) based on Ri in the subsquare that contained the test point. If Ti- had been
a southeast track, then Ti would have been a northeast track.

Figure 8 shows the three possible locations for a test point. Notice that the rule
for forbidding northeast and southeast tracks keeps the whole procedure consistent,
i.e., each Ri is a valid riverbed that is consistent with all the test points up to (xi, yi).

How long can this construction proceed? We notice that if Ri terminates at
subsquare {ui, vi}, then ui <_ i and vi _< i because we never pass to a higher value of
u unless all lower integer values of u had test points associated with them. The same
holds for the second coordinate.
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FIG. 9. The construction of the riverbed .for 12 test points.

Therefore, we can continue extending Ri until K test points have been made.
Until the K- 1st test point, there are at least two subsquares in Ti, and therefore,
there are at least two subsquares in which the riverbed could end. Therefore, we let
R be RK-1 terminated with one of these sinks, and R be RK-1 terminated with the
other. Then the algorithm cannot distinguish f from f until K- 1 test points have
been made.

We state this as a theorem.
THEOREM 3.6. Let A be any deterministic algorithm to find e-approximate local

minima of functions f 12 -- whose gradients satisfy Lipschitz conditions with
constant M. Assume the algorithm is limited to using function and gradient evalua-
tions. Then, in the worst case, algorithm A requires 9(v/M]e) function and gradient
evaluations.

As a further example of the construction, we give a series of 12 test points in a
6 6 grid, illustrated in Fig. 9. The last test point is the sink square. The forbidden
rows and columns are shaded. The most recent test point in each figure (i.e., the test
point not in the preceding picture) is shown enlarged. The dashed line indicates T
in the preceding construction. A test point in T causes the riverbed to be extended.
Notice that the riverbed never reaches a row or column until all previous rows and
columns have had test points. In the twelfth plot, the riverbed can no longer be
extended, so the sink square is finally fixed in subsquare (2, 5/.

4. Tests with an actual optimization algorithm. We implemented an opti-
mization algorithm that is based on algorithms common in the literature. In particu-
lar, our algorithm uses a second-order model of the objective function. The quadratic
term in the model is either the exact Hessian f"(x) in the case when the Hessian is
positive definite, or a matrix of the form f" (x) + AI for some choice of A > 0. We re-
mark that, outside the riverbed, our function is linear, so that f’(x) O. This means
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FIG. 10. Growth of the number of function evaluations (y axis) as a function of K.

that the second-order step (after AI is added) becomes simply a scaled gradient step
(steepest descent).

For our class of functions, the second derivative is not even defined at all points.
This means that, in principle, there is no reason to believe that second-order infor-
mation would speed up global convergence. Nonetheless, we found that second-order
information sped up convergence by a factor of about 20.

We use an Armijo-type line search once a search direction is identified. Finally, we
take special action to project the search direction when the test point happens to be
on the boundary. See [1] for a description of Armijo line searches and for minimization
with second-order models. Since our interest is on the lower bound and not on the
particular optimization algorithm used, we omit the details of our algorithm.

The function f is the same function described in the previous section, and we
use the adaptive riverbed construction technique used to prove Theorem 3.6. The
whole procedure was implemented in MATLAB. The number of function evaluations
for K 4, 8, 16, 32, 64, 128,256,512 is plotted in Fig. 10. Theorem 3.6 mandates that
the number of function/gradient evaluations be at least K. The table suggests that
for this algorithm, the number of evaluations is linear in K, about 55K. We did not
tabulate gradient and Hessian evaluations.

5. An improved algorithm when n is small. We notice that the upper bound
on Algorithm LOCAL1 in 2 grows like (M/e)2, whereas the lower bound grows only
like x/M/e. Is it possible to bring these bounds in closer agreement? In this section
we propose an improvement on the algorithm of 2 in the case when n is very small
with respect to M/e. The new algorithm will be called LOCAL2.

The main point of LOCAL2 is to pick the initial point x() for LOCAL1 in an
intelligent manner. We make a mesh with points spaced 1/k in every dimension (the
"coarse" grid), where k is an integer determined below. Then we evaluate f at every
one of these (k + 1)n mesh points. We let x() be the coarse grid point with the
minimum value of f. We begin the local improvement algorithm (on the "fine mesh,"
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that is, the mesh with spacing elM) from this x(). Assume that k is an integer
divisor of M/e, so that all the coarse grid points are also fine grid points.

Now we re-analyze the number of steps to find a local minimum. Let x() be as
in the previous paragraph. Let x* be a global minimum of f. In 2 we established an
upper bound on f(x()) f(x*) without any special knowledge about x(). In this
section we want a better bound on this difference.

To establish this bound, let x be the coarse grid point closest to x*. First,
we establish the claim that IIg(x’)ll _< M/(2k). Suppose not; suppose, e.g., that

igi(x) > i/(2k). This means that Of/Oxi(x) > M/(2k) and xi > 0. Since is the
and is at most 1/(2k).closest coarse grid point to x*, the difference between xi xi

> 1/k We have the bound IIx- x*ll < 1/(2k) soIn particular, xi > 0 since xi
the Lipschitz bound implies that Of/Ox(x*) > 0. This, combined with the fact that

x* > 0, contradicts the minimality of x*.
Thus, IIg(x’)l[ <_ M/(2k). Now we put an upper bound on the difference f(x’)-

f(x*). We use the same reasoning as in 2, namely, we form a path with n segments
between the two points and express f(x) -f(x*) as the integral of partial derivatives
along the path. Each path segment has length at most 1/(2k), and each integrand
is bounded above by 2M/(2k). Therefore, the total difference is at most nM/(2k2).
This gives an upper bound on f(x) f(x*). Since f(x()) _< f(x) (because x() is
the coarse grid point with the smallest value of the objective function), we conclude
that

f(x()) f(x*) <
ni
2k2.

Starting from x(), we apply the same local search algorithm, LOCAL1, as was
used in 2. We now get a new bound on the number of steps. Since each step decreases
the objective function by at least 0.552/M, and since the maximum possible decrease
is given above, we get a bound of nM2/(52k2) on the number of search iterations.

Thus the algorithm requires a total of

(k + 1)n -- nM2

52k2

function and gradient evaluations. We want to choose k to be an integer that mini-
mizes this total. A good choice is to choose k between

(nM2 ,+2 (aM2 ) ,+52 ]
-2<_k<_

52

With these choices, we can estimate

(nM2(k + 1)n _<
]

To analyze the other term, we assume that M2/52 >_ 4n+2/n (recall that the method
of this section is meant to be applied when n is small with respect to M/5). If this
holds, then (nM2/52) 1/(n+2) >_ 4. Thus,

nM2 nM2 nM2 ,+.

e: k <-
--2
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-2

Thus we see that the total time for LOCAL2 is at most

In the special case of n 2 (the case covered in the previous section), this gives a
bound of O(M/e), which is closer but still not equal to the lower bound.

The above choice of k will generally not be an integer divisor of M/e. This can
be addressed with further analysis, which we omit.

6. Local minima compared to global minima and fixed points. In 2 we
came up with a bound of O(nM2/e2) for finding e-approximate local minima. The
purpose of this section is to compare this result to information bounds for global
minima and Brouwer fixed points. As we will see, these two other problems both
depend on n exponentially.

Define an e-approximate global minimum of a function f In --+ I to be a point
x such that, if x* is a global minimum, then f(x) f(x*) <_ e. It turns out that
the reasonable assumption to make for this problem is that f has Lipschitz bound
L (rather than assuming a Lipschitz bound on Vf). It is fairly straightforward to
prove upper and lower bounds on this problem of the form (cL/e)", where c is a
constant. This result is implicit in work by Sikorski [5] and appears in other places in
the literature. Thus we see an exponential instead of polynomial dependence on n.

Local minima are more closely connected to Brouwer fixed points than to global
minima. In fact, as we will show, local minima may be regarded as a special case of
Brouwer fixed points. Let u In -+ I’ be a continuous function. Then Brouwer’s
fixed point theorem states that there exists an x E In such that u(x) x. Such an
x is called a fixed point.

Define an e-approximate fixed point to be a vector x e In such that [[u(x)-x]]o _<
e. It turns out that the reasonable assumption to make is that function u(x) -x has
Lipschitz bound K. In this case, [2] showed that the worst case for Brouwer fixed
points in the information model behaves roughly like (cg/e)n (again, exponential
in n).

We claim that local minima can in fact be phrased as Brouwer fixed point prob-
lems.

In particular, given a continuously differentiable function f In --+ I with a
Lipschitz bound of M on the gradient, we define a vector-valued function u(x) as
follows. For the purpose of this discussion, it is convenient to assume that In

[-1/2, 1/2]n so that the origin is the center of the domain. For c > 0 let pc(X) be the
function that projects onto the interval I-c, c] (i.e., pc(x) median{-c, x, c}), and let
pc be the coordinate-wise projection onto [-c,c]n, i.e., pc(x)- (pc(x1),... ,pc(xn)).

Let e’ be slightly larger than e. We define a new domain U to be [-1/2-e, 1/2 +
e]n. Notice that Pl/2 maps U onto In. Then we define u(x) on U as follows:

u(x) Pl/2(x) pc, (Vf(pl/2(x))).
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The image of u lies in U (because the first term has a-norm at most 1/2, and the
second term at most e), hence u(x) satisfies the conditions of Brouwer’s theorem.

The first claim is that u(x) -x has Lipschitz constant equal to M. If x E In then
u(x) x- p,(Vf(x)); hence u(x)- x- -p,(Vf(x)). This right-hand side has a
Lipschitz constant of M. The other case is handled in a similar manner.

Now, suppose x E U is an e-approximate fixed point of u. Let y Pl/2(x); we
claim that y is an d-approximate local minimum of f. Let d y- x. For each i, if
d > 0 then y -1/2, and if d < 0 then y 1/2. With this notation,

(2) u(x) x d- p, (Vf(y)).

The left-hand side of (2) is assumed to have x)-norm at most e. Consider an index
i such that y > -1/2. In this case, d _< 0, so (2) implies that the ith entry of
p,(Vf(y)) is at most e. This means that Of/Ox(y) <_ e. Analogous reasoning
applies to the case when yi < 1/2. This shows that y satisfies the conditions for being
an e-KKT point, and hence an e-approximate local minimum.

Conversely, suppose that y is an e-approximate local minimum of f. For each
i such that y 1/2, define d min(O,p,(Of/Ox(y))). For each such that
y -1/2, define d max(O,p,(Of/Ox(y))). For other i, let d 0. Then it
can be checked that the point y- d will be an e-approximate fixed point of u.

Notice that the size of U is slightly larger than the size of In. The size of U can
be brought to 1 in every dimension by scaling. This would have an effect on the value
of M.

The construction of u from f introduced in the last few paragraphs was rather
intricate. We remark that simpler definitions for u that might seem plausible do not
give true Brouwer functions. For example, if we simply defined u(x) x- Vf(x),
then the image of u would not necessarily be contained in In. Similarly, if we defined
u(x) to be x g(x), where g is the "projected gradient" of 2, we would find that u
is discontinuous. Either way, u would not be covered by Brouwer’s theorem.

The earlier construction shows that approximate local minimization can be ex-
pressed as a special case of Brouwer fixed points. Finally, we remark that approximate
local minimization is related to complexity classes PLS and PPAD designed for com-
binatorial problems, the first having to do with local minima and the second with
Brouwer fixed points. See Papadimitriou [4] for more information.

7. Conclusion. We have presented a simple local search algorithm whose run-
ning time is polynomial in the dimension of the problem. We have also presented a
family of problems for which finding a local minimum would be time-consuming for
any information-based algorithm.

There are many questions left unanswered by this work. What happens when
more complicated domains than I are used? How can the gap between the lower
bound of 3 and the upper bound of 5 be closed?

We have assumed that the functions under consideration are C1. What if we
assumed that they are C2 with a Lipschitz bound on the second derivative? This
would open up the possibility of using Newton-type methods. Would these Newton-
type methods be provably more efficient than gradient-based methods?

Our algorithms LOCAL1 and LOCAL2 were designed mainly with ease of analysis
in mind. Can more practical algorithms be placed in the context of this paper and
analyzed? In particular, would the algorithm of 4 (or some similar algorithm) always
converge within a number of steps comparable to the time bounds of LOCAL1 and
LOCAL2?
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Finally, is there a good explanation for the fact that approximate local minima
can be found in time polynomial in n but not in Brouwer fixed points?

Acknowledgment. The author thanks Michael Todd of Cornell for pointing out
a key improvement to an earlier version of algorithms LOCAL1 and LOCAL2.
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PROBLEMS WITH NORM CONSTRAINTS*

MATTHIAS HEINKENSCHLOSSt

Abstract. If one solves an infinite-dimensional optimization problem by introducing discretiza-
tions and applying a solution method to the resulting finite-dimensional problem, one often observes
the very stable behavior of this method with respect to varying discretizations. The most striking
observation is the constancy of the number of iterations needed to satisfy a given stopping criterion.
In this paper an analysis of these phenomena is given and the so-called mesh independence for non-
linear least squares problems with norm constraints (NCNLLS) is proved. A Gauss-Newton method
for the solution of NCNLLS is discussed and its convergence properties are analyzed. The mesh in-
dependence is proven in its sharpest formulation. Sufficient conditions for the mesh independence to
hold are related to conditions guaranteeing convergence of the Gauss-Newton method. The results
are demonstrated on a two-point boundary value problem.

Key words, nonlinear least squares, Gauss-Newton method, mesh independence, parameter
identification
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1. Introduction. This paper is concerned with the analysis of Gauss-Newton
methods applied to (Galerkin) discretizations of infinite-dimensional nonlinear least
squares problems of the following type:

2

(1.1)
min
s.t. [[x[[z <_ R,

where F is a sufficiently smooth, weakly continuous function, which acts between the
two Hilbert spaces X and Y. Problems of this kind frequently arise in parameter
identification (see, e.g., [5], [20], [26], and [28]). The constraint [[x][z _< R reflects a
priori information on the sought parameter and guarantees the solvability of (1.1).

If residual and nonlinearity of F are of moderate size, a Gauss-Newton-like
method is an appropriate technique for solving (1.1). For the solution of the con-
strained problem (1.1) we propose a Gauss-Newton method in which the function F
is linearized around a given approximation xk of the solution, whereas the constraint
is retained. The approximation is improved by solving the resulting constrained linear
least squares problem. This yields the following algorithm (here and in the subsequent
sections B,.(x) will be the open ball around x with radius r).

ALGORITHM 1.1.
(0) Given an initial point x0 E BR(0), set k--0.
(1) Compute the solution Xk+l of the linearized problem (let #k+l denote the

corresponding Lagrange multiplier)

(1.2)
min [[/(Xk) q- F’(Xk)(X Xk)[[ 2Y
s.t. [[x[[z <_ R.

(2) Test for convergence. If the test succeeds, take Xk+l as an approximation of
the solution. Else
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(3) Set k k + 1 and goto (1)

Reviewing the convergence theorems for Gauss-Newton methods for unconstrained
problems (see, e.g., [11], [12], and [14]), one expects a linear convergence rate for this
algorithm if the starting point is sufficiently close to the solution of (1.1). Moreover,
the speed of convergence should depend on the nonlinearity and size of the residual
of F. A detailed convergence analysis confirming these considerations is given in 2.

Subproblems of the type (1.2) also arise in trust region methods for unconstrained
optimization. Here, however, R is fixed and is not the variable trust region radius.
Nevertheless, we may use efficient methods established for the solution of trust region
subproblems to obtain xk+l. Such methods are discussed, for example, in [12] and
[25]. Hence, if a good initial point is available, problem (1.1) can theoretically be
solved with the Gauss-Newton method as the outer iteration and an inner iteration
scheme, e.g., the Newton or Hebden-Reinsch-Mor iteration [24, Algorithm 5.5], [25,
p. 273], for the solution of (1.2).

For a globalization of the convergence one can add a line search or trust region
strategy. The latter leads to minimization problems with two norm constraints instead
of (1.2). Utilizing the special structure of this subproblem, it can be solved using
efficient methods designed for the solution of minimization problems with quadratic
objective and one simple norm constraint as in (1.2). However, in this paper we are
only concerned with the local analysis and assume that a good estimation for the
solution is available.

For the numerical solution one has to approximate the infinite-dimensional prob-
lem by introducing discretizations for the parameter space X and the output
space Y.

It is to be expected that the underlying infinite-dimensional problem influences the
behavior of the Gauss-Newton method applied to the discretized problem. Therefore,
it is important to study the relation between the solution method applied to the
infinite-dimensional problem and its application to the discretized problem as well as
to give an analysis of the method under varying discretizations. If all quantities of the
method, such as iterates, Lagrange multipliers, and convergence constants, depend
continuously on the discretization, we say that the method is mesh independent.
Mesh independence in its sharpest form is developed in [2] for Newton’s method,
where estimates are given which are uniform with respect to the iteration count. The
influence of discretizations on Broyden’s method is studied in [18]. There a weaker
mesh independence property is proven, which does not guarantee uniform bounds on
the error between infinite- and finite-dimensional iterates; the bounds depend on the
iteration count.

Mesh independence is important for two reasons. First, it allows us to predict the
convergence of the method applied to the discretized problem when the method has
been analyzed for the infinite-dimensional problem. Second, it can be used to improve
the performance of the method. Since we are interested in the solution of an infinite-
dimensional problem, it is usually necessary to choose reasonably fine discretizations.
This leads to a large number of variables in the discretized minimization problem and
therefore to a large amount of work per iteration. If the method is fixed, the only
possibility for reducing the total amount of work consists in the improvement of the
starting value. For these problems it is obvious that we must use information from the
coarse discretizations to obtain good starting points for the finer ones. This leads to
mesh refinement strategies. Mesh independence is a theoretical justification for mesh
refinement strategies and, moreover, can be used to design the refinement process and
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to predict the overall performance of the method.
The second point is not addressed in this paper, so we refer the interested reader to

the literature, where several applications of refinement strategies can be found. Such
strategies are presented in [1] and [17] for Newton’s method; in [19] for quasi-Newton
methods, and in [16] for the Gauss-Newton method.

In this paper we extend the mesh independence results of [2] to the norm con-
strained Gauss-Newton method, but we use a somewhat different discretization scheme
based on Galerkin approximations. We will assume that XM and YN are finite-
dimensional linear subspaces of X and Y, respectively, and that FN X YN is a
suitable approximation for F.

Although FN is defined on the whole space X, it is evaluated only for some

XM C=_. XM during the numerical calculation. The discretized problem is then given as

(1.3) min IIFN(xM)ll 
s.t. I[xMI[x R, xM f7_. XM,

and in the kth iteration of the Gauss-Newton method the current iteration point

xk
MN ft. BR(0)f3 XM is given and we must solve

min(1.4) s.t.
IIFN(XkMN) + FfN(XN)(xM x M )ll Y
lxMllx < R, XM XM

instead of (1.2). Throughout the paper we will denote the iterates of the Gauss-
MN and the corresponding Lagrange multipliersNewton method applied to (1.3) by xk

by kMN. For the solution of (1.4) we have to compute the adjoints of Fflv(XlN).
Since we are working in the finite-dimensional spaces, we define the adjoint Fc(x)* ft.

L(Y, XM) through

V e XM,U e

Ff.,.v(X)* can be any extension of the (XM, I1" IIx), (YN, I1" IIY) adjoint of F(x) onto Y.
We need the extensions of Fg, Fv(X), and FfN(X)* to apply these operators to points
that are not contained in the finite-dimensional subspaces. This allows us to compare
infinite- and finite-dimensional terms without prolongation or restriction operators.
For finite element discretizations these extensions are given in a natural way (see
also 4).

It is important to note that F;v(X)* is an extension of the (XM, I1" IIx), (YN, I1" I1)
adjoint onto Y, but not the adjoint for the pair (X, I1" IIx), (Y, I1" IIY) since in general
we do not have

V z e X, e Y.

A consequence of this fact is that

F’()*IIL(Y,X) # Ilg() F’(’2)IIL(X,Y),
and therefore we have to impose different approximation properties on the function
and its derivative, on one hand, and on the adjoint of its derivative on the other.
Since FN is defined on X, it is evident that the approximation properties of FN and

F are affected only by the discretization of Y, whereas the quality of approximation
of F* is also influenced by the discretization of X. We now list the assumptions we
impose on XM, YN and on the function F and its discretizations.
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ASSUMPTIONS.
(A1) F e CI(BR(O)).
(A2) < n ll - 11 e
(A3) FN e C(BR(O)).
(A4) There exist uniformly bounded Lipschitz constants LN, 0, 1 such that

IIF()(x) -F()(Y)II <- nNIIx --YlI, i 0,1, for all x,y e BR(O) and for all N.
Without loss of generality we assume that LN _< L, i 0, 1, for all N E W.

(Ah) There exists a bounded function py [0, 1] --+ + which is continuous at
0 with py(O) 0 and satisfies IIF()(x)- F()(x)II <_ py(1/N), 0,1, for all
x, y E BR(0) and for all N.

(A6) For every x and > 0 there exists M,x, such that for all M >_ M,x there
exists XM XM with IIx XMII <_ .

(A7) There exists a bounded function Px [0, 1] + which is continuous
at 0 with px(O) O, such that the adjoints of the original and discretized Fr6chet
derivatives obey IIf’(x)* Fv(x)*li <_ py(1/g) + px(1/M) for all x e B(0).

This setting is suitable for finite element discretizations and, as already pointed
out, allows us to compare the discretized and infinite-dimensional terms without the
incorporation of prolongation and restriction operators. Another more important gain
is that we obtain uniform bounds for Ilxk xkMNII, which we would not obtain with
the method of [2], where for Newton’s method the finite-dimensional iterates xg are
compared with projections of the infinite-dimensional ones, IIMXk, and IIM denotes
the projection ofX onto XM. These uniform bounds enable us to deduce estimates for
the error between the solution of (1.1) and the solutions of the discretized problems,
which improve estimates derived from perturbation theory for infinite-dimensional
optimization problems. In this sense the Gauss-Newton method can be viewed as a
tool for the analysis of (1.1) and its discretizations.

The sufficient conditions for mesh independence are strongly related to the condi-
tions that are sufficient for the convergence of the Gauss-Newton method and through-
out the paper we will use these conditions to formulate our mesh independent results.

Throughout the paper, we let x. be a (local) solution of (1.1) with corresponding
Lagrange multiplier #.. {xk} always denotes the sequence generated by Algorithm
1.1 and {xMN}v denotes its discrete analogue (see (1.3) and (1.4)).

The outline of this paper is as follows: In 2 we present a convergence analysis for
the algorithm stated above. In addition to the convergence theorem, we will give a re-
sult concerning the perturbation of solutions of (1.1) in the presence of discretization.
This result is based on perturbation theory for infinite-dimensional optimization prob-
lems. In 3 we will develop the mesh independence principle for the Gauss-Newton
method and in 4 we will discuss its application to a boundary value problem and
.present some numerical results.

2. Local convergence. The Gauss-Newton method for unconstrained problems
has been intensively studied, and convergence results for this case can be found, for
example, in [11], [12], [13], [14], and [27]. Algorithms for the solution of nonlinear
least squares problems with equality constraints based on Gauss-Newton sequential
quadratic programming (SQP)-like approaches are described and analyzed, for exam-
ple, in [6] and [29]. Our approach ,s different in that we keep the original constraint and
solve in each iteration a subproblem with quadratic objective function and quadratic
constraint.

In this section we present a convergence theory for our algorithm, which gener-
alizes Theorem 10.2.1 in [12] and partly generalizes the results in [14]. In [28], Vogel



MESH INDEPENDENCE FOR NONLINEAR LEAST SQUARES 85

also uses Algorithm 1.1 and gives a convergence theorem. He uses second-order infor-
mation to formulate and prove his results. In the proof of his result he distinguishes
between whether the constraint is active at the solution x, or not. If the constraint
is inactive, he uses the results in [12]; if the constraint is active at x,, he applies
techniques similar to those used in the convergence proofs of (Newton) SQP methods.
This may give an imprecise description of the algorithm when the constraint is active
and #, 0. In this case, in the proof given in [28], it is assumed that all iterates are
also locally active, which may not hold.

In the analysis presented here we only use first-order information and we in-
corporate the special structure of the problem completely. This leads to stronger
convergence results and yields estimates for the iterates and the Lagrange multipliers.

It is well known that the solutions of (1.2) can be characterized as solutions of
the system of Kuhn-Tucker conditions.

(F’(xk)*F’(xk) + Itk+lI)Xk+l -F’(xk)*(F(xk) F’(xk)xk),
(.1) ,+(ll+ll R) 0,

+1 > 0, Ix+ I1 R < 0.

The Kuhn-Tucker conditions for (1.1) at x, are given by (2.1) with xk, xk+l,itk+l
replaced by x,, x,, #,, respectively. It should be noted that

(F’(x,)*F’(x,) + #,I)x, -F’(x,)*(F(x,) F’(x,)x,)
is equivalent to the commonly used condition

(2.2) F’ (x,)*F(x,) + It,X, O.

For It > 0 let Xk(It) be defined as the unique solution of

(2.) (’()*’() + )x -’(x)*(() F’()x),
and let xk(O) denote the minimum norm solution of (2.3) with It 0. If ]lxk(O)]]x >
R, the problem of finding a solution of the Kuhn-Tucker system is equivalent to the
computation of a positive root of

(2.4) g() --IIx()ll R

On [0, oo), gk is a convex and monotonically decreasing function with gk(It) -R2 as

It --, oo. Therefore, the root is uniquely determined. Furthermore, gk is continuously
differentiable on (0, oo) with derivative given by

(.) ’(,) -(x(,), (F’(x)*F’() +
We will use the relation between Lagrange multiplier and iterate given through

(2.1) as well as the special structure of gk to prove the following convergence results.
To simplify notation we define

g(x, It) =_ f’(x)*f’(x) + ItI.
LEMMA 2.1. Let F satisfy (A1) and (A2). Assume further that there exist e, w > 0

and (0, 1) such that for all x Be(x,) BR(O), It Be(It,) C? +, and t [0, 1]
the following conditions hold:

(2.6) IIS(x,#)-l(F(x) F’(x,)*)F(x,)ll <_
(2.7) IIS(x, It)-iF’(x)*(F’(x, + t(x- x,)) F’(x))(x- x,)l
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Then there exist E (0, el, T > O, and > 0 such that for xk B(x.) N BR(O) and
#k B(#.) Kl+ the following inequalities are valid

(2.8) I#, #+11 _< 0 11. :11 + -11, 1 + 011:. X/lll,

(2.9) I, /1 <- 11.

Proof. First, we will collect a few technical details and definitions. Define

s =_ sup IIF’(x)*(F(x)-F’(x)x)l and A2-- sup
xEBR(O) xEBR(O)

For A L(X, Y), b X, and # > 0 it holds that

1
[[(A*A + /)-lb[[ _< llbl].

IIF’(x)*F’(x)l I.

Let

(2.12) , < [[F’(x,)*(F(x,)- F’(x,)x,)l[ <
R -R"

(2.11) #k+l < [[F’(xk)*(F(xk)- F’(xk)xk)]l < 2_
R -R"

Inequality (2.11) is clearly also valid for #k+l 0. Similarly,__
min (R2 1 F’ )* F’

,4(A2 + s/R)2 [] (x. (F(x.)- (x.)x.)[[

We will show that (2.8) holds with

(h + s/R)(c + R)(2.13) 0
2

where c is a constant such that []Xk (#.)[] _< c for all k (the existence of such a constant
will be established below).

From the definition of Xk(#), and from (2.3), we can conclude that

1
[[xk(#.)[[ _> ]z----[[F’(Xk)*(F(xk)A2+ F’(Xk)Xk)[[

1
(2.14) >_

A2

(here, L is a Lipschitz constant depending on the Lipschitz constants of F, F’ as well
as h2,supxeBR(0 [IF(x)[[, and R ). Moreover, the definitions of Xk(#) and (2.2) yield

x. xk(,.) (f’(x})*f’(x}) + #.I)-[(F’(x})*F’(x}) / ,.I)(xk x.)
(F’(xk)*F(xk) + #.xk

F’(xk)*F(x, #,x,

+ (F’(x,) F’(xk))*F(x,)].

If we set A F’(x) and b F’(x)*(F(xk)- F’(x})xk), and if we assume that
#k+ > 0, then the complementarity condition R- [[Xk(#k+l)[[- [[Xk+l[[, (2.3), and
(2.10) yield
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With (2.6) and (2.7) the latter inequality implies

provided that Ix, xk .
Inequality (2.15) guarantees the existence of c such that Ilxk(,)ll <_ c indepen-

dently of k.
Note that #k+l and , are either 0 or they are the roots of g and g,, respectively.

In either case the special structure of these functions will be used to derive bounds for
the Lagrange multipliers and estimates for the error I, k-{-ll. If #, #k+l, then
(2.8) and (2.9) trivially hold. For the derivation of the estimates in the nontrivial case
we consider the cases #, > #k+l and #, < #k+.

First, we consider the case #, > #k+l. Since gk is convex, we obtain that

0 > a(,+) > a(,,) + al(,.)(,+ ,,).

Using this equation, (2.5), and the complementarity condition IIx, II- R, we find that

(,)
#, #k+ _<

(,)
Ilxk(,)ll2-R2

/(,,), (F’()*F’() +
A + , R2 Ilxk,)l2

2.6)
2 IlXk,)ll 2

](,,) ]x,-

A2 T , R + c
<

i
IIx, (,,)11.

2 I1(,)1

If we choose

{ 1_---- min e,-]lF’(x,)*(F(x,) F’(x,)x,)l

we obtain with (2.12), (2.13), (2.14), (2.15), and (2.16) that, for IIx, xll <_ ,
(2.17) #, #+1 < 0 allx, xll + llx, x]2

When #, < #+1 we again use the convexity of g and gk(k+l) 0 to conclude that

A ++
With lxk+ xk(k+) R and (2.15) this implies

A + k+l 2 2

A + "+ ( + R)(](,,) ,l + lx, +l)(2.S) 2R
o 11, 11 + gll, 11 + o11,
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Equations (2.17) and (2.18) yield the estimate (2.8).
From [Ixkll <_ R IlXk+lll we find, analogously to the derivation of (2.18), that

( )/ ,
_

0 llx, 11 / llx, xll / Ollx, xll.

Setting T =_ 0(, + :w/2 + 1), (2.9) follows from (2.17) and (2.19).
To guarantee the convergence of the iterates we have to replace (2.6) and (2.7)

by stronger conditions. The following theorem is a generalization of Theorem 10.2.1
in [12].

THEOREM 2.2. Let F satisfy (A1) and (A2). Assume further that for e, /,, a >_ O,
and that for all x, y e BR(O) N B(x,), h e {h e X[ x, + h e BR(O) },

(2.20)

and

II(F’(x)* F’(x,)*)F(x,)[I <_ llx x, ll,

Define A supxe.BR(0 IIF’(x)l[. If < 7, + ,, then for all e (1, (7, + #,)/a)
there exists e, e,(a), e, > 0 such that the solution xk+l of (1.2) obeys

(2,22) IlXk+l x, II

and

(2.23) Ilxk/ x, II

/, + #,

aLIAllxk x, II + 2(,, / ,)IIx x, II 2

3’, + #, +

provided that xk e B, x, A Bn(0).
Proof. Let ( E (1, (, + it,)/a) be an arbitrary constant. Since F’ is continuous,

we obtain from (2.20) the existence of el e (0, e), such that for all x e BR(O)AB (x,),
# B1 (#,) N +, and h {h X x, + h BR(O) }, the following inequality holds:

(2.24) (H(x, #)h, h) _> * + it,
ilhll 2.

Since the assertions (2.20), (2.21) imply the assertions in Lemma 2.1 with
aa/(’7,+it,) andw aLiA/(’7,+it,), there exists e2 (0, e)such that Ilxk--x, II <_ 2
implies it B (it,) +.

From the necessary optimality conditions we obtain the identities

(F’(xk)*F’(xk) + itk+I)Xk+l --F’(xk)*(F(xk) F’(xk)xk),
F’(x,)*F(x,) + it,x, =0.

These yield

H(xk,itk+)(Xk+ x,) F’(xk)*(F(x,) F(xk) F’(xk)(x, x))
+ (F’(x,)* F’(xk)*)F(x,)+ (it, itk+l)X,

and

H(xk,it,)(Xk+ x,) F’(xk)*(F(x,) F(xk) F’(xk)(X, Xk))
(2.26) + (F’(x,)* F’(xk)*)F(x,) + (it, itk+l)Xk+l.
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If it, > itk+l, then R IIx, II >_ Ilxk+ll, and thus

Combining this inequality with (2.25), we obtain that for Ilxk--x, II _< e2 the following
inequality holds:

(H(Xk, itk+l)(Xk+l X,),Xk+I X,)_
(F’(xk)*(F(x,) F(xk) F’(xk)(x, Xk)),Xk+ X,)
+ ((F’(x,)* F’()*)F(x,),x+ ,>.

Together with (2.24)and (2.21), this yields

If it, _< itk+, then we can proceed analogously and obtain

(X+l, x, X+l) _< 0,

(H(Xk,it,)(Xk+ X,),Xk+ X,)
< (F’(x)* (F(x,) F(x) F’(x)(x, x)), x+ x,

+ ((F’(x,)* F’()*)F(x,),+ x,).

Hence for Ix x, II ,
(2.28) *+*llxk+ --x, l12 (nhllxk--x, ll2+llxk--x, ll)IlXk+l

The estimates (2.27) and (2.28) yield (2.22). The local q-linear convergence follows
from (2.22) if we set

"T, -t- it, ca }e, (a) min e2,
aLiA

For IIxk x, II ,() we obtain

Remark 2.3. (i) For unconstrained problems local q-linear convergence can be
guaranteed under the weaker conditions (2.6) and (2.7). This follows, since

x, + (F’(x)*F’(x))-[F’(x)*{F’(x)(x ,) E(x)+ F(x,)}
+ (F’(x,)- F’(xk))*F(x,)]
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implies

(compare with the proof of Lemma 2.1). Conditions of the type (2.6), (2.7) are also
used in [13] and [14] for the analysis of the Gauss-Newton method for unconstrained
problems.

(ii) Under the conditions of Theorem 2.2 the results of Lemma 2.1 can be strength-
ened. With ta/(’, + #,) and w tL1A/(/, + #,) we obtain from (2.8) and
(2.22) that

We conclude this section with an analysis of the assumptions made in Lemma 2.1
and Theorem 2.2. A similar analysis is given in [6].

LEMMA 2.4. Let F E CI(BR(O)). Moreover, assume that F"(x,) exists and that
H(x,, #,) is continuously invertible.

(i)

II(H(x., #,))-(F’(x)* F’(x.)*)F(x.)ll S  llx x.II Vx e B(x.) N BR(O),

then

II(H(x,,#,))-(F"(x,)(.,h))*F(x,)ll <_ llhll Vh e X.

(ii) If

II(H(x,,P,))-(F"(x,)(’,h))*F(x,)ll <- llhll Vh e X,

then for each > k there exists e > 0 such that for all x e B(x,) BR(O),

II(H(x,,,))-x(F’(x) F’(x,)*)F(x,)ll llx

Proof. (i) Define Z(x,) {h e X x, + h e B(0)} and assume that

II(H(x,,,))-(F’(x) F’(x,)*)F(x,)ll

_
llx- x, II

for all x B(x,) BR(O). From the differentiability we obtain that

II(H(x,,P,))-l(F"(x,)(’,h))*F(x,)ll - ( + (llhll))llhll Vh e Z(x,),

where is continuous at the origin and fulfills (0) 0. Since (F"(x,)(., h))* is linear
in h, the inequality remains valid if we multiply h on both sides by a positive constant.
By the continuity of for each n r there exists tn > 0 such that (llhll) < 1In
for all h B (0). This yields

Multiplying both sides by Ilhll/,5 and taking the limit n --, cx gives

(2.29) S  llhll Vh e Z(x,).
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Since h --, (F"(x,)(.,h))*F(x,) is linear, the set Z(x,) in (2.29) can be replaced by

{h e X[ t x, +the B(O) } D {h e X[ (x,, h) # 0}.

(Both sets are equal if IIx,]l R.) Finally, the continuity of F"(x,)(., .) implies that

I[(H(x,,#,))-l(F"(x,)(.,h))*F(x,)l[ <_ [Ihil Vh e {h (x,,h) # 0 } X.

(ii) The second assertion can be proved in a similar way. [:1

LEMMA 2.5. Let F E C2(BR(0)). /f H(x,,#,) is continuously invertible the
following statements are equivalent:

(i) There exists / > 0 with

(2.30) (H(x,,#,)h,h- I((F"(x,)(.,h))*F(x,),hl[ >_ /[Ihl[2 Vh e X.

(ii) There exists < 1 with

(2.31) [[(H(x,,#,))-l(F"(x,)(.,h))*f(x,)l[ <_ ][hl[ Vh e X.

Proof. First we prove that (i)implies (ii). The operator h f"(x,)(., h)*f(x,)is
self-adjoint, since F e C2(BR(0)). Using the existence of the square root of H(x,, It,),
e.g., [9, Whm. 4.6.2], (2.30) with the variable transformation h g(x,, It,)-1/2 h yields
that for all h X,

((x,, ,)- 1/2 ("(x,)(., H(x,, ,)- 1/2 h))*(x,), h) _< 1- Iig(;,)l

The latter inequality implies [9, Thin. 4.4.g] that

I[H(x,,,)-(F"(x,)(.,H(x,,,)-].))*F(x,)[I 1-]H(,,,,)"

Since

[IH(x,,,)-](F"(x,)(.,H(x,,,,)-.))*F(x,)[[ [[H(x,,,)-(F"(x,)(.,.))*F(x,)[[,

(2.31) holds with 1- /[]H(x,,,)[[.
The implication (ii) (i) follows by similar arguments. Here, one obtains

(1- )/H(,,,,)-].
Lemma 2.5 shows that in the situation of Theorem 2.2 the second-order sufficient

optimality criteria is satisfied at x,. In particular, we obtain that x, is an isolated min-
imizer and that the objective in (1.1) possesses local quadratic growth [23, Thm. 5.6].
This requirement seems to be inappropriate, since parameter identification problems
are often rank deficient and ill posed. But in the presence of ill-posedness one h
to employ regularization techniques to stabilize the problem, i.e., to guarantee con-
tinuous dependence of solutions of (1.1) upon input data. Such a technique may be
the Tikhonov regularization, where a regularization term of the form a[x[[ 2 is added
to the objective. Similarly, a regularization may be obtained by reducing R. Hence,
under suitable sumptions on F and on the regularization, the regularized parameter
identification problem may fit the requirements of Theorem 2.2. In fact, in [7] and
[8] it is shown that the output let squares formulation of certain elliptic parameter
identification problems exhibit quadratic growth for properly chosen regularization
(see also 4).
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The quadratic growth of the objective function can also be used to derive an
estimate for the error between the solution of the infinite-dimensional problem and
the solutions of the discretized ones.

THEOREM 2.6. Let (A1)-(A6) be valid and assume that F and FN are weakly
continuous functions. If there exist c > 0 and e > 0 such that .for all x E BI(O) f3

B(,),

(2.32) lF(x)ll > iF(x,)l 12 + 1 Ix x, II 2

holds, and if there exists a continuous function g with g(O) 0 and g(t) > t for all
t e [0, 1] such that d(hl,h2) =- g(py(Ihl- h21)) defines a metric on [0, 1], then for
all 5 > 0 there exists M and N such that for all M > Ms, N > N the discretized
problem

(2.33) min ltFN(xM)II2

S.. IIxM}I</, XM e XM

has a solution XyN satisfying

Proof. For brevity we set dN d(O, l/N) and p py(1/N). By (A2) and (A5)
there exists c > 0 such that for all N sufficiently large and Xl, x2 BR(O),

I]F(Xl)l]2 -IIFN(=)II= < (p-4-II:x =11) < c(dN -4-IlXl =11).

This shows that the discretization of F defines a Lipschitzian perturbation. The
results of Alt [3, Thms. 4 and 6] yield the existence of N, such that for each N _> N
there exists a solution x,N of

min IIFN(x)ll 2
s.t. Ilxll < R

with

(2.34) IIx, x,NII <
where 5 is independent of N.

In the next step we will analyze the behavior of the discretized objective near x,N.
We will show that a perturbation of the growth function for the original objective
describes the growth of the discretized one. This result will be used to prove the
assertion of the theorem.

For x e B(x,) we deduce from (2.32), (2.34), and assumption (A5) that

p2 + 2PlIFN(x)II + IIFN(x)II 2 > IIF(x)ll2

> IF(x,)l 12 + 1 Ix x, II 2
N> [IF(x,N)II 2 2Lollx, x, II IIF(x)ll

/ cllx x. 2ollx x, II Ix,
IIFN(x)II2 + llx x[I2 2plIFN(x)[I
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Let > 0 be chosen with

(2.35) < min e,
If we choose N _> 2Q such that

pe + 2P(lIFg(x)[I + IlFN(xN, )ll) + (2Lo[]F(xN, )I[ + 4na)N < a2
2

for all N > N, then we obtain with (2.32), (2.34), and assumption (A2) the following
growth condition for the finite-dimensional objective function"

N 2 02

Vx . B(xN,).(e.) II(x)ll > IIF(x,)ll + llx- x, II

By (A6) there exists M such that for all M > M there exists XM Cz XM with

(2.38) IIx, II < mi ,-
L0 L02 +

Let x,MN denote a solution of

min IIFN(xM)ll2

s.t. IIxMll <_ R, xM e B(xN, XM.

In the next step we will show that x,MN is a local solution of (2.33), which will be
proven if we show that IxN, x,MNII < . Assume that IxN, x,MNII . Then
(2.37) yields

(2.39) IIFN(x,MN)II= > liFN(xN, )II2 +2

On the other hand, each XM C:. Bit(O) that obeys (2.38) satisfies

IIF(x,)II: _< IIF(x)II:

and

IIFN(xM)I[2 [IFN(XN, )II + 2LoIIFN(xN, )II [Ix,N xM]l + LIIxN, xM]l2

a2

<_ I[FN(xN. )[I +--ft.
Hence, by (2.39),

IIFN(x.MN)II2 < IIFN(xM)I[ 2 IIFN(x,MN)II2

a contradiction.
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This gives the assertion, since each local minimizer x.MN of (2.33) fulfills

(see (2.35), (2.36)). [3

If we have py(h) chp with p _> 1, which is usually the case for finite element
discretizations, we can choose g(t) t. In view of Lemmas 2.4 and 2.5, (2.32) is
clearly satisfied if F E C2(BR(0)) and if the assertions of Theorem 2.2 are valid.

Theorem 2.6 gives a qualitative result on the perturbations of solutions, but
does not give error estimates for the difference between x, and x,MN, although the
derivation of the theorem indicates that ]Ix,M x,]l is dominated by v/d(0, l/N) and
]lXyN- xN, ][ by dist(X, XM) supxex infxMGXM IIXM- Xl]. But note that since
M, in (A6) depends on i and x, the distance dist(X, XM) may be infinite for fixed
M. A detailed analysis of the Gauss-Newton method, which will be presented in the
next section, will enable us to improve this theorem. We will derive error estimates
related to the approximation properties of the discretization as well as uniqueness
results for the minimizers of the discretized problems.

3. Mesh independence. In this section we will investigate the behavior of
the Gauss-Newton method for the discretized problem. Our goal is to develop es-
timates for the difference between the Gauss-Newton iterates of the infinite- and
finite-dimensional problem.

In what follows we will use some basic estimates, which are collected in the fol-
lowing lemma.

LEMMA 3.1. Assume that (A1), (A2), (A3), (A5), and (A7) are valid. Define
P Px (l/M) + py (l/N). Then there exist constants 51, c2, and c3, independent of
M and N, such that for all x,xM, y BR(O), and N W the following inequalities
hold:

(3.1)

(3.2)

(3.3)

Proof. The proof is a straightforward application of (A1)-(A3), (A5), and (AT),
and is therefore omitted.

Before we derive the fundamental estimates for the iterates and Lagrange multi-
pliers, we introduce some notation. Define

c4=max{sup sup ]IFN(x)]I, sup IIF(x)ll}N xB(O) xB(O)

and

c5 max sup sup
N x6B(0)

sup IIF$c(x)*ll, sup IIF’(x)ll .
xeBR(O) x@BR(O)

Note that ca, c5 < cw by (A2), (A4), and (Ah).
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In the following proofs we will use the special representation of the iterates Xk/l,
MN We recall thatxk+1

H(x, #) =_ F(x)*F(x) / #I,
(3.4) xk(#) :-- --H(xk, p,)-lF’(xk)*(F(xk) F’(xk)xk)

Xk H(xk, ,)-(F’(xk)*F(xk) + xk),
and we define xN() to be the discrete analogue of xk() with F, F’, xk replaced by
FN, F,xN, and we define HN(X,
with F replaced by F.

With these abbreviations we obtain that Xk(k+l) xk+ and xg(pkT1)MN
MN

XkT
Again, we will use the convexity of the functions

() ()-R,
() x() R

MNto derive the estimate for the Lagrange multipliers k+, Pk+, which are given the
roots of gk, gg, respectively. Due to the special structure of gk, k+ is bounded
by

]lF’(xk)*(F(x) F’(xk)xk)ll
R

established in the proof of Lemma 2.1. Since F, F’ are Lipschitz continuous, k+l
is uniformly bounded. The same is true for MN

k+ by Lemma 3.1.
Finally, we set

(3.5) Cl m{5, BS},
where S is an upper bound for ]lU(x,)-x],

LEMMA 3.2. Assume that (A1)-(A5) and (AT) are valid and let a (0, 1), B > 0
be such that

[S(xk,)-l(F’(xk) F’(xN)*)F(xk)][ a]xN Xk,
]u(,,)-i B.

Define ek xN xk] and p px() + py(). If cl(p + ek) < 1, then there
exists c6 > O, independent of M, N, and k, such that

(.) i]x(,) () <
1 Cl (p + ek)

Proof. om the definition of xk(p) and xN() (see (3.4)), we obtain

xfN() xk() UN(xfN, p)-U(xk,
(H(xk, p)-{(F(xN)*F(xN) + I)(xN Xk)

(F(xN)*FN(xN) + pxN
F(xN)*FN(Xk)-

(.) + H(x, ,)-{[F()*F(
(F’(x)*F’(x) + ,)]
(F’()*F’(x) + ,)-I(F’()*F(x) +

+ H(xk,)-((F’(xk)*F(x)
-(F(x)*F() +
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For operators A, C 6 L(X,X) with continuous inverse we have the following
equality:

A-1C A-ICC-(C- A) / I.

From this it can be seen that if IIC-ll IIA CII < 1

1-11c-11111A-CII"
The application of the latter inequality to HN(XIN, #)-H(xk, #) together with (3.1)
and (3.5) yields

/xMN 1
]IHN k ,#)-H(xk,lz)ll <

1 Cl (p + ek)

Using the basic estimates of Lemma 3.1, the terms in (3.7) can be estimated as
follows:

1[[15’! [._MN F]V F.NX (XMN) (x)*F’(xk))H(xc,I)-I(F’(xk)*F(x) + #x)l[
< (p / )llx(,) xll,

Inserting these bounds into (3.7), we obtain the desired result by setting

c6 =-max{Bc5L/2, B(c5 + c4)}.

For the derivation of the estimate for the Lagrange multipliers we will use the
convexity of IIx(/)ll 2 R2 and its discretized analogue.

LEMMA 3.3. Assume that (A1), (A2), (A3), (A5), and (A7) are valid. If
MNIXk (#k+) Xk+ll < R, then there exists c7 independent of M and N such that

(3.8) MN c7(1 / IIxMN(+)II) xN
#k+J. #k+ll -< (1 -I[xMN(#+I) xe+[I/R) II (k--i--1) X+lll.

Proof. For brevity we set

MNIf #k+l #k+ the assertion follows immediately. Therefore let us assume that

k+l MN
#k+l From the definition of gk, glN we obtain

(3.9)
Ik() N()I-- (llXk()l[ +

2RI Ixk () xfN()II,
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MNprovided # _> max(#k+l, k+l }, and

IgMN’(#)I 2(xkMN(#), (FN(xN)*Fv(XN) + #I)-IxIN(#)>.
Since Fv _MN.(xk Z’N(XkMN) is self-adjoint on (XM, (., ")x), it holds that for all hu
XM

1
ilhull2((Fv(xkMN)*FN(xkMN) + #I)-lhu, hu) >_

I]F(xN)]Iu +
Hence

2

Now we will combine the estimates above to develop the estimate for the error
MNin the Lagrange multipliers. First let us consider the case #k+ < #+. For # E

[k-t-1 MN#k+] we obtain, as in (3.9), that

(3.11)

Since g4N is convex and gk
MN MN(#k+) 0 (keep in mind that ]MNk+I > 0), we conclude

that

With (3.10) and I[xN MN(+)11 R this gives

2R2
MN(3.12) gN(l) >_

C + #M+N I#- #+ I"

Inserting (3.12)into (3.11)yields

0 >_ a(,+) (R + I (+)11)+
2R2

m+ m+l- (R + II (m+)ll) +,> + x
k+

respectively,

(3 13) MN C + #kM+N1
2R2

MNIn the case #k+ > #k+ we can proceed follows. om the convexity of gN
we obtain

(+ +).

This, together with the fact that k+ > 0 is the root of g yields

k+ k+ <
if’(.+)l

With the estimates (3.9), (3.10), and ]lxk(k+l) R we finally obtain

(a.la) R(i + +1) ( + ,+I)/R+1 -+1 (+1): +1 (1- +/R) +"
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MNSince the Lagrange multipliers Pk+l, Pk+l are uniformly bounded the assertion
follows from (3.13), (3.14), and xk(#k+i) Xk+l.

After providing these technical lemmas, we are able to prove our main result.
The assumptions required in the following theorem are closely related to the

assumptions needed to guarantee local convergence of the Gauss-Newton method,
but convergence of the method is not explicitly used. It should be noted that the
requirement on the Lagrange multipliers in (3.15) is implied by condition (3.15) for
the iterates if the assumptions of Lemma 2.1 hold. If the conditions of.the convergence
theorem, Theorem 2.2, are valid, then (3.15) is satisfied. For unconstrained problems
(3.15) is implied by (3.16) and (A2), which was shown in Remark 2.3 (ii).

THEOREM 3.4. Assume that (A1)-(Ah) and (A7) are valid and that there exist
> O, e, e (0, ), such that for all e E (0, e,) the implications

hold. Moreover, let a e (0, 1), B > 0 be such that for all x, y e B(x,) F’l BR(O) and
# E B(#,) N+ the following conditions are valid:

(3.16)
IIH(x,)-(F’(x) F’(y)*)F(x)II <_ yll,

IIH(x,)-ll < B.

Then there exists e (0, ,), c > 0 (both independent of M,N), Me, Ne, and a

function T" 2 --, +, such that .for all xo BR(O)NSe(x,), M >_ Me, and N >_ Ne
the condition lxo xoMNII <_ T(M, N) implies

(3.17) IlXk xNII <_ C PX + PV Vk and

1
(3.18)

Proof. For brevity we define

The assertion will be proven by induction. However, the proof is quite technical,
MN xINbecause we have to bound I/zk+l--/zk+l and Ilxk(lk+)- (#+)11 simultaneously.

In order to give a better idea why we have to choose the parameters in the ways
to be specified, we will introduce the choices step by step.

In the first part we will derive bounds for Ilxk(#k+l)- xV(#k+)II and
#MNI#k+l- k+] based on the Lemmas 3.2 and 3.3. We then combine these results

with a stability estimate for the solution of linear systems to obtain the desired in-
equalities.

Choose

l-a}<min e,,
8c

and set cs max{l, 2}.
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Define

S(c + c)(.) = (_)
and let/1/, 2Q be such that

min / 1 1 t; 3(1 )2 R
P <

cl + clc9’ 4c 64cs (c6 + c)2’ 2c9’

for all M _>/17/, N _>
Moreover, define

1- i (1-)2F(M, N, a, b, e) _--
4-7) + 16(a + b)2

2he + b )a+b
p

-1

2he + b

a+b
p

and set

T (M, N) F(M, N, Cl, c6, :).

From p < 3(1 )2/(64cs(c6 + c)2) we obtain

(1- i (1-)= 2c+co ) 3(1-)
4(Cl q- c6)

q-
16(Cl q- c6)2 Cl -+- c6 p - 8(c6 q- Cl)"

With (3.19)and (3.20)this yields

(3.21) T1 (M, N) < c9 p.

Now, assume that M > 21:/, N _> 2Q, and xk E Bg(x.)[3 BR(O), and that xg is
given such that

Ilxk- xMNII < n(M,N).

For brevity we set TI T (M,N). Then (3.21) and p < (e, -g)/c9 imply

Thus, the inequalities (3.15) and (3.16) are satisfied for the triple (xk,xkMN, #k+).
Lemma 3.2 and (3.15) and (3.16) yield

(3.22)

Since p is chosen less than 1/(Cl + cc9) we obtain with (3.19) and (3.21) that the
denominator of (3.22) is greater than 0. Therefore, (3.22) is well defined.

From g < (1 a)/(8Cl) and p < (1 a)/(4Cl) we find that

t 1 + 2cg + cp < (to 1)/2.
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Therefore, we can continue to estimate (3.22) by

(3.23)

I1(+) MN(+)II
< C6T + (tO 1)T1/2 + 2Clp: + cop + (1 Clp)T1

1 clp- ClT1

where for the last equation we used the fact that T1 is the smallest root of

(cl + C6)T2 + T + 2Clp: + c6p O.
2

Since IlXk(k+l)ll <__ R we obtain from (3.23) that IIxN(#k+l)]l is bounded. There-
fore, there exists $7, independent of M,N, such that IlxkMN(itt+l)ll < 7 and
c7(1 + IlxiN(#k+l)ll) < $7, where c7 is defined in Lemma 3.3. From

R
2c9

(3.21), and (3.23), we obtain

(3.24) (1 -I1(+) xg(tte+)ll/R) <- @7.

Since, up to the constant

7/(1 -Ilxk(k+l) xN(#k+l)l]/R)2,

IkA-1 MN
#k+l is bounded by the same term as I]Xk(#k+l) xN(#k+l)ll, we obtain

from (3.8), (3.24), and (3.23) that Ilxk- xkMN]] <_ TI M, N) implies

MN(3.25) I;tk+l k+l] --< 47T1 (M, N).
Together with (3.21), this gives the desired estimate for the Lagrange multipliers.

To prove the estimate for the iterates, we have to combine the previous results.
Lemma 3.2 yields

(3.26)

If A, f4 e L(X,X) are continuously invertible with IIA-11[ IIA- XII < 1, then

(3.27)

With Lemma 3.1 we get

II(F(xN)*F(xN) + tk+lI)-Xll < B
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Now (3.27) and (3.28)yield

X1IN [.l,k+ XlIN #II+N1)
< II (FN(xk’MN)*Fv(xMN) / +1z)-111 I+1 #k+IMN IIIN(+1)

1 II MN. MN(F( F(xy)+,+)-111 I,+ ,+

< [#k+l Pk[ B7

Define elO el + 4Berc9 and ell 4Beg. Then we conclude with (a.l) and (a.2g)
that

(a.eg) II* (,+1) *(,+)ll <
1 cop Cl0ek

provided M ,N and e T(M, N).
MNIf we insert (3.29) into (3.26), we observe that [[xk+ x+ is bounded by a

term which h the same structure the bound in (3.2) (replaing c by c0 and c6
by c2 c6 + c1). Therefore, with the choices M M, N N such that

p 5 min
64c8(ClO + Cl)=’ 4clo

e<min g’
8ci0

and

T(M, N) min {T1 (M, N), r(M, N, c10, c12, e)},
MN (M,N).we finally obtain that Ilxk- xkMNI] <_ T(M,N) implies IlXk+l- xk+, II

This gives the assertion, since

T(M, N) <_ 8(C10 nt- C12)
c8p.3(1 )

To guarantee that the error between xk and xN can be bounded by px(1/M)+
py(1IN), we have to ensure that the starting point xIN satisfies a certain approxima-
tion property, which is essentially IIXo--xoMNII <_ O(px(1/M)+py(1/N)). However, if
the starting point for the infinite-dimensional problem satisfies xo E XM for all M, we
can choose XoMN xo for all M (and N). In this case we always have lxo- xoMN]I <_
T(M,N). Such situations occur, for example, if XM span{C1,..., CM}, where i
are splines and x0 is a constant function.

The advantage of our approach is that we obtain uniform bounds between the
infinite-dimensional iterates xk and the corresponding finite-dimensional ones x’IN,
whereas using the approach of [2], we would obtain uniform bounds between the re-
striction of the infinite-dimensional iterates onto the finite-dimensional space, IIMXk,
and the iterates xN. In the case of finite element discretizations, with X H, H
some Sobolev space, and IIM the spline interpolant, this would lead to estimates of
the form (see, e.g., [4, p. 217])

1<_ C-IlXkIIH+,+ + c(px(1/M) + py(1/N)).
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This bound involves the H+P+l-norm of Xk and therefore only leads to a pointwise
estimate since lxkllH+p+l may not be bounded.

For fine discretizations, subproblem (1.4) is a large-scale problem, and most of
the computing time for the determination of a solution of (1.3) is spent solving the
subproblems (1.4). In practice, it is therefore often useful to reduce the amount of work
by solving the subproblems only partially. This leads to so-called inexact methods.
It is usually possible to retain good convergence properties of the inexact method
when the accuracy with which the subproblems are solved is sufficiently improved
when the iterates approach the solution. The question of how the quality of the
computed solutions of the subproblems affect the convergence speed of the method
has been analyzed in [10] for Newton’s method and in [22] for the Gauss-Newton
method for unconstrained problems. If Xk+ denotes the exact solution of (1.2), &k+
the computed, inexact solution, and if we know that for the exact method with some

(0,

then linear convergence can be retained if the computed solution satisfies

(3.30)
with some ik _< ti E (0, 1 a):

I] k+l  ,11 IIx +  k+l]l + []Xk+l  ,11 / , )llx x, ll.
In practice, one has to replace IlXk+ --a+llI and IlXk- x,]l by cheaply computable
terms. In case of unconstrained least squares problems with full rank Jacobians we
can replace (3.30), for example, by

(3.31) IIF’(xk)*F’(xk)k +
where k < ti} must be chosen sufficiently small; see [22]. (In the unconstrained case
we solve for the step k rather than for the new iterate. The computed new iterate is
then given by &k+l Xk + k. In the next iteration (3.31) is solved for k+l with x}

replaced by k+l.)
Instead of analyzing local convergence properties of the inexact methods for the

discretized problem, we will focus on the question of under which conditions the
inexact iterates exhibit a mesh independent behavior. We will show that, instead of
forcing the error between the exact solution xk+ and the computed inexact solution

k+ to be less than a small constant times the error between the current iterate and
solution, lXk--X, II (which is sufficient to guarantee local convergence), we must adjust
the quality of computed solutions onto the discretization error in order to obtain a
mesh independent behavior. Thus, for mesh independence it is sufficient to impose a
quality measure that is fixed and that is not strengthened if the iteration progresses.
However, in practice one will enforce stronger criteria on the computed iterates in
order to obtain good local convergence behavior.

To distinguish between exact and inexact methods, we denote the inexact iterates
by 2k, ://N Then xk+ =-- (#+), MN ~MN" MN

x+l _= x (#k+) will denote the exact solu-
tion of the subproblems (1.2), (1.4) with xk, xk

MN replaced by &k, &kMN, respectively.
THEOREM 3.5. Let the assumptions of Theorem 3.4 be valid and let , MN be

constants such that with some > O,
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If the inexact iterates &k, IN are computed such that for all k E

then for e given by Theorem 3.4 there exists c > 0 (independent of M, N), 1I, ,
and a~function T" SV2 J+, such that for all 2o e Sn(O) N B(x,), M >_ 1I,
N >_ N, and the condition 115Co- &oMNII <_ T(M,N) implies

(3.33)

Proof. The proof of this theorem closely follows that of Theorem 3.4. We let e,
M, and N be the values given by Theorem 3.4, and let Cl,..., c12 be the constants
defined in the proof of Theorem 3.4.

Define

8(C10 - C12)
c13--=c12+2 and c14--- 3(1-a) cs

and let 2t:/ >_ M, _> N be such that for all M _> 2t:/, g >_ ,
1

ClO -" C10C14 4ci0 64c8(ci0 + C12

Moreover, define

T(M, N) F(M, N, Cl0, c13, )

(compare (3.20)). We have

/ I1/ (/)11 / II -MN-N MN

Using the estimates (3.22), (3.29), and (3.32) we obtain that

(3.34)
~MNI1/1 -X/lll

C11P I]MN
1 tip- Clek 1 clOP- ClOCk

1 clOP- ClOek

<
1 cloP clOek

(Recall that Cl0 Cl + 4B57c9 > Cl, and c13 > c6.)
Using the same arguments as in the proof of Theorem 3.4 and the abbrevia-

tion T =-- T(M,N), we can conclude from (3.34) that if i >_ M, i >_ M, and
[[k- kMN[[ T(M,N) then

Ili+1 -M 14 + e10 + (" 1)/ +1+ ( 10)
+111 <

1 --ClOp--ClOT

T(M, N).
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The assertion follows from an induction argument and T(M, N) < c14p (compare
the estimate (3.21) in the proof of Theorem 3.4). [:]

An immediate consequence of this mesh independent behavior is the fact that
independent of the mesh size an (almost) constant number of iterations is needed
to satisfy an appropriate stopping criterion. Appropriate stopping criteria for the
restricted Gauss-Newton method are either

]]xk P(xk F’(xk)*F(xk))]] ( TOL or ]]F’(xk)*F(xk) + kXk ]] ( TOL,

where TOL is a given bound and P denotes the projection onto the feasible set. In
our case,

p(y)
y, otherwise.

If the iteration point x is an interior point and the gradient is sufficiently small, both
criteria reduce to IIF’(zk)*F(zk)ll < TOL. We will use the abbreviation

(3.35)

or

(3.36) -= IF’ F(xk +
depending on which criteria is used. With tkMN we will denote the corresponding
discretized values. We use the same notation for both terms, since we have the
same type of estimates for Irk tNI regardless of whether (3.35) or (3.36) is used.
k(TOL) and kMN(TOL) will be defined as the smallest iteration counts for which the
termination criteria is satisfied, i.e.,

k(TOL) min(k tk < TOL),
kMN(TOL) _= min(k tN < TOL).

Now, the uniform estimate derived in Theorem 3.4, yields the following result.
COROLLARY 3.6. Let the assumptions of Theorem 3.4 hold. Moreover, let xo

and XoMN be given such that xo e B (x.) and ]Ix0 xoMNII <_ T(M,N), for el and
T(M, N) defined as in Theorem 3.4. Then for every TOL > 0 and > O, there exist
M1, N such that

k(TOL + 5) _< kMN(TOL) _< k(TOL) VM > M1, N >_ N.

If tk(TOL)_ > TOL then

kMN(TOL) k(TOL) VM > M, N > N.

Proof. In the proof of Theorem 3.4 it was shown under the assumptions listed
above that

Ilxk xkMNII c(px(1/M) + py(1/N)), Ittk #kMNI <_ c(px(1/M) + py(1/N))

for all k and M > M, N _> N. This yields the existence of 5, independent of M, N
such that

It tNI <_ (px(1/M) + py(1/N)) VM >_ M, N >_ N.
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This estimate can be derived using the Lipschitz continuity of F and F and the
estimates in Lemma 3.1. If tk is defined through (3.36) one also has to incorporate
the fact that the Lagrange multipliers are uniformly bounded, and if tk is defined
through (3.35) one has to incorporate the contraction property of projections, i.e.,
IIPx- PYll <- IIx- YlI.

If we choose M1, N1 such that

MNItk(TOL) tk(TOL) < TOL tk(TOL) VM >_ M1, N >_ N1

Irk- tNI < Vk, M >_ M, N >_ N,

then we obtain for all M >_ M1, N >_ N that

MN MNtk(TOL) tk(TOL) + Itk(TOL) tk(TOL) < TOL

MN ItkM MNtkMN < TOL + .tkMN(WOL) tkMN(TOL) - N(TOL) (TOL)

If tk(TOL)-I > TOL we can choose (tk(TOL)-I--TOL)/2. This yields k(TOL+5)
k(TOL). Hence the assumption is proven.

We conclude this section with results on the convergence rate of the Gauss-
Newton method for the discretized problem and on perturbations of solutions and
Lagrange multipliers. In addition to the assumptions (A1)-(A7) we need an assump-
tion on the curvature of F and FN:

(A8) There exists a sequence {MN} with limM,No MN 0, such that for all

x, y E Bt(O) V XM

[l((Fv(x)* Fv(y)* (F’(x)* F’(y)*))FN(y)II <_ MNIIX YlI.

If F and FN are twice Frchet differentiable, a sufficient condition for (A8) to
hold is that

I[F(y)*FN(x)--F"(Y)*FN(X)IIL(X,X) <_ a Px - / P. Vx, y BR(O).

Since Fc(y)* is applied to an element of YN, it is the ordinary YN, XM adjoint,
Fc(y)* e L(YN, XM (R) XM). In this case we obtain MN O(pz(1/M) + py(1/N)).

In the following theorem we will use the notation of Theorem 2.2 and its proof.
THEOREM 3.7. Let (A1)-(A8) and the assumptions of Theorems 2.2 and 3.4 hold.

Then for all a e (1, (, + #,)/a) and all e (0, e, (a)) there exist M and N such that
for all M >_ M, g >_ N, and XoMN Bn(O) N B(x,), the Gauss-Newton method for

MNthe discretized problem with starting point x4N converges to a solution x, of (1.3).
Moreover, x,MN is the unique minimizer of (1.3) in B(x,), and the convergence rate
is given by

aL1MNAMNII MN x,MN oaMN xkMN MN 12xk/ II < +  ,MN II X, II + 2( ,UN +  ,MN) IIx MN x*MNI
< IIx X,  ll
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where AMN =_ supxesa(o)IIF(x)ll and {,,MN}, ((TMN}IV are sequences with

1

1

The eors between x, andxy and between the Lagrange multipliers can be estimated
by

where c > 0 denotes a genec constant.
Proof. We only give a sketch of the proof. Theorem 2.6 yields the existence of a

sequence {xyN} of minimizers of (1.3) such that xyN x, (M,N ).
om (2.21), (A5), and (A8), we obtain that for all x, y Bn(0)

(F(x)* F()*)F()
5 ]](F’(x)* F’(y)*)F(y)]] + ](F’(x)* F’(y)*)(F(y)-
+ [((F(x)* F(y)*) (F’(x)* F’(y)*))FN(y)]

5 a[x- y[[ + py(1/N)L[x- y[[ + CMN [[x-- y[].

Hence there exist aMN a such that [MN [ O(MN + px(1/U) + pr(1/N))
and

[[(F(x)* F(y)*)FN(y)[ 5 MN][x --Y[[.

Assumption (A5) and (2.20) and (3.38)yield

]]F(zyN)h[[ ([[F’(x,)h[ [[F’(zyN)h- F’(x,)h[[
-[[F(xyN)h- F’(xyN)h[[)

(-L, y-p. h

Hence, there exists a sequence {N}, N , + O([X, xN[ + py(1/n))
such that

]F(xyN)hM W]lhM]2 VhM XM.
If we denote the Lagrange multiplier corresponding to xN by #N, one can show,

in the proofs of Lemm 3.2 and 3.3 (note that x,(#,) x, and use (3.37)) that
for sufficiently large M, N there exists c independent of M, N such that

#, #yN c(px(1/M) + py(1/N)).

These preliminaries show that we can choose M, N such that
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If we apply Theorem 2.2 to x,MN, we obtain the existence of e,MN such that the Gauss-
Newton method for the discretized problem with arbitrary starting point
XoMN e Bn(O)N B.MN(X.MN) converges to x.MN"

II MN x,MN
aaMg aLVNAMN 2

< :Y ll-
Moreover, the proof of Theorem 2.2 shows that eg e,.

The uniqueness of the solution xN follows from the fact that the Gauss-Newton
method with arbitrary starting point Xo B(x,) converges towards xg.

Theorem 3.4 yields the error estimate

(3.3s) I1 . px + p.

since (3.17) holds for all k.

4. Examples. In this section we will demonstrate how the analysis of the pre-
vious sections can be applied to a parameter identification problem. Although we are
considering the one-dimensional problem, it should be mentioned that our analysis
can be extended to the multidimensional ce. The parameter identification problem
for the tw@point boundary value problem can be stated follows.

For a given observation z L2(0, 1) or H(0, 1) find q Hi(0, 1) with IIqlH: R
and q(x) 7 > 0 almost everywhere on (0, 1), such that

u(q) ,w, z.

Here u(q) e H((O, 1) is defined to be the weak solution of the state equation

-(qu’)’-f in(0,1), u(0)-u(1)--0

with f e L2(0, 1), i.e., u(q) is defined through

(4.1) (qu’, v’) (f v) Vv e H) (0, 1).

(For the rest of the section we will drop the notation of the space (0, 1) and we will
always use the notation (., .) for the L2-scalar product.) It is well known that (4.1)
always possesses a solution u(q) E H) and since q E Hl, f L2 one can even show
that u(q) H) 3 H2 with

Ilu(q)llH cllfllL ,

where c is a constant depending on 7 and R (see, e.g., [5, p. 223]). In what follows,
we will denote by u(q) the solution of (4.1).

In the following we use the output least squares formulation to solve the parameter
identification problem; i.e., we determine q such that u(q) is close to z in the norm of
the observation space Z, and we use Z L2(0, 1) or H(0, 1). It is well known that
this problem may be ill posed in the sense that small perturbations in the observation
z may lead to large errors in the solution q. In order to get a stable problem for
which it is possible to estimate the error between the computed solution of the output
least squares problem with perturbed data z and the true, but unknown solution
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corresponding to the unperturbed data, one has to modify the problem. A possible
approach to removing this difficulty is the Tikhonov regularization. Here one adds a
regularization term to the objective, so that we have to solve

(4.3) min lu(q) z 112z + aIlqll2H
s.t. lqllH <-R, q(x) >_’7 a.e. on(0,1).

Another strongly related regularization technique might consist of reducing the size
of R. The Tikhonov regularization for nonlinear problems is studied by many authors
(see, e.g., [5], [7], [8], [15], and [20]). In the following we assume that q, is a solution
of (4.3), which satisfies q,(x) > ’7 almost everywhere on (0, 1). Since I1" IIg dominates
the infinity norm and since we are concerned with a local analysis, we may drop the
pointwise constraint on q. In the sequel it will always implicitly be assumed that the
considered parameter functions q (, ql, q2,...) satisfy this constraint. In this case (4.3)
fits into our framework if we set

X H1, Y Z H (endowed with the product topology)

and

(In this section we follow the conventional notation in parameter identification and
denote the sought variable by q, whereas x E (0, 1) denotes the space variable!) It can
be shown that F is infinitely often Frchet differentiable. The first Frchet derivative
is given by

where /= uq(q)(h) is the solution of

(4.4) <qv’, w e HI.
The variational equation

(4.5) <q’, v’> -<hl, v’> <h2, v’> Vv e H,
where is the solution of (4.4) with hi instead of h, characterizes the second Fr6chet
derivative of F, which is given as

From the structure of F’(q) it can be seen that for arbitrary q and h

]lF’(q)hll2 >_ a}]hll 2

This inequality shows that the Tikhonov regularization shifts the spectrum of the first
Fr6chet derivative ofF. On the other hand, the regularization causes an increase of
the residual Ilu(q)- zll and therefore an increase of the weight of the second-order
term (F"(q)(h,h),F(q)> in the Hessian of [IF(q)[I 2. In [8], Colonius and Kunisch
show that for small a the effect of shifting the spectrum is stronger than the increase
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of the residual. They show that if the residual of the unregularized problem (a 0)
is sufficiently small there exist parameters a such that the inequality (2.30) holds
(with #. 0). Although this only guarantees the validity of the conditions for
convergence of the Gauss-Newton method and for its mesh independence in the case
where regularization is only performed by using Tikhonov regularization, we also
obtained extremely good results in the cases where the problem is regularized by the
norm constraint.

For the numerical solution of (4.3) we have to discretize the problem. We choose
piecewise linear splines. Let M,V be the hat functions with M(i/M) 1,

(jIN) 1 and M(x) 0 for x (L ) and v(x) 0 for x (:A )NN"
We set XM := span{0M,...,MM}, VN := span{N,..., V--1 }, and YN := VN x

X.
The discretized solution of the state equation is given as the uniquely determined

element ug uN (q), which satisfies

N )qu vN f vN) VvN e VN

Now we choose the discretization of F as follows:

( (q)v q- )
where ZN is a discretization of z, for example, the spline interpolant.

From (4.6) it can be seen that although in the computations, FN has to be
evaluated only at points q qM E XM, the functions are defined on the whole
infinite-dimensional space X. The same is true for the Frchet derivative and its

adjoint, since they are defined through variational equalities similar to (4.6).
N (q)(h), is given as the unique solutionThe Fr6chet derivative of uN (q), ?N := Uq

of

,vN’) VvNeVN.(4.7) (q7N’ vN’) (huN’

The second Fr6chet derivative is given analogously to (4.5). This especially proves
the validity of (A1) and (A3).

In the following we will denote by u(q) the solution of (4.1) and by uN(q) its

discretization, i.e., the solution of (4.6), for a given parameter function q. And we
will use a similar notation for the Fr6chet derivatives.

We will now verify that F and its discretization satisfy the assumptions (A2) and
(A4). In the following we will use c as a generic constant to reduce the notational
complexity.

Since u(ql)- u(q2) satisfies the variational equation

<ql(u(ql) u(q2))’, v’) ((q2 ql)u(q2)’, v’> Vv e H
we obtain with (4.2) and

(4.8) IlvllL  llvlln 
that

(4.9) Ilu(ql) u(q2)llH all(q1 q2)u(q2)’llL c[IflILIlql q21ln
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From the error analysis of finite element methods we get (see, e.g., [4, pp. 152, 217])
1 1

(4.10) Ilu(q)- uN(q)llH < Cllu(q)IIH- < allfllL.
Using the Aubin-Nitsche trick (see, e.g., [4, p. 229]), this estimate can be improved
for the L2-norm to

Ilu(q) uN(q)llL <
N2"

The Frchet derivatives u(q) and uN(q) are defined through the same kind of elliptic
differential equation. Therefore, we can apply a similar analysis to derive continuity
results for the derivatives. If we use the corresponding estimates to (4.2), (4.9), and
inequality (4.8), we obtain

I]Uq(ql)(h) Uq(q2)(h)llH1
< (111 11II()(h)ll + Ilhllllu() u(q)l)

Let H denote the solution of

<q’, v’> <huN’, v’} Vv e H
and let ,N be the solutions of (4.4) and (4.7), respectively. Then the error between
the discretized and infinite-dimensional 6chet derivative can be estimated through

1

1

The above techniques can obviously be applied to the second and even higher 6chet
derivatives. The calculations above show that F satisfies the sumptions (A2) and
(A4) for Z H, or Z L2 with py(1/N) cy/N, provided that llz--zNllH c/N,
or llz- zll /N.

Now, we will investigate the computation of the adjoint of F’. om the structure
of F’ it is obvious that it is sufficient to study the calculation of (Uq(q))*. The adjoint
of Uq(q) applied to 9 L2 can be computed in two steps:

(1) Solve the adjoint equation for given q and g:

(4.11) <q’, ’> <, v> w e H.
(2) Move from the L2 to the H topology

(4.12) <p, > + <’, ’> -<()’’, > v e H1.

(In our example, the adjoint equation is just the state equation, since the differ-
ential operator Dq(D.) is formally self-adjoint.) If we solve the two equations, we
obti p ((q))*(), hich cn b seen if e set v ()() i (.):

<, (q)()>z <’, (u(q)())’>
<’, q (u()())’>
-<()’, ’> <p,>
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(for the third equality we used the definition of the Frchet derivative; see (4.4) with v
replaced by w). The variational equation (4.12) is the weak formulation of the elliptic
problem

-p" + p -u(q)’w’ in (0, 1)
with homogeneous Neumann boundary conditions. Equation (4.12) yields

-(/, ’) (, ) + (u(q)%’, ) v e c,
which shows that p exists and equals p + u(q)%. In particular, we obtain p L
and

The L-Milgram theorem and (4.8) yield

][P]L
Hence we obtain that the weak solution of the Neumann problem obeys the regularity
property p H2 and

(4.13)
This bound together with the techniques already applied to prove (A2) and (A4) can
now be used to derive an estimate of type (A5). If we discretize the Neumann problem
(4.12) and solve

(4.14) (pu, vM) + (U’, U’) (u(q)’w’, VM) Vu e XM,
the error between the solutions of (4.12) and (4.14) can be estimated by

1

(se (a.la) nd [a, pp. 152, 217]). The adjoint of the discretized nchet derivative
N (q) is given through:Uq

(1) Solve the adjoint equation

(4.16) (qwN’ vN’)z (g, vN vN VN
(2) Move from the L2 to the H topology

(4.17) (pU, U) + (pU’, vM’) _(UN(q)’wN’, vM) vU XM.
At the end we obtain pM (u(q))*(g). The error between the infinite-dimensional

and discretized adjoints can be estimated by (see (4.2), (4.8), (4.10), and (4.15))

1
c[f]Lllg] + sup (uY(q)’wy’-u(q)’w’,)

1

+
1

iliizliiIz M
+cl

1 1



112 MATTHIAS HEINKENSCHLOSS

TABLE 1

Number of iterations

q0----0.2, z--u(q,)

TOL 10-8

M 6 12 24 48 96
aN 12 24 48 96 192
0 7 7 7 7 7
10-8 7 7 7 7 7
10-6 7 7 7 7 7
10-4 8 8 8 8 8
10-2 10 10 10 10 10

0 11 15" 8 6 7
10-8 8 7 7 7 7
10-6 7 7 7 7 7
10-4 9 9 9 9 9
10-2 9 9 9 9 9

0 8 8 8 8 8
10-8 8 8 8 8 8
10-6 8 8 8 8 8
10-4 8 8 8 8 8
10-2 10 10 10 10 10

Example 1

TOL 10-6

192 6 12 24 48 96 192
384 12 24 48 96 192 384

7 7 7 7 7 7 7
7 7 7 7 7 7 7
7 7 7 7 7 7 7
8 7 7 7 7 7 7
10 8 8 8 8 8 8

Example 2

7 10 15" 8 7 7 7
7 7 7 7 7 7 7
7 6 6 6 6 6 6
9 7 7 7 7 7 7
9 7 7 7 7 7 7

Example 3

8 7 7 7 7 7 7
8 7 7 7 7 7 7
8 7 7 7 7 7 7
8 7 7 7 7 7 7
10 8 8 8 8 8 8

The last inequality proves that (A7) is also valid with px(1/M)- cx/M.
Since (A6) is a standard result in finite element error analysis, (A1)-(A7) are

valid for this example.
We ran several test examples from the set of test problems in [21]. The test

functions for the results we present below are given in the following examples.
Example 1.

u(q,) sin(rx), q, 1/2 + cos(x), I[q,[[/1 + sin(l).

Example 2.

-9x + 6x, x E [0, 1/2],
21, x e

1].-9x2 + 12x 3, x E (,
1 3 2

q, +sin(x), Iq, l/1 +-+--.71.2
Example 3.

u(q,) sin(rx), q, 1 + x [[q,[[2 10
H --"

The Gauss-Newton method is implemented using the Hebden-Reinsch method
for the computation of MN

#k+l aS the inner iteration. In all test runs we chose zN to
be the spline interpolant of z. The iterations were terminated if tkMN <_ TOL or
k > 15. For all test runs we took q0 0.2 and incorporated either the Tikhonov
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TABLE 2

Number of iterations

q00.2, z--u(q.)

TOL 10-6

M 6 96 192
R N 12 192 384
1.3 7(7) 7(7) 7(7)
1.0 8(8) 8(8) 8(8)
0.8 6(7) 6(7) 6(7)

2.5
2.0
1.5
1.2

1.8
1.3
1.0
0.8

1.3
1.0
0.8

2.5
2.0
1.5
1.2

1.8
1.3
1.0
0.8

6(6)
6(6)
6(6)
7(7)

7(7)
8(8)
8(8)
7(7)

Example 1

12 24 48
24 48 96
7(7) 7(7) 7(7)
8(8) 8(8) 8(8)
6(7) 6(7) 6(7)

Example 2

7(7) 7(7) 7(7)
6(6) 6(6) 6(6)
6(6) 6(6) 6(6)
6(6) 6(6) 6(6)

Example 3

7(7) 7(7) 7(7)
8(8) 8(8) 8(8)
8(8) 8(8) 8(8)
7(7) 7(7) 7(7)

TOL-- 10-8

7(7) 7(7)
6(6) 6(6)
6(6) 6(6)
6(6) 6(6)

7(7)
8(8)
8(8)
7(7)

8(8)
10(10)
8(0)

8(8)
10(10)
8(9)

7(7) 7(7)
7(7) 7(7)
8(8) 8(8)
8(8) 8(8)

8(8) 8(8)
10(10) 10(10)
10(10) 10(10)
9(9) 9(9)

Example 1

8(8) 8(8) 8(8)
10(10) 10(10) 10(10)
8(9) 8(9) 8(9)
Example 2

7(7) 7(7) 7(7)
7(7) 7(7) 7(7)
8(8) 8(8) 8(8)
8(8) 8(8) 7(7)
Example 3

8(8) 8(8) 8(8)
10(10) 10(10) 10(10)
10,(10) 10(10) 10(10)
9(9) 9(9) 9(9)

7(7)
8(8)
8(8)
7(7)

8(8)
10(10)
8(9)

7(7)
7(7)
7(7)
7(7)

8(8)
10(10)
10(10)
9(9)

regularization or the regularization by norm constraint. All computations were done
on a SUN Sparcstationl in double precision FORTRAN.

Tables 1 and 2 show the results in case of unperturbed observations for Tikhonov
regularization and regularization by constraints, respectively. For small regulariza-
tion parameter c the discretized problems have almost zero residual at the solution
and the Gauss-Newton method converges almost quadratically. Therefore, there is
no difference in the number of iterations for small c, except for Example 2, where
regularization is needed to observe mesh independence.

In Table 2 the first numbers of each column show the number of iterations needed
for the termination criteria I[qkMN- P(qkMN- Fv(q’1N)*FN(qlN))ll < TOL; the
numbers in parentheses show the number of iterations needed to satisfy the termina-
tion criteria MN MN MN MNIFN(qk )*FN(qt: + #k qk II < TOL.
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TABLE 3

qo 0.2,

Number of Iterations

z u(q,) + 0.05 sin(10rx 0.5vr)
Example 1

TOL 10-8 TOL 10-6

M 6 12 24 48 96 192 6 12 24 48 96 192
aN 12 24 48 96 192 384 12 24 48 96 192 384
0 15" 8 10 15 ’15’ 15" 11 9 8 15" 15" 15"
10-6 10 10 11 11 11 11 7 7 8 8 8 8
10-4 8 8 8 8 8 8 7 7 7 7 7 7
10-2 10 10, 10 10 10 10 8 8 8 8 8 8
10-1 15" 15" 15" 15" 15" 15" 12 12 12 12 12 12

Exam’Me 2

0 1 "15’ 15" 15" 15" 15" I0 15" 13 15" 15" 15"
10-6 8 10 15" 15" 10 10 7 7 15" 15" 7 7
10-4 8 8 8 8 7 9 7 7 7 7 7 7
10-2 9 9 9 9 9 9 7 7 7 7 7 7
10-1 11 11 11 11 11 11 9 9 9 9 9 9

Example 3

0 ’15’ 9 10 15" 15" 15" 11 8 9 15" 15" 15"
10-6 11 11 11 13 13 14 7 8 8 9 9 9
10-4 8 8 8 8 8 8 7 7 7 7 7 7
10-2 10 10 10 10 10 10 8 8 8 8 8 8
10-1 15" 15" 15" 15" 15" 15" 13 13 13 13 13 13

The notation 15" in the tables means that the iteration was terminated because
the maximum number of iterations, 15, was exceeded.

In the norm constraint case, we obtain similar results, except for Example 2.
Here we recognize unstable behavior for R 1.5, 1.2 and TOL 10-8. This might
be due to the fact that the Lagrange multipliers are computed approximately. If the
constraint is active, we stop the inner iteration for the computation of #4N if

llqMN(#kMN)]lHk-1 R[/R < 10-4

Therefore, the projection is computed in the following way:

(
IIqkMNIIH /II  NIIH
RIII  MNIIH’

if
illqkNliH11II M II -RI < 10_4

R
otherwise,

where MN qUN Fv(qN),FN(qN).
Tables 3 and 4 show the results for perturbed observations. In the case of

Tikhonov regularization mesh independence can be observed only for sufficiently large
regularization parameter a. This behavior is theoretically justified through the anal-
ysis presented in 2 and 3. Our results indicate that a < 1 for small but sufficiently
large . If is further increased, the residual and therefore the second-order part in
the Hessian, which is neglected in the Gauss-Newton method, increases. For regular-
ization parameters c _> 1 the method did not converge (a result that is not reported
in our tables). For Examples 1 and 3, ( 0.1, the criteria k > 15 is satisfied before
the gradient reaches TOL, although the method converges.
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M
RN
1.3
1.0
0.8

2.5
2.0
1.5
1.2

1.8
1.3
1.0
0.8

1.3
1.0
0.8

2.5
2.0
1.5
1.2

1.8
1.3
1.0
0.8

TABLE 4

q0 0.2,

Number of Iterations

z u(q,) + 0.5 sin(107rx 0.5’)
TOL 10-6

6
12

7’(7)
7(7)
()

8(8)
8(8)
8(8)
8(8)

8(8)
8(8)
8(8)
7(7)

12
24

()
()
()

7’(7)
7(7)
s(s)
7(7)

Example 1

24 48
48 96

7(7) 7(7)
7(7) 7(7)
6(6) 6(6)
Example 2

8(8) 8(8)
7(7’) 7(7)
7(7) 7(7)
7(7) 7(7)
Example 3

8(8) 8(8) 8(8) 8(8) 8(8)
8(8) 8(8) 8(8) 8(8) 8(8)
8(8) 8(8) 8(8) 8(8) 8(8)
7(7) 7’(7) 7(7) 7(7) 7(7)

TOL 10-8

’96 192
192 384

7(7) 7(7)
7’(7) 7’(7)
() ()

8(8) 8(8)
7(7’) 7’(7)
7’(7) 7(7)
7(7) 7’(7)

9(9) 8(8)
9(9) 9(10)
S(S) S(S)

11(11) 9(9)
11(11) 10(10)
11(11) 10(10)
11(11) 10(10)

Example 1

9(9) 9(9)
9(10) 9(10)
8(8) 8(8)
Example 2

10(10) 10(10)
10(10) 9(9)
10(10) 10(10)
10(10) 9(9)

Example 3

9(9) 9(9) 9(9) 9(9) 9(9) 9(9)
10(10) 10(10) 10(10) 10(10) 10(10) 10(10)
10(10) 10(10) 10(10) 10(10) 10(10) 10(10)
9(9) 9(9) 9(9) 9(9) 9(9) 9(9)

9(9) 9(9)
9(10) 9(10)
8(8) 8(8)

II(II) II(II)
9(9) 9(9)
9(9) 9(9)
9(9) 9(9)

In the case of regularization by restriction, we chose a stronger perturbation since
the given constraints force a strong regularization. For the perturbation 0.05 sin(107rx-
0.5r) we obtained almost the same results as in Table 2. As in Table 2, the first
numbers of each column in Table 4 show the number of iterations needed for the ter-
mination criteria IlqffIN- P(qkMN- F]v(qkMN)*FN(qfflN))ll < TOL; the numbers in
parentheses show the number of iterations needed to satisfy the termination criteria

MN MN,-,MN[FN(qk FN(qkMN) + t*k uk II < TOL.
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A SUPERLINEARLY CONVERGENT POLYNOMIAL PRIMAL-DUAL
INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING*

YIN ZHANG AND RICHARD A. TAPIA$

Abstract. The choices of the centering parameter and the step-length parameter are the fun-
damental issues in primal-dual interior-point algorithms for linear programming. Various choices
for these two parameters that lead to polynomial algorithms have been proposed. Recently, Zhang,
Tapia, and Dennis derived conditions for the choices of the two parameters that were sufficient for
superlinear or quadratic convergence. However, prior to this work it had not been shown that these
conditions for fast convergence are compatible with the choices that lead to polynomiality; none
of the existing polynomial primal-dual interior-point algorithms satisfy these fast convergence re-
quirements. This paper gives an affirmative answer to the question: Can a primal-dual algorithm
be both polynomial and superlinearly convergent for general problems? A "large step" algorithm
that possesses both polynomiality and, under the assumption of the convergence of the iteration
sequence, Q-superlinear convergence, is constructed and analyzed. For nondegenerate problems, the
convergence is actually Q-quadratic.

Key words, linear programming, primal-dual interior-point algorithms, quadratic and super-
linear convergence, polynomiality
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1. Introduction. We consider linear programs in the standard form:

minimize cTx(1) subject to Ax b, x >_ O,

where c,x E Rn, b E R", A Rmn(m < n), and A is assumed to have full rank m.
The first-order optimality conditions for (1) can be written

Ax- b )(2) ATA / y c O, (x, y) >_ O,
XYe

where A and y are dual variables, X diag(x), Y diag(y), and e has all components
equal to one. To facilitate our presentation, we will eliminate the dual variable A from
the above system (although such an elimination may not be advisable from a practical
point of view). Let B R(n-m)n be any matrix such that the columns of BT form
a basis for the null space of A. Premultiply the second equation by the nonsingular
matrix [AT BT]T. Notice that BAT O, so

O= [ A ] (AT,k + y c) ( AATA + A(y c)
Bc
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Since AAT is nonsingular, A is uniquely determined once y is known. Removing the
equation for ), we arrive at the following 2n 2n nonlinear system with nonnegativity
constraints on the variables:

Ax-b )(3) F(x, y) By Bc O, (x, y) >_ O.
XYe

By the feasibility set of problem (3) we mean:

gt { (x, y): x, y e Rn, Ax b, By Bc, (x, y) >_ 0}.

A feasible pair (x, y) EFt is said to be strictly feasible if it is positive. In this work
we tacitly assume that strictly feasible points exist.

It is easy to see that for (x,y) e , I]F(x,y)l[1 xTy, which can be shown to
be the duality gap for problem (1); we will use the duality gap as the merit function
for our algorithm, i.e., the criterion that tells us when one feasible point should be
preferred to another.

Mathematically speaking, the concepts of polynomiality and rate of convergence
are incompatible. Polynomiality is meaningful only for algorithms that terminate in
a finite number of steps, while rate of convergence is defined only for algorithms that
take an infinite number of steps to converge. When we say that an interior-point
algorithm is polynomial, we have in mind integral (or rational) data and finite termi-
nation. On the other hand, when we say the same algorithm is linearly convergent,
for example, we do so in the traditional numerical analysis sense. With this under-
standing, we can discuss both polynomiality and rate of convergence of an algorithm
at the same time.

It is clearly desirable to develop algorithms that possess both polynomiality and
fast asymptotic convergence, or, in other words, both good global behavior and
good local behavior. To our knowledge, the only prior work in this direction is Ya-
mashita [10]. Using the multiplicative penalty function of Iri and Imai [2], Yamashita
constructed a polynomial primal algorithm and demonstrated its quadratic conver-
gence under the following two assumptions" (i) the optimal objective value is known,
and (ii) the iteration sequence converges to a nondegenerate optimal vertex. The
first assumption is not realistic in general. The second assumption is very restrictive
because most practical problems are degenerate.

The objective of this work is to construct a primal-dual interior-point algorithm
for problem (1) that possesses both polynomiality and fast convergence under more
realistic and less restrictive assumptions. We construct such an algorithm and show
that it takes at most O(nL) iterations to reduce the duality gap to 2-L. Moreover,
we demonstrate that this algorithm gives quadratic convergence for nondegenerate
problems and gives Q-superlinear convergence for degenerate problems.

Subscripts will be used to distinguish values of quantities at a particular iteration
and superscripts will indicate components of vectors. We also use the notation

min(v) min v and max(v)= max v
lin lin

for a vector v R’. The symbol I1" denotes the/2 norm unless otherwise stated.
We will use the standard big-O notation in this paper; in particular, for a sequence
{vk} C Rn and a positive sequence {ck} C R, vk O(ok) implies the existence of
positive constants and k0 such that Ilvkll <_ ak for all k > k0.
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The paper is organized as follows. In 2, we describe general interior-point
algorithmic framework for problem (1) based on the nonlinear system (3) and give
a brief survey of existing results for algorithms that fall into this framework. In 3
nd 4, we specify our procedures for determining the step length and for choosing the
centering parameter. We state our algorithm in 5. Global linear convergence (and
polynomiality) are established in 6. Quadratic convergence for nondegenerate prob-
lems is established in 7, and superlinear convergence for all problems is established
in 8. Concluding remarks are given in 9.

2. General algorithm. We now present a general framework for the primal-
dual interior-point algorithms.

ALGORITHM 1 (General Algorithm). Given a strictly feible pair (x0, Y0). For
k 0, 1,2,..., do:

Step 1. Compute the Newton step

_[,(,)]-1(,)

and the centering step

() 1 r [F’(zk k)]_l(0)Ay n
xkyk e

Step 2. Choose ak (0, 1) and form the combined step

Ayk Ay Ayk

Step 3. Choose Tk (0, 1) and set ak kk, where

-1
k min(X/Axk, Y[ Ayk

Step 4. Compute the new iterate

We will now briefly comment on this generM algorithmic framework. om a
direct calculation, we have

0
Y X

Since we sumed that A h full rank, it is a straightforward matter to verify that
F’(z, ) is nonsingular for any positive pair (z, ). In addition, relation (8) below
guarantees that k > 0. Hence the iterates produced by Algorithm 1 are well de-
fined. Notice that the restriction k < k guarantees that the iterates remain strictly
legible. Moreover, we have the following useful relationships:

(a)
(7)
(s)
(9)
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We have stated Algorithm 1 in this form for notational convenience. It is not
difficult to verify that identical iterates {(xk, Yk)} can be generated using (2) instead
of (3). For this case, there is no need to introduce the matrix B (see [11], for example).

From (9) we see that Algorithm 1 is a descent algorithm for the duality gap
IIF(x,y)lll xTy. Moreover, the duality gap is reduced at iteration k by a factor
1- ak(1- ak) < 1; thus, linear convergence will be obtained if {ak} is bounded
away from zero and if {ak} is bounded away from one. In addition, Q-superlinear
convergence will be obtained if ak (1 ak) --, 1. Observe that we have direct control
over the choice of ak. However, we do not have the freedom of choosing ak uniformly
bounded away from zero, since we must enforce the requirement ak < &k and &k is
not directly under our control.

A number of existing primal-dual algorithms fit into the above general algorithmic
framework with different choices for the parameters k and ak, For example, in the
primal-dual algorithm of Kojima, Mizuno, and Yoshise [3], a is a constant and ak is
a particular function of (Tk. They showed that their algorithm requires at most O(nL)
iterations to reduce the duality gap by a factor of 2-L. Other examples include
the Todd and Ye [9] primM-dual potential-reduction algorithm and the Monteiro and
Adler [7] path-following primal-dual algorithm. Todd and Ye’s algorithm uses the
choice

(rk

where is a constant. In Monteiro and Adler’s algorithm,

where 5 is a constant (Monteiro and Adler actually used 5 0.35 in their analysis).
In both algorithms, a rather short step length ak is required. Furthermore, both of
these algorithms require at most O(v/-L) iterations to reduce the duality gap to 2-L.
This is the best complexity bound obtained for linear programming so far. Observe
that all three algorithms use constant crk. In each of the three cases, if a denotes the
constant value of ak, then Q-superlinear convergence is possible (see (9)) only if

ok ---+
1

which seems extremely unlikely.
In analyzing the convergence of Algorithm 1, a central quantity is

(10) k min(XYke)

xTSince k Yk is the average value of the components of XkYke, it is clear that k _> 1.
In all the above-mentioned polynomial algorithms, it is essential that the sequence
{k} be bounded.

Recently, Zhang, Tapia, and Dennis [11] showed that under appropriate assump-
tions, Algorithm 1 has fast convergence. The following two theorems summarize their
main results. By a nondegenerate vertex of (1), we mean a feasible point of (1) that
has exactly m positive components and the corresponding m columns of A are linearly
independent.

THEOREM 2.1 (see [11]). Let (x,, y,) be a solution ofproblem (3) and let {(x,y)}
be generated by Algorithm 1. Assume that
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(i) strict complementarity holds at (x,,y,);
(ii) x, is a nondegenerate vertex of (1);
(iii) ak O(xyk) and Tk 1 O(Xyk).

If ((Xk, Yk)} converges to (x,, y,), then the convergence is Q-quadratic.
THEOPEM 2.2 (see [11]). Let (x,,y,) be a solution of problem (3) and

be generated by Algorithm 1. Assume that

(i) strict complementarity holds at (x,, y,);
(ii) the sequence (Yk} is bounded;
(iii) ak ---* 0 and Tk 1.

If ((xk, Yk)} converges to (x,, y,), then the duality gap sequence (xyk} converges to
zero Q-superlinearly.

With some additional work, we can actually demonstrate that the sequence
(XkYke} componentwise converges to zero Q-superlinearly.

Several assumptions have been made in the above theorems. Our numerical ex-
periments have led us to believe that the strict complementarity assumption is not
restrictive. On the other hand, the nondegeneracy assumption is quite restrictive since
degeneracy exists in most real-world problems. For degenerate solutions, the best con-
vergence that has been established is Q-superlinear, as stated in Theorem 2.2.

Although many of the existing polynomial primal-dual interior-point algorithms
satisfy assumption (ii) of Theorem 2.2, none of them satisfy assumption (iii), i.e.,
ak 0 and Tk --* 1. In fact, in several polynomial algorithms, for example, Todd and
Ye’s and Monteiro and Adler’s, the values of (Yk are close to one. From Zhang, Tapia,
and Dennis [11] it follows that these algorithms will most likely have slow Q-linear
convergence. Hence while their global behavior may be excellent, their local behavior
can be improved.

Recently, in a number of performance-oriented primal-dual algorithms, for ex-
ample, those implemented by Choi, Monma, and Shanno [1]; McShane, Monma, and
Shanno [6]; and Lustig, Marsten, and Shanno [5], very small values of ak were used and
long steps were also taken. Impressive numerical results were obtained from these im-
plementations, although polynomial complexity bounds are not known. Hence while
their local behavior may be good, their global behavior is questionable from a theo-
retical standpoint.

In this work, we develop a primal-dual interior-point polynomial algorithm that
gives quadratic convergence for nondegenerate solutions and gives superlinear con-
vergence for degenerate solutions. Hence, from a mathematical point of view, both
the global and the local behavior will be good. This new algorithm is still of a the-
oretical nature. However, the fact that polynomiality and quadratic or superlinear
convergence can be achieved simultaneously by one algorithm provides motivation for
practical implementations of the conditions ak O(xyk) and Tk 1 O(xyk) for
fast convergence.

3. Determining the step length. In the previous section we mentioned that
both polynomiality and superlinear convergence essentially require that the sequence
(rk } be bounded. The most straightforward way of accomplishing this objective is to
explicitly enforce a uniform bound on t.he quantity

min(Xk+lYk+le)
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during the process of choosing the step length ak; i.e., ask that

(11) min(Xk+lYk+ e)
X+lYk+l/n >- "

for some -), > 0.
Following the notation used in [3], let

(12)
x(a) x + aAx,
fk(a) Z(a)Yk(a)e,
fin() min(fk()),

yk(a) Yk + aAYt:,
fkave (.)
fnax()_ max(fk(a)).

Note that the above quantities actually also depend on the centering parameter a
because both Ax and Ayk are functions of a (see Step 3 of Algorithm 1). However,
since we will always choose a before we determine , it will suffice to consider these
quantities only as functions of a for a fixed value of a.

Whenever a 0, we will drop the argument from the above functions. For
example, xk =-- xk(O), f,e =_ fve(0), and so on. From the formula for the iterates
(Step 4 of Algorithm 1), we also have Xk+l Xk(Ok), fl fve(k), and so on.

Using the above notation, we choose the form of condition (11) as requiring k
to satisfy

emin
(13) Jk (a)

v(a
>_ -, a > O,

k

where

(14) ")/k E ["/, fin/fve], 0 < "
_
fnin/fve

_
1, and ",’k < 1.

In the case 1/70 > , we allow 1/vik to decrease monotonically as long as 1/k > ")’.
In the following development, we use some of the techniques developed by Kojima,

Mizuno, and Yoshise [3].
Using (12), (7), (8), and (9), and letting

sk diag(Axk)Ayk,

we have

(15) f (C) f (f o’kfve)o/-- 8(R2

and

(16) fve(o) fve[1 (1

Hence f(a) is a quadratic (so fnin(o/) and fnax(a) are piecewise quadratic) and
fve(a) is linear. Clearly, if fw(&k) 0, then (xk(&k), Yk(&)) will solve problem (3).
In the sequel, we always assume fve(&k) > 0.

For notational convenience, we introduce the piecewise quadratic function

(17) eaveh(c)deffnin(c) ")’kJk (a).

It follows that condition (13) is equivalent to

(18) h(a) >_ O, a > O.
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In determining ak we use the following quantity:

(19) a de___f min{a > 0" h(a) 0}.

Recall that &k is defined in Step 3 of the General Algorithm (see 2).
LEMMA 3.1. The quantity a is well defined and a E (0, &k). Moreover, condi-

tion (13) is satisfied for all a e (0, a].
Proof. Let us examine the function h(a). It follows from the definitions of 7k and

& that

h(0) fnin- kfve
_

0

and

h(&k) min avefk (Olk) kfk (Olk) --kfve(ak) < O.

Hence it follows from the continuity of h(c) that h() has a root in [0,&k). When
h(0) > 0, h(() obviously has a root in (0, &k). When h(0) 0, it can be verified that
the right-derivative of h() at c 0 is

h,(0+) _(fnin Gkfve) + /k(1 ak)fve

-[(1 k)O’k nt- ("k ,emin/fve)]fvo
(1 )aveCk >0.

Therefore, h() > 0 for sufficiently small but positive . Consequently, > 0.
Since h(k) < 0, we have < k. It is evident that h() 0 for (0, ],

i.e., condition (13) is satisfied. This completes the proof.
An equivalent expression for is

ve(0) . min{. > 0" fi(.) z (.) 0. ,., }.

The computation of involves calculating the roots of at most n quadratics and
therefore requires O(n) operations.

In addition to a lower bound for {g(k)/fve(k)} (i.e., condition (13)), we also
impose an upper bound on these quantities; namely, we require k to satisfy

max
(21) () r. > 0.ave (-)

where

(22) max aveFkeLJkrmx/fve, F], l__<fo /:0 _<F_<n, and F, rk>l.

Since f()/fve(c) < n for all i, condition (21) will be redundant if Fk n. We
introduce condition (21) to improve our complexity bound. We do not feel that
enforcing this condition will have much practical significance.

Following the treatment of condition (13), we introduce the piecewise quadratic
function

(23) H(a) def fnax(o/) .eave-- (").

It follows that condition (21) is equivalent to

(24) H(a) <_ 0, a > 0.
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We will also use the following quantity in determining ak:

(25) a de=f min{a > 0" H(a) 0}.

Analogous to Lemma 3.1 for condition (13), we have the following lemma for
condition (21).

r (0, condi-r is well defined and ak E &k). Moreover,LEMMA 3.2. The quantity ak
tion (21) is satisfied by all a e (0,

Proof. The proof is similar to that for Lemma 3.1, so we omit it.
Analogous to the expression (20) for condition (13), we have for condition (21)

F .rave(26) a[ min{a>0 f(a) kJk )=0, i= l,2,...,n}.

For the sake of simplicity, we will enforce the conditions

and Fk > 2.(27) "k _<

The specific values in (27) do not constitute a loss of generality because they will only
affect expressions for some constants in our analysis. These values of "k and Fk will
result in much simplified expressions for those constants.

From (5), we see that for fixed ak a larger step length ak will produce a larger
reduction in the duality gap. So it is always desirable to take the largest step length
possible as long as other requirements are satisfied. Our procedure for determining
the step length ak is summarized as follows.

PROCEDURE 1 (step-length criterion). Given positive constants and F such
that

(28) 0 < "), _< min(1/2, fnin/fve), max(2, fax/fve) F < n"

min ave max aveStep 1. Choose ")’k [/, min(, fk /fk )] and Fk [max(2, fk /fk ), F].
reaveStep 2. Compute a min{a > 0" /(a) "kJk (a) 0 i 1,2, .,n}

(i.e., (19)).
r min{a > 0" f(a) --Fkfkave(a)= 0, i= 1 2 n}Step 3. Compute ak

(i.e., (25)).
Step 4. Let

We note that the above procedure for choosing the step length bears a certain
similarity to a procedure recently proposed by Mizuno, Todd, and Ye [8].

Now we prove two technical lemmas that will be needed in the later development.
LEMMA 3.3. For a [0, 1],

fnin(a
_

fnin (fnin ffkfve)a _}_ min(sk)a2,
< ytn x (ytn x +

Proof. We first look at the linear part of f(a). Since for all i,

f (S _gave { S, O 0,
OkJk )0 rave

OkJ k a 1,

it is evident that for a [0, 1],
in 5 5
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For the quadratic terms, we clearly have

min(sk)a2 <_ sa2 <_ max(sk)a2.

By adding the quadratic terms to their corresponding linear parts, we thus finish the
proof.

It is worth noting that eTsk 0 by (8). Hence, min(sk) <_ 0 and max(sk) _> 0.
In the sequel, we will adopt the convention that

LEMMA 3.4. Let ak be given by Procedure 1. Then

(29) ak _> min (1,
Moreover,

.rave
okJk(30) k >_ min 1,
211skll

aveProof. From (19), is a positive root of f() kk (a) for some index i
Noticing that for a E [0 1] rave

k (a) is positive, and using Lemma 3.3, for a E [0, 1],
"k >_ 0, and for all indices i, we have

(31)

If min(sk) 0, then h(a) > 0 for a e (0, 1]. Therefore, we will have a > 1. Now
assume min(sk) < 0. Then the quadratic on the right-hand side of the last inequality
in (31) has a unique positive root

(Tk eave

min(sk)

Hence, if a <_ 1, from (31) we must have ( >_ (k. This proves that

,_ -rave

(32)
min(sk)

Similarly, we can prove that

1 (Tk
ave /(33) a[ >min 1,(Fk-- fk

Combining (32) and (33), we obtain (29).
Finally, (30) follows from the facts that max(- min(sk),max(sk)} and

I < 1--k < 1 <Pk--12

This completes the proof.
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(34)

4. Choosing the centering parameter. We will use the following notation:

qk Y-I AYk,
y;-lzx  ,
Ay

(35) w max (l(pkN)(qN)l, I(pkN)(qkC)l, I(pkC)(qr)l, I(pkC)(qkC)l).
l<i<n

LEMMA 4.1. If fnin/fve > ,),, the

<_ n//.

Proof. Multiply both sides of (6) by (XkY)-1/2 and consider the square of the
2-norm of both sides. Using (8) and (34), we obtain

II(XkYk)1/2pll / II(XkYk)1/2qC ll (-
1 XT.or equivalently after dividing both sides by - k Yk,

(36) IlTf 1/2pc 112 + IITf 1/2
qk
C II eTTke,

xr" (xY)where Tk k Yk is a diagonal matrix. Our sumption implies that
the mimum diagonal element of {T} is bounded above by 1/7 and the minimum
diagonal element of {T[ } is bounded below by 7. Therefore, from (36) we have

I(pC)l _< v/’ and I(qC)’l _< v"/’.

Using the same technique, we can prove that

I(p)l < X//7 < vr/- and

From the definition of wk and the above estimates, Lemma 4.1 follows immed-
iately.

We now state our procedure for choosing the centering parameter crk.

PROCEDURE 2 (centering parameter criterion). Given

(37) aE(0,1), pt=72a p=> 72a.
2n’ n

Step 1. Compute w from (35).
Step 2. Compute p min(p=,a/wk).
Step 3. Choose Pk e [(pt+ p)/2, p].
Step 4. Let ak PkWk.

Since ak PkWk and Pk [pt, p], we have ak [ptwk, pwk]. In addition, we
require that at: be greater than the midpoint of the interval. This requirement is
needed in our proof of superlinear convergence. It is evident that ak is bounded away
from one because ak _< a < 1. The reasons why the centering parameter is so chosen
will hopefully become clear as our discussion proceeds.
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5. Algorithm description. Now we formally state our primal-dual interior-
point algorithm.

ALGORITHM 2. Suppose we are given a strictly feasible pair (x0, Y0). Choose
positive constants -y and F such that (see (28))

0 < < min(1/2, fnin/fve), max(2, fax/f)ve) <_ F < n,

and choose a e (0, 1). Set p /2a/2n and pU >_ .2a/n (see (37)). For k 0, 1, 2,...,
do:

Step 1. Compute the Newton step and the centering step from Algorithm 1.
Step 2. Choose ak by Procedure 2 and form (Axk, Ayk) from Algorithm 1.
Step 3. Choose k by Procedure 1.
Step 4. Form (Xk+l,Yk+l) from Algorithm 1.

The procedure for determining the step length ak can be implemented in an ef-
fective manner. Its cost is somewhat higher than the ratio test that is used in most
of the practical implementations. On the other hand, our procedure for choosing the
centering parameter ak requires extra work when compared to the more standard
method. The standard practice is to choose the centering parameter prior to comput-
ing the steps; then we only need to solve once for the combined step (Newton step
plus the centering parameter times the centering step). Since Algorithm 2 requires
the information obtained from both the Newton step and the centering step to choose
the centering parameter, it requires us to solve for the two steps separately and then
combine them.

6. Global linear convergence. The global linear convergence of Algorithm 2
is given in the following theorem.

THEOREM 6.1 (global linear convergence). Let {(xk, Yk)} be generated by Algo-
rithm 2. Then

T
Xk+lY}+l < (1- 5/n)xyk

for some satisfying

Proof. We need to estimate Ilskll in (30). Let the index j be such that
Observe that

Hence it follows from (21), (30), and Procedure 2 that

(38) ak > min ( .ave) ( Pk) plkJk > min 1, >1,
siOux -g-f-
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Substituting pt (see (37)) into the above expression, we obtain

16Fn"

The proof is completed by substituting the above inequality into (9) and noticing that
ak <_a. D

The following corollary follows immediately from Theorem 6.1. By a standard
argument, it leads to polynomiality assuming integral data.

COROLLARY 6.2. Assume that a strictly feasible pair (xo, yo), constants / and
F, both independent of n, are chosen such that (28) is satisfied and xyo <_ 2vL,
where L > 0 and is a positive constant independent of n. Then in at most O(nL)
iterations, Algorithm 2 will produce (xk, Yk) such that xk Y <_ 2-L.

Proof. From Theorem 6.1,

T Xyo <_ (1- 5In)k2vLXk Yk

_
(1- 5In)k

Let (1- 5/n)k2L 2-L and take the natural logarithm of both sides. We have
k -(ln2)(1 + ,)L/ln(1- 5/n). Observe that for x e (0, 1),

xk

ln(1 x) E - < -x.
k--1

Therefore,

k <_ (ln2)(1 + )L/(5/n) O(nL).

This completes the proof. D

7. Quadratic convergence. In this section, we apply Theorem 2.1 to estab-
lish that under strict complementarity and nondegeneracy assumptions our algorithm
converges Q-quadratically. It can be shown that the nondegeneracy and strict com-
plementarity assumptions at optimality imply the uniqueness of both primal and dual
solutions. We have already established convergence of the duality gap sequence to zero
in the preceding section. With the uniqueness, it can be shown that the convergence
of the duality gap implies that of the iterates to the unique solution (x,, y,) >_ 0.
What we must verify is assumption (iii) of Theorem 2.1; namely,

ak O T(xkYk) and Tk=l--O(xyk).

Since Tk Olk/k, for the latter it suffices to show that

(39) and &k- Ck O(xyk).

The following lemma will be useful. It is a slightly modified version of Lemma 3.2
in [11]. We refer interested readers to the original paper for its proof.

LEMMA 7.1 (see [11]). Let (x,,y,) be a solution of problem (3) and let {(xk,yk)}
be generated by Algorithm 2 Let N C N C

Pk ,Pk, qk and qk be defined by (34). Assume that
(i) strict complementarity holds at (x,, y,);
(ii) x, is a nondegenerate vertex of (1).
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Then

and

+ o(), f
0

[Xt: Yt:el"+

[xY

+ o(),

( -1
( :v

[Xt:Yt:e]

q -1 T /n
o + o(), qZ + O(x[),

0

o
k o

t ofo i a, an- i q a qZ.
Now we are ready to state and prove our quadratic convergence theorem.
THEOREM 7.2 (quadratic convergence). Let (x,, y,) be a solution of problem (3)

and let {(xk, yk)} be generated by Algorithm 2. Assume that
(i) strict complementaty holds at (x,, y,);
(ii) x, is a nondegenerate vertex # (1);
(iii) p is suciently large, e.g., pU 16F.

Then { (xk, Yk } converges to (x,, y, Q-quadratically.
Proof. We first prove a O(xyk). Observe from Lemma 7.1 that for each

index i either the "p" terms ((p)i and (p)i) or the "q" terms ((q)i and (q)i) are
O(xyk) while the other terms are bounded. Thus the quantity wk (see its definition
(35)) is O(xyk); so is ak because ak pwk.

Since Wk O, from the choice of p in Step 2 of Procedure 2 we have for k
sufficiently large

(40) nd ( + ).
We observe that if p is sufficiently large, e.g., p 16F (i.e., ak is not forced to
approach zero too quickly), then the step length ak will eventually be equal to or
greater than one, as can be seen from (38).

xTSince ak O(Xyk) and yk/n)/min(XYe) is bounded, the elements of pk
and q are either O(xy) or 1 + O(xy). Therefore,

(41) min(X[lAxk, YAyk) min(pk, qk) 1 + O(xk yk)

By examining the definition of & in Step 3 of Algorithm 1, we see &k 1 + O(Xyk).
Consequently, for k sufficiently large we have

a < + o(xy).
This implies (39) and completes the proof.
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8. Superlinear convergence. In this section, we apply Theorem 2.2 to estab-
lish Q-superlinear convergence of Algorithm 2 for general problems. We must show
that assumption (iii) of Theorem 2.2 holds; i.e.,

ak ---+ 0 and Tk 1.

For the latter, it will suffice to show &k -o 1 and &k --ak --* O. Without the non-
degeneracy assumption, we can no longer use Lemma 7.1. For technical reasons, we
must further restrict the choice of Pk.

Denote the length of the interval [p, p] by rk. It follows from (37), Step 2 of
Procedure 2, and Lemma 4.1 that

(he) >

Thus

(43) def pl f2rr =p-- >>0.
2n

Let Fk be the following set of 2n points

Ek {--(pNk )i/(pCk)i,--(q)i/(qCk)i, i 1, 2,..., n}

and define the distance from a to the set Fk as

dist(a, Fk)= min(la- 1: e ]k}.

We choose ak according to Procedure 2 with the additional restriction that

(44) dist(ak, k) >_ rkWk/(8n + 4).

In other words, we require not only that

(45)

but also that ak be bounded away from the set Ek by at least kwk/(8n + 4). Since
{rk} is bounded away from zero, we see from (44) that {dist(ak, E)} is bounded
away from zero if {wk } is bounded away from zero.

We introduce condition (44) to avoid the situation where p (pV)i + ak(pCk)i
(say) converges to zero but (pV)i and (pkC) do not. Although we believe that it is
extremely unlikely for this situation to occur, we have not been able to rule it out.

LEMMA 8.1. The set of ak’s satisfying (44) and (45) is nonempty.
Proof. The length of the interval in (45) is rkwk/2. Partition this interval into

2n + 1 equal subintervals, each having length rwk/(4n/ 2). If the interior of any one
of the subintervals does not intersect Ek, then the midpoint of that subinterval will
satisfy (44) and (45). Since Ek has only 2n points, it cannot intersect the interiors of
all the 2n + 1 subintervals. This proves the lemma.

Now we are well equipped to prove our superlinear convergence theorem.
THEOREM 8.2 (superlinear convergence). Let (x,, y,) be a solution ofproblem (3)

and let { (xk, Yk) } be generated by Algorithm 2 with the restriction (44) on the centering
parameter ak. Assume that

(i) strict complementarity holds at (x,, y,);
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(ii) p is sufficiently large, e.g., p >_ 16F.
XTIf {(xk, yk)} converges to (x, y,), then the duality gap sequence { k Yk} converges to

zero Q-superlinearly.
Proof. We first prove ak 0. It suffices to show w --+ 0. Let x, > 0. Obviously,

1 lim lim (1 +(kp).
k--*oo X

This implies p --+ 0, because {ak} is bounded away from zero. On the other hand,
0, thenif x, y, > 0 by strict complementarity. The same argument, interchanging

the roles of p and q, gives q --+ 0. Therefore, for each index i, either

(46) p (p)i + ak(pCk -- 0 or q (qV)i + ak(qCk )i O.

We will prove wk 0 by contradiction. Suppose the opposite. Then there exists
a subsequence {Wko } C (Wk} that is bounded away from zero. This in turn implies,
from (44), that (dist(ako, Eko) } is bounded away from zero (recall that rk is bounded
away from zero).

We have shown that for each index i, either p 0 or q --+ 0. Without loss of
generality, assume p -- 0. We now show that ((pkCo)i} converges to zero. Otherwise,
there exists a subsequence {(pkC1)i} C {(pkCo)i} such that {l(pkC1)il} is bounded away
from zero. For this subsequence,

+ + 0.

This implies

However, this cannot be true because {dist(a}l, E}I) } c {dist(ako, Eko) } is bounded
away from zero. Hence (Po)i -+ 0.

Now in view of (46) we also have (pkNo) --+ O. Similarly, we can prove that if

q -- 0, then we have both (qcgo)J - 0 and (qkCo)j -+ O. Therefore, for each index

i, either (pcNo)i and (pkCo) i, or (qkNo)i and (qkCo) converge to zero. Since all these
sequences are uniformly bounded (see the proof of Lemma 4.1), this leads to w}o - 0
(see definition (35)), contradicting the hypothesis that {Wko} is bounded away from
zero. This proves that Wk O. Consequently, ak --+ 0.

Now we prove ak --+ 1. Note that (7) can be written as

xyk(XkYk)-le.p + qt: -e + at-
r (xy)-eSince gxy is bounded above by 1/’),, as a --+ O, we have

Pk + qk --+ --e.

We have shown that for each i, either p -- 0 or q -- 0. Therefore, all p and q
converge to either 0 or -1. This again implies that &k -- 1 (see (41)). In view of (38)
and (40), a will eventually be equal to or greater than one if p is sufficiently large,
e.g., pU >_ 16F. Hence

1 <_ak <_&a -+ 1.

This completes the proof.
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9. Concluding remarks. In this paper, we have shown that the two funda-
mental parameters in primal-dual interior-point algorithms for linear programming
can be chosen in such a way that both polynomiality and superlinear convergence are
achieved. If the solution is a nondegenerate vertex, then in addition to superlinear
convergence, we have quadratic convergence.

The current practices in some of the state-of-the-art implementations of primal-
dual interior-point algorithms have the following common fundamental features. First,
they allow iterates to be very close to the boundary of the positive orthant; second,
they phase out the centering steps at a fast pace. The theory established in Zhang,
Tapia, and Dennis [11] has already provided theoretical justification for such a prac-
tice from the viewpoint of fast convergence. This paper provides further theoretical
justification for such a practice from the viewpoint of polynomiality. In summary,
we can indeed, under reasonable conditions, accomplish both objectives: good global
behavior and good local behavior.

We recently learned of a new result by Gfiler and Ye [4]. When applied to linear
programming, it says that condition (11) will guarantee strict complementarity for
any limit point of the iteration sequence generated by an interior-point algorithm.
This result nicely complements the Zhang-Tapia-Dennis theory (i.e., Theorems 2.1
and 2.2) and, therefore, the strict complementarity assumptions in Theorems 7.2 and
8.2 are no longer necessary.

Acknowledgments. We gratefully acknowledge Florian Potra and Michael Todd
for their useful comments on an earlier version of this paper. We also thank Yinyu
Ye and two anonymous referees for their constructive suggestions.
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NUMERICAL CONTINUATION AND SINGULARITY
DETECTION METHODS FOR

PARAMETRIC NONLINEAR PROGRAMMING*

BRUCE N. LUNDBERG AND AUBREY B. POORE

Abstract. Numerical methods are developed for continuation, solution-type determination,
and singularity detection in the parametric nonlinear programming problem. This problem is first
converted to a closed, "active set" system of equations F(z, a) 0, which includes a nonstandard
normalization of the multipliers. A framework is then developed for combining various numerical
continuation methods with a large number of null and range space methods from constrained opti-
mization. By exploiting the special structure in the parametric optimization problem, solution-type
classification and singularity detection are shown to require minimal additional expense beyond that
involved in the continuation procedure itself. Due to the special structure of these problems, singu-
larity detection methods are more comprehensive than those for general nonlinear equations. In this
development, the Schur complement and related results play an important and unifying role. As an
illustration, these methods are used to produce a "global" parametric analysis for a model problem
from design optimization. This example exhibits an extensive number of solution paths, each of the
basic types of singularities, multiple optima, regions of sensitivity, and jump phenomena.

Key words, active set system, numerical continuation, bifurcation, singularities, parametric
optimization, Schur complement, null and range space methods

AMS(MOS) subject classifications. 65H10, 65K05, 90C31

1. Introduction. The parametric nonlinear programming problem is that of
determining the behavior of solution(s) as a parameter or vector of parameters a E lRr

varies over a region of interest for the problem

(1.1) Minimize {f(x, a) CE(X, a) O, ci(x, a) <_ 0},

where f ]Rn+r -, JR, CE ]pn+r ]pq, and ci ]Rn+r -, ]Rp are assumed to be
at least twice continuously differentiable. Some of these parameters may be fixed but
not precisely known and others may be varied or treated as control parameters. At a
regular point for this system, we may use the implicit function theorem to rigorously
justify the computation of the derivatives of the primal and dual variables with respect
to the parameter c. These derivatives provide the basis for local sensitivity analysis
as presented in the work of Fiacco [5], [6] and references therein. Many authors [2],
[12]-[17], [27], [33] have used bifurcation and singularity theory to investigate the local
behavior and persistence of minima at the singular points of (1.1), which are char-
acterized by a loss of strict complementarity, a violation of the linear independence
constraint qualification, or the singularity of the Hessian of the Lagrangian on the tan-
gent space to the active constraints. The importance of these singularities is that they
define the stability boundaries where a minimizer may be lost and where catastrophic
failure, extreme sensitivity, and jumps to undesirable operating states can occur.
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Similar theoretical investigations have occurred within the fields of general nonlin-
ear equations, dynamical systems, and for certain types of partial differential equations
[10], [11], [23]. Numerical continuation and bifurcation techniques have been exten-
sively and systematically developed for these latter fields and have played an integral
part in investigating various phenomena [3], [4], [19]-[24], [31], [32]. Indeed, these
methods should be equally helpful in the large areas of parametric nonlinear program-
ming, abstract optimization, and control; however, only recently have these methods
begun to appear in parametric nonlinear programming and in various applications [12],
[25], [28]-[30]. Thus the overall objective in this work is to combine the analysis of the
singular points in parametric nonlinear programming [14]-[17], [27], [33], numerical
linear algebra methods from constrained optimization, and predictor-corrector contin-
uation techniques to produce a collection of numerical methods specifically tailored to
the parametric nonlinear programming problem. It is the utilization and modifications
of the numerical methods from constrained optimization and the emphasis on numer-
ical critical point classification and numerical singularity detection that differentiate
this work from that of other authors [12], [28]-[30]. Numerical methods for branch
switching, fold following, and singularity unfoldings will be treated in future work.

Since numerical continuation procedures are designed to follow solution paths of
parameterized systems of nonlinear equations, the parametric nonlinear programming
problem is first converted to a closed system of equations F(z, o) O, which con-
tains the complementarity slackness conditions and a nonstandard normalization of
the multipliers [27]. For numerical purposes these equations are then converted to the
"active set" system used by Lundberg and Poore in an earlier work [25]. These fea-
tures, along with a brief discussion of the singular points, are presented in 2. For the
single parameter problem (r 1 in (1.1)), 3 describes a general class of predictor-
corrector continuation schemes tailored specifically to the active set system for the
parametric nonlinear programming problem. The solution of the linear systems aris-
ing in the continuation procedures is based on the bordering algorithm introduced
by Keller [19]-[21]. This bordering algorithm, along with the modifications by Keller
[20] and Chan [3], [4], allows us to exploit the large number of null and range space
methods developed for constrained optimization, even when the systems are ill con-
ditioned. To efficiently present numerical methods for determining critical point-type
and singularity detection in 5 and 6, respectively, we briefly review these null and
range space methods in 4 along with the necessary modifications required on nonop-
timal solution paths. In this development, the Schur complement and related ideas
from linear algebra will play an important and unifying role.

The numerical determination of the solution type as an inexpensive by-product
of the modified null or range space methods used in the continuation procedure is
developed in 5. The special structure of the parametric programming problem is used
in 6 to derive singularity detection tests that are more comprehensive and efficient
than those for general nonlinear equations. In fact, the detection of singularities
due to the loss of strict complementarity or the violation of the linear independence
constraint qualification is shown to be immediately available from the computation of
the solution points. The detection of a singularity of the Hessian of the Lagrangian
on the tangent space to the active constraints is based on the inertia of the reduced
Hessian, and we show how this may be computed at little additional expense when
using either range or null space methods.

In 7, we illustrate these methods with a simple model problem arising from design
optimization [30]. For this parametric nonlinear programming problem we produce a
"global" analysis of sensitivity, stability, and multiplicity of minima which exhibits an
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extensive number of solution paths, each of the basic types of singularities, and jump
phenomena arising from a loss of the linear independence constraint qualification.

2. Singularities and formulation of the active set system. The first objec-
tive is to convert the parametric nonlinear programming problem to a closed system of
nonlinear equations whose solutions contain all local minima as well as saddle points,
local maxima, and feasible and infeasible solutions. Following a characterization of the
singular points in this system, an equivalent active set system [25] for the numerical
continuation process will be presented.

The following notation will be needed. For a function f ]Rn+r --. lR1, the gradi-
ent of f(x, c) with respect to x e ]Rn will be a column vector denoted by Vxf(x, c).
The differential operator

0 0 0)D Oxl Ox Ox

denotes a row operator whose transpose is DT Vs. Thus Df(x, c) is a row
vector, DTf(x, ) =_ [Dxf(x,c)]T Vf(x, c) is a column vector, and V2f(x,)
D(Vf(x, )) D[DTf(x, c)] denotes the Hessian of f. Also, if F: ]Rn+r - ]Rm,
then DF(x, c) is an m-by-n matrix whose element in the ith row and jth column is
OFi(x, c)/Oxj.

Given the parametric nonlinear programming problem

(2.1) Minimize {f(x, ) ci(x, a) 0 for e E ci(x, ) <_ 0 for i e I}

where E {1,... ,p} and I {p + 1,... ,p + q} represent the index sets for the
equality and inequality constraints, respectively, the Fritz John first-order necessary
conditions are that there exist p + q + 1 real numbers in the scalar and the vector
A (A1,...,)p, Ap+l,..., Ap+q), not all zero, such that

(2.2) Vxt:(x, A, , a) 0,
0,

(2.4) ci(x, a) <_ 0 for i e I,
(2.5) A>_0 foriEI, _>0,

v’P+q Ac(x, a) is the Lagrangian and A is awhere /:(x, A, ,, a) ,f(x, a) + A-i--1
diagonal matrix with A 1 for i E E and A Ai for i I. Observe that
equations (2.2) and (2.3) represent n + p + q equations in the n + p + q + 1 unknowns,
x IRn, A IRp+q, and IR. The usual normalization is to choose 0 > 0;
however, this can lead to infinite multipliers when the linear independence constraint
qualification is violated. To resolve this difficulty, the normalization 2+T)_ 0,
where 0 is a fixed positive real number, is included with the equations (2.2) and (2.3)
to obtain the closed system

V(x,
,., a) ]F(x, A, , a) hc(x, a) 0.

+ T), Z0
In the sequel, the variable z will be used to denote the n +p+ q + 1 variables (x, A, ),
i.e., z (x, A, ).
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The next theorem gives necessary and sufficient conditions for DzF(zo, c0) to be
singular at a solution of F(z, c) O. This requires the concept of an eigenvalue on a
tangent space to the active constraints: Let L lRm --. lR" be a linear operator and
let V denote a k-dimensional subspace of lR". The restriction of L to V is denoted
by Lv and defined on V as PL where P is an orthogonal projection of ]Rm onto V.
A scalar is an eigenvalue of Lv provided there exists a nonzero vector y E V such
that Lvy Ay. Thus we say that L is singular on the subspace V provided zero is an
eigenvalue of Lv. If L also denotes the matrix representation of the operator L and
the columns of a matrix Z ]Rmk form an orthonormal basis for V, then P ZZT
is such a projection and the eigenvalues of Lv are those of the matrix ZTLZ, which
are invariant under changes in Z as long as the columns form an orthonormal basis
for V.

THEOREM 2.1 (see [27]). Let (zo, co) (xo,/0,120, c0) be a solution of F(z, c)
O, i.e., a solution of equation (2.6), which combines (2.2), (2.3), and the normalization
122

__
T_ O. Assume that f and c are twice continuously differentiable in

a neighborhood of (x0, c0) and define two index sets .4 and fit and a corresponding
tangent space T by

.A E to {i I" ci(xo, a0) 0}, A E tO {i jt f3 I" /0 # 0},
T {y e ]Rn’Dxci(xo, oo)y- 0 for all i e A}.

Then a necessary and su]ficient condition that DzF(zo, co) be nonsingular is that each
of the following three conditions hold:

(ii) S := {Vxci(xo, ao)}ieA is a linearly independentcollection of ].41 vectors
where Ijtl denotes the cardinality of 4;

(iii) The Hessian V2x(zo, ao) of the Lagrangian is nonsingular on the tangent
space T.

If DzF(zo, no) is nonsingular, there exist neighborhoods 131 of a ao and 132 of
zo (xo,/ko, 120) and a function e el(B1) such that F((a),a) 0 for all a e B1
and (a0) zo. This solution is unique in the sense that if z B2 and F(z, a) O,
then (z,a) belongs to the manifold defined by , i.e., z (a). Furthermore, if f
and c are Ck(k k 2) (C or real analytic) then 4) is Ck-1 (C or real analytic,
respectively, on 131).

The importance of conditions (i)-(iii) in Theorem 2.1 is that they provide a set
of necessary and sufficient conditions for a singularity in the system F 0, and thus
an initial classification into which all singularities and bifurcation problems fit. The
term critical point will refer to any solution of system (2.6), regular point will describe
any solution of (2.6) for which conditions (i)-(iii) of Theorem 2.1 are valid, and the
term singular point is reserved for any solution of (2.6) at which DzF is singular, i.e.,
one or more of (i)-(iii) is violated. Since these singularities have been investigated
theoretically by many authors [14]-[17], [27], [33], we will focus only on the numerical
aspects.

Since a multiplier corresponding to an inactive constraint is zero, the system (2.6)
can be reduced in complexity by using an active set strategy. The inactive constraints,
i.e., those ci for which I- j[ are thus removed, yielding the active set system

(2.8) F(z,a)- e(x,a) -0 where z- elRm,



138 BRUCE N. LUNDBERG AND AUBREY B. POORE

m n + ]A[ + 1, A (A1,... ,Ap, AiAnx), and (cx,... ,cp, c,z), (z,a)
f(x, a) + -iA Aici(x, a), and B(A, ) 2 + ATA . Continuation for the active
set system (2.8), along with detecting zeros in one or more of the active, inequality
multipliers Ai, i E J( N I, or in an inactive constraint ci for i E I- 4 and changing the
active set appropriately, is then equivalent to continuation for the full system (2.6).

3. Numerical continuation methods. The subject of general numerical con-
tinuation methods has a formidable literature, and excellent introductions can be
found in Allgower and Georg [1], Keller [21], and Rheinboldt [32]. Thus we forego a
survey of this area and concentrate on building a framework for combining numerical
linear algebra methods in optimization with predictor-corrector continuation meth-
ods. (This combination should also augment the work of several authors [12], [28]-
[30], who also use predictor-corrector methods for parametric optimization.) Schur
complements and related results [26] will be used to rederive the bordering algorithm
of Keller [19]-[21] in a form more suitable for singularity detection and continuation
in the parametric nonlinear programming problem.

3.1. Bordered matrices for predictor-corrector continuation. The nota-
tion w (z, a) is convenient for a discussion of predictor-corrector continuation and
will be used in this section. Assume that F(w) is continuously differentiable and
/)(w) 0 has a smooth solution path P {w
where I is an interval of real numbers. Most path-following algorithms generate a
sequence {(wk NSk)}k=0 where w is a point on or near the path and w0 is a known
solution of F(w) 0. To go from a point Wk to a point Wk+, we first obtain
predicted point of the form wpk+ w + Asd(As) where the predictor direction d
is typically the current oriented unit tangent Tk or a combination of this and pre-
viously computed tangents [24]. In either case d(As) is continuous at As 0 and
limAs-0 d(As) Tk. The predicted point is then used as the initial approximation
for a Newton-like correction iteration back to the path, terminating with a solution

wk+. At each point Wk on the path, the tangent Tk is a solution to

(3.1) [DF(wk)]Tk O.

The correction back to the path can be achieved in many ways [1], [21], [32], but the
work described here is based on solving the augmented system

(3.2) G(w) N(w) 0 where N(w) (w wpk+l)Td(As),

which confines the correction to a hyperplane orthogonal to the prediction direction
d(As) [21], [24]. If {w+1}i>0 denotes the Newton-like corrector iterates for (3.2) with
0 i+1 is computed by solving awk+-, wpk+, then a correction step Aw .Wk+ --W+

linear system of the form

(3.3) JAw -G(w+),
where J DwG(Wk+) is the Jacobian of G or some approximation to it.

The primary linear algebra requirements in a predictor-corrector step are thus the
computation of the tangent vector Tk in (3.1) and corrections Aw in (3.3). Central to
this linear algebra is the Lagrangian matrix W defined by

(3.4) W= AT 0
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where H V2(z,a) or some approximation to it, AT Dx(x, a), and (x,a)
denotes the equality and active inequality constraints, as in (2.8). The reason for this
is that the (m + 1) (m + 1) Jacobian matrix J DwG can be partitioned by

(3.5a) J
dzT d,

where M DzF(z, ) 0
0 2)T 2u

and by

I W "](3.5b) J- CT D

where

0 D5(x,a) dT d and D=
dv d,

The matrices M, B, CT, and D have dimensions m m, (m- 1) 2, 2 (m- 1), and
2 2, respectively, and dzT (dT, d’, dr) where d, d, d, and d denote the x, A, ,
and a components of the prediction direction d, respectively. Note that the function
F corresponds to the active set system (2.8) and that it is this Lagrangian matrix W
that plays a central role in nonlinear constrained optimization [7], [8], [18].

3.2. The Schur complement and the bordering algorithm. The partition-
ing of the Jacobian J given in (3.5b) suggests a block elimination algorithm for solving
the systems (3.3) and (3.1) that exploits the underlying structure of the Lagrangian
matrix W. Schur complements will be used in this subsection to rederive the border-
ing algorithm of Keller [19]-[21] in a form more suitable for singularity detection and
continuation in nonlinear parametric programming. The following two theorems will
be used repeatedly in this and the next three sections and can be found in the survey
on Schur complements by Ouellette [26].

THEOREM 3.1 (see [26]). If L is a nonsingular matrix and S D- CTL-1B is
the Schur complement of L in

O--CT D’

then

(3.6a) det(O) det(L), det(S),

where det(.) denotes the determinant. If is also real symmetric, then

(3.6b) in(O) in(L)+ in(S),

where in(.) denotes the inertia (the number of positive, negative, and zero eigenvalues).
THEOREM 3.2 (see [26]). Suppose L and in the previous theorem are nonsin-

gular. Then the Schur complement S of L in is nonsingular and

0 0 + S-I[CTL-I’-I]

(3.7b) [L-1 + L-1BS-1CTL-1 -L-1BS-I. -S-ICTL-I
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With this background, a version of the bordering algorithm [20] for solving (3.3)
can be briefly described as follows. Consider partitioning (3.5b) and let , , E lRm-1

be solutions of
(.8)

0

Define g, y, v, and u E ]R"+i by

(3.9) g= y= v= 1 and u= 0: 0 0 1

where the bottom two entries in these vectors are scalars and (2) ]Rm-1. Then the
Schur complement Sw of W in J is given by

gTv gTu ](3.10) SW= dTv dTu

so that the correction step in (3.3) is given by

(3.11a) Aw y + sv + tu,

where s and t solve the two-dimensional system

(3.11b) t N+dTyj

(This formula is the result of applying (3.7a) to equation (3.3) for the partitioning
(3.5b).)

If the vectors in (3.9) are computed at Wk+, then the tangent Tk+ is given by

(3.12) +/- [(gTv)u (gTu)v] /II(gTv)u (gTu)vlI2.

The sign in this formula determines the orientation of the continuation and is typically
chosen so that T[Tk+ > 0 [21]. (This representation of the solution of (3.1) can
be derived by forming J-l[] using (3.5b) and (3.7b) to obtain a scalar multiple of
[(gTv)u- (Tu)v] and then normalizing to obtain Tk+i.)

The above formulas are theoretically valid if W, Sw, and J are nonsingular. Facts
regarding the nonsingularity of these matrices, together with the matrix M DzF,
are given in the following theorem and subsequent discussion.

THEOREM 3.3. Let wk+l (xk+l, )k+l, uk+l, O/k+1) be a solution of the active set
system (2.8), assume the objective function f(x, a) and constraints 5(x, a) are twice
continuously differentiable in a neighborhood of (Xk+l,ak+l), and let W, J, M, Sw,
and Tk+ be defined as in (3.4), (3.5), (3.10), and (3.12) with all derivatives being
evaluated at Wk+l. Then the following are equivalent:

Vx(Wk+l) is nonsingular(i) A Dx6(x+l,a+l)T has full rank and H 2

on Af(AT).
(ii) W is nonsingular.
(iii) M is nonsingular.
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Furthermore, if W is nonsingular and dk is the prediction direction at wk, then
the following are equivalent:

(iv) J is nonsingular.
(v) Sw is nonsingular.
(vi) dkTk+l isnonzero.

Proof. The equivalence of parts (i) and (ii) is shown in [18] and is a corollary of
Theorem 5.1 in 5. The equivalence of (i) and (iii) follows as a special case of Theorem
2.1. Thus (ii) and (iii) are equivalent. If W is nonsingular, Theorem 3.1 implies the
equivalence of (iv) and (v). Finally, d[Tk+ =i=d[ [(Tv)u- (gTu)v]/II(gTv)u-
(Tu)vlI2 Q- [(Tv)d[u (Tu)dv] /II(Tv)u (Tu)vlI2 -4-det(Sw)ll(Tv)u
(gTu)vII, which implies the equivalence of (v) and (vi). [:1

Geometrically, condition (vi) states that the previous predictor direction is not or-
thogonal to the path w(s) at wk+. If wk is a regular point of the smooth solution path
P and if dk Tk or dk dk(As) with limAs-0 dk(As) Tk, then dkTk+lT > 0 holds
at wk+ for a sufficiently small stepsize As [24]. The corrector procedure developed
by the authors [24] terminates when dTk+ becomes small, and the corrector is reini-
tiated with a smaller predictor step As. Hereafter, we will assume that dkTk+ > 0
holds at every continuation point wk+, so that the bordering formulas above are all
theoretically valid as long as the Lagrangian W is nonsingular. Numerically, these
formulas perform well as long as W is well conditioned.

3.3. Ill-conditioned Lagrangian matrices. An ill-conditioned Lagrangian ma-
trix W can occur at or near a singularity or may occur all along a path of singularities
arising, e.g., from fold following [20], [21]. In these cases the procedures described in
the work of Keller [20], or in the generalized deflated block elimination algorithm of
Chan [3], [4] can be used to solve (3.1) and (3.3). Both procedures allow us to exploit
the structure of the Lagrangian matrix W, even when W is ill conditioned.

4. Linear algebra for the Lagrangian matrix. The linear systems that arise
in the continuation steps are of the form JAw -G and must be solved for several
different values of G. The bordering algorithm (3.8)-(3.12) applied to the active set
system (2.8) reduces the linear algebra requirements in the continuation procedure to
the solution of systems of the form

(4.1) W AA where W- AT 0

This section contains a brief review of the direct methods for solving systems of this
form, since this allows an efficient presentation of the determination of critical point-
type and singularity detection in the next two sections. Three classes of methods
for solving these linear systems in constrained optimization [7], [8] are the symmetric
factorization, null space or generalized elimination methods, and range space methods.
It is important to stress that the formulas to be presented involve the inverses of certain
matrices and that these formulas are not used directly in computation. Instead, when
an inverse is required, a factorization is computed and the computations are rearranged
to simplify the operations. We do not discuss the various iterative methods.

Since the Lagrangian matrix W is generally symmetric indefinite, a symmetric
factorization algorithm such as either the Bunch-Parlett or Bunch-Kaufman algorithm
[9] can be used to produce the factorization PWPT LDLT where P is a permutation
matrix, L is unit lower triangular, and D is block diagonal with 1 x 1 and symmetric
2 2 blocks.
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For range space methods, both W and H are assumed to be nonsingular. Then
the Schur complement of H in W is

(4.2) S -ATH-1A,

which is also nonsingular by Theorem 3.2. Using (3.7b), the inverse of W can be
expressed in the form

TT U

where

(4.3b) K H- + H-1AS-ATH-,
(4.3c) T -H-AS-,
(4.3d) V- S-1.

Range space methods, which are recommended for problems with few constraints [7],
[8], make use of this representation of W- to solve (4.1). As an example, suppose the
Bunch-Kaufman algorithm [9] is used to factor an indefinite H by PHPT LDLT,
so that H-1 pTL-TD-1L-1p and ATH-1A (L-1pA)TD-I(L-1pA). Next let

L-PA QR [Q Q2] [R QIR

be the QR factorization of L-PA. Then

S -(ATH-1A)-1 -R (QT1D-1Q1)-IR-T

and we must factor the expression QTD-Q1 to complete the computation; however,
this has small dimension when the number of active constraints (row size of AT is
small. Finally, range space methods can also be viewed as a form of Keller’s bordering
algorithm applied to the system (4.1), which suggests that Chan’s deflation algorithm
[4] can be applied in case H is ill conditioned.

Null space methods, which are recommended for problems with many constraints
[7], [8], may be described by constructing matrices Y E ]Rna and Z e ]R’(n-a) with
the properties that [Y Z] is nonsingular, ATy I, and ATZ 0. A general scheme
for such a construction is to choose an (n) x (n- a) matrix V such that [A: V] is

nonsingular. Then

[A’V]-= ZT

By using these to solve (4.1), we obtain an alternate representation of K, T, and U
in (4.3a)[7]:

(4.4a)
(4.4b)
(4.4c)

K Z(ZTHZ)-IZT,
T Y- Z(ZTHZ)-IZTHy,
U yTHZ(ZTHZ)-IZTHy yTHy.

The matrix ZTHZ must be factored once Y and Z are chosen. In numerical con-
strained optimization, we generally assume that ZTHZ is positive definite as part of
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a second-order sufficient condition at a local minimizer; however, local minima, saddle
points, and maxima are encountered as the solution paths of F(x, ) 0 are traced
during the course of the continuation procedure. Thus ZTHZ may now be positive
definite, indefinite, or negative definite on some portions of the path. Thus we must
again resort to factorizations for symmetric indefinite matrices such as that of Bunch
and Kaufman [9]. As an example, the popular null space method based on a QR
factorization

A- [QI Q2] [ R1]O
gives Z- Q2 and Y- Q1RT.

5. Critical point type. The objective in this section is to explain how critical
point type can be efficiently determined as an inexpensive by-product for the linear
algebra methods presented in the previous section. Recall that a regular point for the
nonlinear programming problem is a solution of the first-order necessary conditions
(2.2) and (2.3) at which strict complementarity holds, the linear independence con-
straint qualification is valid, and the Hessian of the Lagrangian on the tangent space
to the active constraints is nonsingular. Such regular points can be classified using:

(5.1a)
(5.1b)
(5.1c)

sign v,
signs of ci(x, a) for i E I ,4 and Ai for i E I A,
signs of the eigenvalues of V2ET,

Vx-,T, the restrictionwhere ,4 denotes the active set, I, the inequality constraints, and 2

of the Hessian of the Lagrangian to the tangent space of the active constraints Jf(AT).
Since these signs can change only at a singularity in system (2.6), they are used for
both solution-type classification and singular point detection. The first two sets of
signs in (5.1a) and (5.1b) are determined from the solution by inspection; only part
(5.1c) requires any additional computation. The following adaptation of a result of
Jongen, Mbbert, Riickmann, and Tammer [18] yields an efficient means of computing
the inertia of V2T for any of the linear algebra methods discussed in the previous
section.

THEOREM 5.1 (see [18]). Let a --1.41 denote the number of active constraints
in (2.8) and let W be a symmetric matrix of the form (3.4), where H e ]Rnn and
A ]Rna. The restriction of the map H to the null space T .hf(AT) is denoted by
HT. IrA has rank k,

in(W) in(HT) + (k, k, a- k),

so that when A has full rank,

(5.3) in(HT) in(W) (a, a, 0).

For a symmetric factorization of W, in(HT) can be obtained directly from in(W)
via (5.3) and this factorization. For example, if we have a factorization PWPT
LDLT, then in(W) in(D) by Sylvester’s law of inertia, and the inertia of D is
simply the sum of the inertias of the 1 1 and 2 2 diagonal blocks of D.

The computation of in(HT) for a range space method can be based on the formula
in(HT) in(H) / in(S) (a, a, 0), which is obtained from equations (3.6b) and (5.3).
The inertias of the symmetric matrices H and S -ATH-1A are easily obtained
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from their factorizations when using a range space method for (4.1). Continuing
with the example following equation (4.3d), in(H) in(D) when using the Bunch-
Kaufman factorization. Since QTD-1Q1 is to be factored as part of the range space
method, in(S) in(-QTD-IQ1) is inexpensively computed as a by-product of this
factorization.

In the null space method the in(HT) is even more easily computed since in(HT)
in(ZTHZ) and ZTHZ must be factored as part of this method. If, for example, a sym-
metric factorization ZTHZ pTLDLTp is employed, then in(HT) in(ZTHZ)
in(D) where in(D) is, again, the sum of the inertias of the 1 1 and symmetric 2 2
diagonal blocks of D.

6. Singularity detection. A singular point of the system F(w) 0 is a solution
w (z, a) at which DzF(z, a) is singular. Let P {w(s) (z(s), a(s)) Sa <
s < Sb, W e C(Sa, Sb)} be a smooth solution path of the system F(w) 0. Most
continuation codes are designed to step over singular points, detect their presence,
and then either continue along the path, switch branches, or reverse the orientation as
required. A popular singularity detection scheme [1], [21], [32] is based on detecting
changes in

(6.1a) sign det(DzF(w)),
(6. lb) sign det(DwG(w))

along the path P where G(w) [F()LN()] 0 is the corrector system (3.2) and N(w) is

a normalization equation. Many such normalizations from the literature [1], [21], [24],
[32] can be put in the form N(w) (w- wpk+l)Td(s) and the direction d(s) can be
the prediction direction, e.g., Euler, secant, or higher-order predictor [21], [24], or a
standard unit basis vector ei near the tangent direction for the parameter switching
techniques [32].

We next define the terms simple fold, simple quadratic fold, bifurcation, and
simple bifurcation, which will be needed in the next theorem. Let F :JRm+ ]pm

be a smooth mapping and F(z0, a0) 0. As defined in 2, (z0, a0) is a regular
point if DzF(zo, 0) is nonsingular. If the rank of [DzF(zo, o) DF(zo, a0)] is m,
but DzF(zo, a0) is singular, then (z0, a0) is called a simple fold (limit or turning)
point. Note that this occurs if and only if the dimension of the null space (kernel) of
DzF(Zo, a0) is one and DF(zo, a0) is not in the range of DzF(zo, o). Since we may
interchange the parameter a and one of the coordinates, say zJ, in z and apply the
implicit function treating zJ as a parameter, the solution set can be parameterized
by (z,a) (z(e),a(e)) where e z -z. Let and * span the null spaces of
DzF(zo, a0) and DzF(zo, co)T, respectively. Then [21]

da(O) d2a(0)a(O) O, O, and
de de2

(D2zF(zo, a0),
(DF(zo, ao), *)

If

the simple fold is called a simple quadratic fold since a is quadratic in e. (Note that
(DF(zo, ao),*l 0 since DF(zo, ao) Ti(DzF(zo, ao)).)

For an explanation of the term bifurcation, let w w(e) be a smooth curve,
defined on an open interval I containing the origin, and parameterized by a parameter
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e such that F(w(e)) 0 for all e e I. The point w(0) is called a bifurcation point of
the equation F(w) 0 if there exists an eo > 0 such that every neighborhood of w(0)
contains solutions w of F(w) 0 which are not on the path {w(e) -0 < e < co}.
To explain the term simple bifurcation point, suppose dimAf(DzF(zo, co)) 1 and
OaF e T(DzF(zo, co)), and define 7:) b2 ac where a (D2F + 2DDFv +
D2zFvv, *), b (D2FCv + DDF,*}, c (D2zF, *), the derivatives of F
are evaluated at (z0, a0), v is the unique solution of (v, ) 0 and DzF(zo, ao)v
-DF(z0, a0), and w _= (z, a). If T) > 0, then w0 (z0, a0) is called a simple
bifurcation point, for then there are two smooth solution paths through (z0, co) with
linearly independent tangents [1], [21]. When c 0, the simple bifurcation point gives
rise to what is commonly called a pitchfork bifurcation in that one of the two solution
branches has a vertical tangent with respect to the parameter a.

We can now proceed to the following theorem, which gives the standard results
for bifurcation tests based on sign changes in the determinants in (6.1), extended for
the aforementioned choices of the predictor directions d d(s).

THEOREM 6.1. Assume that P {w(s) Sa < s < Sb} is a C parameterization
of a path of solutions of a system F(w) O, where F ]Rm+l -- ]Rm is at least C2

Suppose that this path is regular, except for the point w(so) for some so E (Sa, Sb), at
which DzF(w(s)) is singular. With regard to det(DF(w(s))), we have the following:

(i) Suppose the path P can be smoothly parameterized by the natural parameter
a. If det(DzF(w(s))) changes sign at so, then w(so) is a bifurcation point.

(ii) If w(so) is a simple bifurcation point and the zero eigenvalue of DzF(w(so))
has algebraic multiplicity one, then at least one of the two smooth paths through
w(so) can be smoothly parameterized by the natural parameter . Along such a path
det(DzF(W(S))) changes sign at so, but da/ds remains of the same sign on (Sa, Sb).
For pitchfork bifurcation, da/ds changes sign but det(DF(w(s))) does not at so along
exactly one of the two paths.

(iii) Ifw(so) is a simple quadratic fold point and the zero eigenvalue ofDF(w(so))
has algebraic multiplicity one, then det(DF(w(s))) and da/ds change sign at so.
With regard to the determinant of DwG(w(s)) we have:

(iv) If w(so) is a simple fold point, i.e., OaF TC(DF) and ifdim Af(DF) 1
at w(so) and d(s)Tdw(s) > O, then det(DwG(w(s))) does not change sign on (Sa Sb)ds

(v) Let the point w(so) be a simple bifurcation point as described above. If
d(s)Tdw(s)d8 > 0 holds on (Sa, Sb), then det(DG(w(s))) changes sign at so along both
of the smooth paths through w(so).

Proof. The statements in (i), (ii), and (iii) are found in the work of Keller [21],
and statement (vi) follows directly from Lemma 4.9 of [21]. For (v) note that

dw(S) [ -DzF(w(s))-i 1DaF(w(s))] for so e Sa, 8b {80}.

Consider the partitioning (3.5a) and observe that the Schur complement of DF in

DG equals the scalar d(8)Tdw(s) d(8)Tdw(s) ds for so (Be 8b) {80} Since thed( ds da

sign of d(8)Tdw(s) does not change on (Sa, 8b)--{80}, the sign of the Schur complementds

changes at so if and only if the sign of d8 changes there. Now use (3.6a) to obtain

det(Dwa) d(s)Td() det(DF). Thus det(Da(w(s))) changes sign at so sincedc

exactly one of det(DzF(w(s))) and ds changes sign at so D-5
Finally, note that changes in the signs of the determinants in (6.1) do not occur

when an even number of rel eigenvalues of DF or DG cross zero. Additional
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techniques can be found in the works of Keller [21], Kupper, Mittelmann, and Weber
[22], and references therein.

For the parametric nonlinear programming problem, singularity detection is based
on the full system (2.6); however, we may equivalently consider the active set system
(2.8) and monitor the sizes and signs in the inactive constraints c (i E I- ,4) and the
active inequality multipliers (i E Jt I) to detect a zero and thus a loss of strict
complementarity. The detection test for this singularity are further discussed in 6.1.
In 6.2 we show that detecting a zero in the parameter v yields a test for the loss of
the linear independence constraint qualification that is far more comprehensive than
determining a change in the sign of the determinant in (6.1a). Thus the normalization
v2

__
)T) 0 plays a fundamental role in this singularity detection scheme.

Detection tests for the singularity of the Hessian of the Lagrangian on the tangent
space to the active constraints are presented in 6.3 and are based on detecting changes
in the inertia of the reduced Hessian as presented in 5. Thus these tests are able to
detect an odd number of eigenvalues of the Lagrangian matrix W crossing zero and
an even number crossing in the same direction.

6.1. Loss of strict complementarity and the active set system. A rather
comprehensive investigation of the singularity associated with the loss of strict com-
plementarity in the system (2.6) has been previously reported by Tiahrt and Poore
[33], and the theoretical results will not be repeated here. Detection of the occurrence
of this singularity is not based on the signs of the determinants in (6.1), but rather
on detecting a zero in any of the inactive constraints or active inequality multipliers.
If an inactive constraint c (i I- .4) or if a multiplier corresponding to an active
inequality constraint (i Jt N I) changes sign or becomes zero, then there is a loss of
strict complementarity. We change branches at the zero by either activating or de-
activating the corresponding constraint, respectively, thereby changing the active set.
Note that a change in the sign of an inactive constraint ci indicates that the solution
path has crossed the boundary of the feasible region for that constraint; a change in
the sign in one or more of the multipliers Ai (i 4 N I) indicates that the critical
point type has changed.

6.2. Loss of the linear independence constraint qualification. A bifurca-
tion analysis of singularities due to the violation of the linear independence constraint
qualification can be found in the work of Tiahrt and Poore [33] as well as in that of
Jongen, Jonker, and Twilt [14]-[16], and thus we forego a presentation of the theoreti-
cal bifurcation analysis. In this subsection, strict complementarity and nonsingularity
of the Hessian of the Lagrangian on the tangent space will be assumed, so that we only
need to consider the active set system (2.8). The theorems in this subsection establish
a test that is far more comprehensive than monitoring changes in the signs of the
determinants in (6.1) and is very simple: a change in the sign or the occurrence of a
zero of indicates a singularity due to violation of the linear independence constraint
qualification. The next theorem provides a basis for this test. The remainder of this
subsection establishes the relation between this test and any test based on detecting
changes in the signs of dee(M) and dee(J) defined in equation (3.5). The final results
in Theorem 6.6 are fairly strong in that changes in the sign of dee(M) and dee(J) can
be detected from sign changes in and det(Sw) where Sw is the 2 2 Schur comple-
ment of W in J defined in equation (3.10), thereby removing the need to compute the
former determinants. This is particularly beneficial if indirect or iterative methods
are used to solve the linear systems.

THEOREM 6.2. Assume f and c 2 at (x, ) and let w (x, , , c) be a solu-
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tion of the active set system (2.8). If/2 O, then AT Dxh(x, ) is rank deficient, the
linear independence constraint qualification (condition (ii) of Theorem 2.1) is violated,
and W is singular at w. On the other hand, ifW is nonsingular at w, then/2 0 and

(6.2) tTv---- 2/3//2,

where and v are defined in (3.9).
Proof. If/2 0 in (2.8), Vx(x,A,/2, c0 0 and the normalization equation

/22 + 111122 imply AA 0 and - 0. Thus the columns of A are dependent. The
remainder of the first statement follows from Theorem 3.3. On the other hand, when W
is nonsingular, A has full rank (by Theorem 3.3). This, along with the contrapositive
of the first statement, implies/2 0. The representations (4.3a) and (3.8) and the fact
that TT is a left inverse of A (see (4.3a)) yield 1/2/2Tv 1/2/2[2ATTT(--\Txf)+ 2/2]
)TTT(_/2\Txf _/22 TTTA +/22 ,T ./22 j. Thus (6.2) holds.

The next theorem provides a basis for determining changes in the signs of det(M)
and det(g) in terms of the signs of/2, det(Sw), and act(W).

THEOREM 6.3. Assume f and c E C2 at (x, a), let w (x, A,/2, a) be a solution
of the active set system F(w) 0 (see (2.8)), and let M Dzf(w(s)) and J
DwG(w(s)) be as in (3.5). Also, let the Lagrangian matrix W (see (3.4)) and the 2 2
Schur complement Sw ofW in J (see (3.10)) be evaluated at w. IfW is nonsingular,
then

(6.3a) det(M) ()det(W)
and

(6.3b) det(J) det(Sw)det(W).

Proof. Since W is nonsingular, M is also nonsingular by Theorem 3.3. Now apply
formula (3.6a) of Theorem 3.1 to the partitionings of M and J in (3.5a), (3.5b). For
the former matrix,

det(M) det(W) (2/2 (0, 2T)W-1 [Vf(x, a)

Now apply formula (6.2) in Theorem 6.2 to obtain (6.3a). Then the partitioning (3.5b)
of J implies det(J) det(W)det(Sw).

The next two theorems show that when only the linear independence constraint
qualification is violated along a path, the sign of det(W) and in(W) do not change.
Thus a change in the sign of det(M) (det(J)) occurs if and only if/2 (respectively,
det(Sw)) changes sign. The need to compute determinants of M, W, or J is thereby
removed. First, a linear algebra result is needed.

THEOREM 6.4. Let

for i 1 and 2 be symmetric matrices of the same size, and suppose A1 and A2 are

of the same size and rank. Then in(W1) in(W2) if and only if in(H,l) in(Hr.),



148 BRUCE N. LUNDBERG AND AUBREY B. POORE

where the HT denotes the restriction of H to the tangent space Jf(AT). Moreover,
in(Hq)- in(H,.) -in(W1)- in(W2).

Proof. Suppose A1 and A2 are n a matrices with common rank k. Apply
Theorem 5.1 to obtain in(Wi) in(H,)+ (k, k, a- k) for i 1 and 2. Subtract
these two equations to obtain the equation in(W) -in(W2) in(Hq)- in(H,2)
from which the conclusion follows. [:]

THEOREM 6.5. Let f and c be 2 functions and assume that P (w(s) Sa <
s < Sb} is a parameterization of a path of solutions of the active set system (2.8).
Suppose that this path is regular, except for the point w(so) .for some so E (Sa, Sb),
at which the linear independence constraint qualification is violated, but strict comple-
mentarity holds. Let W represent the Lagrangian matrix (3.4), and HT the reduced
Hessian matrix, both of which are evaluated at w(s), and suppose that in(HT) remains
constant on (Sa, Sb) (SO}. Then both sign det(W) and in(W) remain constant on

Proof. Since strict complementarity holds, the active set ,4, and hence the number
of eigenvalues of W and HT and the rank of A Dxb(x, ), remain constant on
(Sa, Sb)- (So}. The application of Theorem 6.4 at regular points W(Sl) and w(s2)
for Sa < Sl < so < s2 < Sb yields in(W) -in(W2), which shows that in(W)
remains constant on (Sa, Sb)- (So}. Theorem 3.3 implies that W is nonsingular on
(Sa, Sb)- (so}, SO that det(W) is nonzero there and its sign depends only on the
number of negative eigenvalues of W, which is constant on (sa, Sb) (so}. U

That in(HT) remains constant on (Sa, Sb)- (SO} is implied by a different hypoth-
esis, that HT is nonsingular at w(so), as is shown in the work of Tiahrt and Poore
[33, p. 127].

THEOREM 6.6. Let the assumptions and notation of Theorem 6.5 hold, let w
(x,,,c) be a solution of the active set system (w) 0 (see (2.8)), let M
DzF(w(s)) and J DwG(w(s)) be as in (3.5), and let Sw be the 2 2 Schur comple-
ment of W in J (see (3.10)), evaluated at w. Then det(M) changes sign at so if and
only if changes sign at so. Also, det(J) changes sign at so if and only if det(Sw)
changes sign at so.

If the path P can be smoothly parameterized by the natural parameter (, a sign
change in at so implies that w(so) is a bifurcation point. If, in addition, w(so) is a
simple bifurcation point described in Theorem 6.1 (ii), then must change sign at so.
Also, changes sign at so if w(so) is a simple quadratic fold described in Theorem 6.1
(iii). Assume, in addition to the above, that the predictor stepsize As is sufficiently
small so that the prediction direction dk(As) satisfies dk(As)Tdw(s)/ds > O. Then
simple bifurcation and simple folds are distinguished by the fact that det(Sw) changes
sign at so for the former, but not for the latter.

Proof. By Theorem 6.5, det(W) does not change sign as s crosses so. Thus (6.3a)
of Theorem 6.3 implies that and det(M) change sign together, which proves the
first statement. Similarly, by (6.3b) of Theorem 6.3, det(Sw) and det(J) change sign
together, and this proves the second statement. The remaining statements now follow
directly from Theorem 6.1. D

Finally, if does change sign and (i) and (iii) of Theorem 2.1 are not violated, then
a complete reversal in the type of the critical point is indicated, i.e., the multipliers Ai
and the eigenvalues of HT all change sign if the normalization > 0 is reapplied [33].

It is possible that 0 when the linear independence constraint qualification
fails, and this occurs exactly when Vxf E 7(Dc-T). Generally, this yields a higher-
order singularity. The two possible cases are described in the next theorem, whose
proof follows from (2.8).
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THEOREM 6.7. Let w (x,), , ) be a solution of the active set system (2.8)
and let AT Dxb(x,

(i) /] Vxf T(A), then 0 and A is rank deficient. Furthermore, if a
matrix U E ]Rnj is chosen with columns forming an orthonormal basis for Af(A),
then (x, U#, O, ) is a solution of system (2.8) for any # e]R with 11#112 o.

(ii) Suppose that Vxf T(A), A is rank deficient, and V lRn has columns
.forming an orthonormal basis .for Af(A). Let A Vf and define 0 (I- UUT).
Then v (x, , , a) is a solution of system (2.8) .for any and 0 + U# with

# e]R and 2(1 + 02) + 11#1122 . Any of these solutions with 11#112 < 0 has O.

6.3. Singularity of the Hessian of the Lagrangian on the tangent space.
If the linear independence constraint qualification and strict complementarity condi-
tions hold along a smooth solution path, the eigenvalues of HT V2xT vary con-
tinuously along this path [33], so that any change in in(HT) between two regular
points on the solution path indicates that a singularity in HT has been crossed. The
computation of in(HT) (see 5) at regular points has already been developed as an
inexpensive by-product of the linear algebra for the continuation procedure. Thus, the
detection test for this case is: Changes in in(HT) indicate singularity of the Hessian
of the Lagrangian on the tangent space to the active constraints.

The relation between this test and tests based on the signs of det(M) and det(J)
in (6.1) can be explained as follows. As a consequence of Theorems 6.4 and 6.5, a
change in the sign of det(W) is indicated by a change in in(HT). Theorem 6.3 shows
that changes in the signs of det(M) and det(J) are easily detected from changes in
the signs of det(W), , and det(Sw) in the course of using (3.8)-(3.11). Note that the
value of and the entries of the 2 2 matrix Sw are immediately available from the
computations described in (3.8)-(3.11). Thus the basic bifurcation test is essentially
free if type is monitored, as indicated in 5. Finally, note that these tests involving
sign p and in(HT) are much stronger tests for singularities than are available using
the determinants of M and J, since the latter tests cannot detect cases in which an
even number of eigenvalues of M or J changes from positive to negative or negative to
positive. Also, det(M) does not change sign when and det(W) change sign together;
det(J) does not change sign when det(Sw) and det(W) change sign together. Each
of these situations is detected by the tests involving sign and in(HT).

7. A model problem from design optimization. The numerical continua-
tion techniques described in the previous sections will now be used to obtain a "global"
analysis of the sensitivity, stability, and multiplicity of minima for a parametric non-
linear programming problem arising from design optimization. The problem, which is
simple yet still exhibits the basic phenomena, involves the design of a two-bar planar
truss with semispan 1, unloaded height h, and load p as indicated in Fig. 7.1.

Given a specific unloaded height h and load p, the deflection d is a minimizer of the

potential energy E(d, h; p) -pd + v/1 + h V/1 + (h- d) /x/’l + h. Rhein-

boldt [31] used this model problem to illustrate continuation methods in structural
analysis and has given a rather complete solution to both the static and parametric
problems. Rao and Papalambros [g0] posed a corresponding optimal design problem
as that of choosing the height h to minimize the deflection subject to 0 <_ h _< 1.15.
This problem is posed mathematically as:

Minimize d

(7.1) Subject to VdE(d,h;p) -O, 0 <_ h <_ 1.5.
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h = Unloaded Height

p = Load

d = Deflection

FIG. 7.1. Loaded two-bar truss.

In addition to selecting the minimizer, the state (d, h) must also be selected so that
the potential energy E(d, h;p) is minimized with respect to d. The corresponding
parametric problem is to determine the solution and its properties as the load p varies
over all physically important ranges. The remainder of this section contains a complete
analysis of this problem.

A starting solution w0 for continuation was obtained by solving this problem for
p 0.05, and then scaling the multipliers A and so that /0 3 in (2.8). The
solution paths w(p) (z(p), p) of the active set system (2.8) were then tracked using
an adaptation of the continuation code ABCON Chord described in [24]. Solution
type was monitored and singularities detected, as described in the previous sections.
Eight singular points, labeled (a)-(i) in Table 7.2 and Fig. 7.3, were encountered in
addition to an entire path of singular points along which p d 0, but h, Az, and
vary. In Table 7.2 SC, CQ, and HL denote strict complementarity, linear independence
constraint qualification, and the nonsingularity of the Hessian of the Lagrangian on
the tangent space to the active constraints, respectively, i.e., conditions (i)-(iii) of
Theorem 2.1. The word "branch" refers to a singular point from which at least three
distinct half-rays emerge. Aa denotes the multiplier of the active inequality constraint.

Figure 7.3 gives the displacement d and unloaded height h as p varies and repre-
sents a projection of the solutions of (2.6) into (h, d, p) space. Solid and dashed lines
indicate paths of local minimizers and maximizers, respectively. The dashed and dot-
ted line represents a feasible singular path, and lines of small dots represent infeasible
solutions. The solutions to the optimization problem need not be points of minimum
potential energy E(d, h; p), which is not minimized on the segments from (b) to (c)
and from (d) to (c) to (e). However, all other feasible path segments do correspond
to physical states of the truss where the potential energy is minimized.

We now describe these singularities, and the connecting path segments, beginning
with those that occur along the solution branch where the constraint h _< 1.5 is active.
Loss of strict complementarity gives rise to the bifurcation points (g), (a), and (c),
whose presence was indicated by a change in sign of the multiplier Aa. At these points
the inequality constraint becomes weakly active and solution paths bifurcate into
the region 0 < h < 1.5. The fold points (b) and (d) (p- :i:.37), which resulted from
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Point

()
(b)
()
(d)
()

()
0)

TABLE 7.2

Singular points.

Violations Phenomena

SC Branch

CQ Fold

SC Branch
CQ Fold

SC,CQ,HL Branch

HL Branch

SC Branch

HL Branch

d h A1 Aa v

0.09 1.5 -2.4 0.0 1.7

0.81 1.5 -2.8 1.0 0.0

2.0 1.5 -2.9 0.0 -0.77

2.2 1.5 -2.8 -1.0 0.0

o.o o.o o.o 0.o
0.0 /-2.4- 1.8

o.o . -.4 o.o .s
0.0 --V --2.4 1.8

P
0.07

0.37

-0.35

-0.37

0.0

0.0

0.0

0.0

violation of the linear independence constraint qualification, were detected by a change
in the sign of . The type of the solution along this solution branch is determined by
the sign of Xa/, which changes at each of these five singular points. This results in
the alternating segments of minimizers and maximizers shown in Fig. 7.3.

Singular Points ........ D
Minimizers C ............
Maximizers
Singular Path d.c /h
Infeasible Solutions ""’-..... /

I

h 0 " 0.:57 p
H "’ d

F,G. 7.3. Solutions of (2.6) ]or problem (7.1).

Along the solution branch corresponding to the constraint h >_ 0 being active,
a multiple bifurcation point (e) occurs from which two additional paths emerge into
the region 0 < h < 1.5. At the point (e) all three conditions in Theorem 2.1 (strict
complementarity, linear independence constraint qualification, and nonsingularity of
the Hessian of the Lagrangian on the tangent space) are violated. Also, both and
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the multiplier Aa become zero but do not change sign at (e), and this was detected in
the continuation process by small values of these quantities. The fact that 72xT is
singular was detected by a change in in(W) along the path from (c) through (e) out
of the feasible region along J.

In Fig. 7.3 three additional solution paths are shown which emanate from the
constraints h > 0 and h < 1.5 into the region 0 < h < 1.5: one path of minimizers
branching from the bifurcation point (a), another from each of the bifurcation points
() and (e), and one path of singular points branching from (e) and (g), along which
p d 0. Singularity of V2:T occurs at the bifurcation point (f), which was detected
by a change in in(W) along the path from (a) through (f). At (f) there is a change
in type resulting in the path of maximizers labeled F. Except for the bifurcations
occurring at (e), (f), and (g), the path with p d 0 consists of degenerate fold
point singularities.

Figure 7.3 also shows infeasible solutions of the system (2.8) which emerge at (a),
(c), (g) (h > 1.5), and (e) (h < 0). Two infeasible solution branches pass through the
bifurcation point (i) at which V2:T is singular. In some problems infeasible paths
may provide the opportunity for further branching to other feasible paths.

The number and location of the local minimizers is summarized in Table 7.4. The
paths of global minimizers are indicated in boldface. It is important to stress that
the multiple optima were found by continuation, not by reoptimizing from different
starting points.

TABLE 7.4
Multiplicity of minima.

Parameter range Number of minima Paths

-o < p < -0.37 2 (, H
-0.37 < p < 0 3 (-g, d-e, H-e

0 < p < 0.37 2 f-a-b,
0.37 < p < o 1 I

The solution to the parametric design problem can now be described for p > 0.
Given a small but positive load p, the global minimum occurs on the branch of mini-
mizers between singular points (f) and (a). As the load p is increased from zero, the
height h increases from / to h 1.5 where the constraints h _< 1.5 become active.
As the load p is increased further, the deflection d continues to increase along the
path from (a) to (b) until p reaches 0.37 where the truss "snaps through" and there
is no minimum beyond p 0.37 corresponding to a height h near 1.5. (The only
way to maintain an optimum locally beyond p 0.37 is to increase the parameter

1.5 in the upper bound on the height h.) The local minimizer corresponding to
h 0 becomes the global minimizer for p beyond p 0.37. Local sensitivity is surely
present at points (a) and (b). Note that the path of minimizers is continuous but not
differentiable at (a). (Near such points many optimization codes exhibit cycling.) At
the fold point (b), the path of minimizers ceases to exist. Optimization codes would
have difficulty here since the unnormalized multipliers will be large and go to infinity
as p approaches 0.37. The conclusion with regard to the design of the truss is that
for stability the loads must be less than p 0.37 and that sensitivity occurs near the
singular points (a) and (b) for the reasons stated. Clearly, the ability of the continu-
ation procedure to locate such singular points and obtain such a global analysis is a

major strength of the methodology.
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8. Concluding remarks. Numerical methods have been developed for con-
tinuation, solution-type determination, and singularity detection in the parametric
nonlinear programming problem. Starting from the Fritz John first-order necessary
conditions, this problem was converted to a system of nonlinear equations (2.6) whose
singularities are characterized in terms of the loss of strict complementarity, the vio-
lation of a linear independence constraint qualification, and/or the singularity of the
Hessian of the Lagrangian on the tangent space to the active constraints. The singu-
larity detection schemes developed in this work focus on these three singularities. The
system of equations (2.6) employs a nonstandard normalization/22 -- ,T, 02 where
and A are multipliers in the Lagrangian :(z, c) f(x,) + -ieA Aici(x, ). This

normalization is central to the detection of singularities associated with a violation
of the linear independence constraint qualification. For computational efficiency, the
full system (2.6) was replaced by an active set system (2.8), and then a framework
for combining various numerical continuation and bifurcation methods with a large
number of null and range space methods from constrained optimization was devel-
oped using the bordering algorithm of Keller [19]-[21]. In this development, Schur
complements [18], [26] have played an important and unifying role.

Using this framework, techniques for determining solution type were developed in

5. These involve little additional expense when symmetric factorization, null space,
or range space methods are used in the continuation procedure. This framework was
also used in 6 to develop singularity detection tests which are more comprehensive
and efficient than those used for general nonlinear equations. In fact, the tests for
singularities due to the loss of strict complementarity and the violation of the linear
independence constraint qualification are shown to only require that we monitor the
sizes and signs of multipliers Ai, the inactive constraints ci, the parameter 9, and the
determinant of a 2 2 matrix Sw. These tests thus require very little additional
computation, no factorizations, and no determinant computations other than that of
the Sw. Hence, they can easily be applied when iterative solvers are used in the
continuation procedure. Detection of a singularity of the Hessian of the Lagrangian
on the tangent space to the active constraints is based on the inertia of the reduced
Hessian, which we have shown how to compute at little extra expense when using
symmetric factorization, null space, or range space methods.

In 7 these methods were applied to a model problem from design optimization
[30] and were shown to yield a "global" analysis of the sensitivity, stability, and multi-
plicity of minima. This example also exhibits an extensive number of solution paths,
each of the basic singularities, and jump phenomena arising from a loss of the lin-
ear independence constraint qualification. Finally, these methods should be equally
applicable to discrete versions of abstract optimization and control problems.

REFERENCES

[1] E.L. ALLGOWER AND K. GEORG, Numerical Continuation Methods: An Introduction, Springer-
Verlag, Berlin, Heidelberg, New York, 1990.

[2] B. BANK, J. (UDDAT, D. KLATTE, B. KUMMER, AND K. TAMMER, Nonlinear Parametric
Optimization, Birkhuser-Verlag, Basel, 1983.

[3] T.F. CHIN, Deflation techniques and block-elimination algorithms for solving bordered singular
systems, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 121-134.

[4] T. F. CHiN AND D. C. RESASCO, Generalized deflated block-elimination, SIAM J. Numer.
Anal., 23 (1986), pp. 913-924.

[5] A. V. FIACCO, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming,
Academic Press, New York, 1983.



154 BRUCE N. LUNDBERG AND AUBREY B. POORE

[6] A. V. FIACCO, Mathematical Programming Study 21: Sensitivity, Stability and Parametric
Analysis, North-Holland, Amsterdam, 1984.

[7] R. FLETCHER, Practical Methods of Optimization, 2nd ed., John Wiley, New York, 1987.
[8] P. E. GILL, W. MURRAY, AND M. H. WRIGHT, Practical Optimization, Academic Press, New

York, 1981.
[9] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 2nd ed., The Johns Hopkins

University Press, Baltimore, 1989.
[10] M. (OLUBITSKY AND D. G. SCHAEFFER, Singularities and Groups in BijCarcation Theory,

Vol. 1, Springer-Verlag, New York, 1985.
[11] , Singularities and Groups in Bifurcation Theory, Vol. 2, Springer-Verlag, New York,

1988.
[12] J. GUDDAT, F. GUERRA VAZQUEZ, AND H. TH. JONGEN, Parametric Optimization: Singular-

ities, Path Following, and Jumps, John Wiley and Sons, Chichester, England, 1990.
[13] J. GUDDAT, ED., Parametric Optimization and Related Topics II, Mathematical Research 62,

Akademie-Verlag, Berlin, 1991.
[14] H. TH. JONGEN, P. JONKER, AND F. TWILT, Nonlinear Optimization in tn: I. Morse Theory,

Chebyshev Approximation, Verlag Peter Lang, New York, 1983.
[15] , Nonlinear Optimization in Tn: II. Transversality, Flows, Parametric Aspects, Verlag

Peter Lang, New York, 1986.
[16] One-parameter families of optimization problems: equality constraints, J. Optim. The-

ory Appl., 48 (1986), pp. 141-161.
[17] H. TH. JONGEN AND G.-W. WEBER, On parametric nonlinear programming, Ann. Oper.

Res., 27 (1990), pp. 253-284.
[18] H. TH. JONGEN, T. MLBERT, J. P)CKMANN, AND K. TAMMER, On inertia and Schur

compliment in optimization, Linear Algebra Appl., 95 (1987), pp. 97-109.
[19] H.B. KELLER, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Appli-

cations of Bifurcation Theory, P. H. Rabinowitz, ed., Academic Press, New York, 1977, pp.
359-394.

[20] , The bordering algorithm and path ]ollowing near singular points of higher nullity, SIAM
J. Sci. Statist. Comput., 4 (1983), pp. 573-582.

[21] Numerical Methods in Bifurcation Problems, Springer-Verlag, Berlin, 1987.
[22] T. KUPPER, H. D. MITTELMANN, AND U. WEBER, Numerical Methods for Bifurcation Prob-

lems, Birkhiuser-Verlag, Boston, 1984.
[23] T. KUPPER, R. SEYDEL, AND H. TROGER, EDS., Bifurcation: Analysis, Algorithms, Applica-

tions, Birkhiuser-Verlag, Boston 1987.
[24] B N. LUNDBERG AND A. B. POORE, Variable order Adams-Bashforth predictors with an

error-stepsize control for continuation methods, SIAM J. Sci. Statist. Comput., 12 (1991),
pp. 695-723.

[25] Bifurcations and sensitivity in parametric nonlinear programming, Third Air Force/
NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, San
Francisco, CA, Sept. 24-26, 1990.

[26] D.V. OUELLETTE, Schur complements in statistics, Linear Algebra Appl., 36 (1981), pp. 187-
295.

[27] A. B. POORE AND C. A. TIAHRT, Bifurcation problems in nonlinear parametric programming,
Math. Programming, 39 (1987), pp. 189-205.

[28] J. RAKOWSKA, R. T. HAFTKA, AND L. T. WATSON, An active set algorithm for tracing
parameterized optima, Struct. Optim., 3 (1991), pp. 29-44.

[29] Tracing the efficient curve for multi-objective control-structure optimization, Com-
put. Systems Engrg., 2 (1991), pp. 461-472.

[30] J.R.J. RAO AND P. Y. PAPALAMBROS, Extremal behavior of one parameter families of optimal
design models, ASME Design Automation Conference, Montreal, Sept. 17-20, 1989.

[31] W.C. RHEINBOLDT, Numerical analysis of continuation methods for nonlinear structural prob-
lems, Comput. Struct., 13 (1981), pp. 103-113.

[32] Numerical Analysis of Parameterized Nonlinear Equations, John Wiley, New York,
1985.

[33] C. A. TIAHRT AND A. n. POORE, A bifurcation analysis of the nonlinear parametric program-
ming problem, Math. Programming, 47 (1990), pp. 117-141.



SIAM J. OPTIMIZATION
Vol. 3, No. 1, pp. 155-163, February 1993

()1993 Society for Industrial and Applied Mathematics
008

REMARKS ON CONVERGENCE OF THE MATRIX SPLITTING
ALGORITHM FOR THE SYMMETRIC LINEAR

COMPLEMENTARITY PROBLEM*

WU LI

Abstract. In this paper it is shown how to remove a restriction on the perturbation vectors h
imposed by Mangasarian and Luo and Tseng in their respective convergence analyses of the matrix
splitting algorithms.
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error estimate, power method
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1. Introduction. Consider the classical symmetric linear complementarity
problem (LCP) of finding an x in the n-dimensional real space n such that

(1.1) Mx+q>_O, x>_O, x(Mx+q)=O,

where M is a given n n real symmetric positive semidefinite matrix and q is a given
vector in lRn. Based on works done earlier [2], [9], Pang [14] proposed the following
general matrix splitting method for solving (1.1)"

(1.2) Bx+I + Cx + q >_ O, x+ E0, x+(Bx+ + Cx + q) O, i=0,1,...,

where M B + C is a regular splitting (cf. [13] and [3]), that is,

M B + C, B C positive definite.

The regular splitting of M guarantees that (1.2) is a descent method for the
following equivalent convex quadratic programming problem of (1.1)"

fmin min f(x) := 1/2xMx -}-qx

subject to x>_0

and any accumulation point of {x } is a solution of (1.1) [14]. The key to establishing
the convergence of subsequences of {x} is to prove the boundedness of {x), which
was investigated extensively [14], [15], [16], [4], [17]. Luo and Wseng were the first
to prove the convergence of the whole sequence {x) [8]. However, their convergence
analysis is rather complex and requires that the subproblems (1.2) be solved exactly.
Concerned about the practical implementation of (1.2), Mangasarian [10] considered
solutions of the subproblems (1.2) with perturbations {h+}:

Bx+ + Cx + q h+ >_0, x+_>0,
x+(Bx+ + Cx + q h+)=0, i=0,1,

*Peceived by the editors May 28, 1991; accepted for publication (in revised form) December 23,
1991.

fDepartment of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529
(lixanth.cs.odu.edu).
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He proved the convergence of {x} generated by (1.3) under the assumption that B is
symmetric, -ic__l IIhll < cx, and

(1.4)

where x* is any solution of (1.1). Note that (1.4) is not the exact assumption he made,
but is an equivalent one.

A key step in Mangasarian’s proof is to show that xi+ :- (xi) as a mapping
defined by (1.2) is nonexpansive in the B-norm. However, is not a nonexpansive
mapping in the B-norm if B is not symmetric. Thus, it would be difficult to extend
his approach to general cases. At the same time, Luo and Tseng [5] improved their
original approach and established the linear convergence of {x} generated by (1.3)
under the assumption that

IIh+ll <_ (’ e)[Ix xid-lll

where 2- is the smallest eigenvalue of B- C and e > 0. Actually, their method is
general enough to prove the linear convergence of the iterates generated by descent
methods for convex essentially smooth minimization problems. There are two key
steps in Luo and Tseng’s proof of the linear convergence of {x}: one is a local error
estimate:

(1.6) d(xi,X*) <_ T. IIx --(X (Mx + q))+ll, >_ r,

and another is an estimate of the speed of convergence of f(xi)

(1.7) f(xi) fmin " (d(x,X*))2, >_ r,

where r is some positive integer, is a fixed scalar, x+ denotes the vector in lR’ with
components (x+)i :- max{xi,0},i 1,...,n, X* is the solution set of (1.1), and
d(x, X*) is the distance from x to the set X* defined as

d(x, X*) := min{ IIx x* I1" x* e X* }.

Based on (1.6) and (1.7) they derived the following key inequality in their convergence
analysis:

(1.8) f(xi) fmin C" (llX xid-lll -- IIh+ll)2, i _> r.

Recently, Luo and Tseng [6] showed that their approach can be used to prove
the linear convergence (in the root sense [13]) of {xi} generated by (1.3) with the
assumption that M is symmetric, h satisfy (1.5), f is bounded below on lR, and
M B + C is a regular splitting. Their main effort was to show that (1.8) holds even
when M is only symmetric. This further demonstrates the power of their approach.

In general, one cannot have a global error estimate of (1.6) as shown by Man-
gasarian and Shiau [11]. Luo and Wseng [7] studied cases when (1.6) holds for all
x E lR and are able to obtain a characterization of such cases by using the index
set of active constraints of the solution set. For the matrix splitting Mgorithms, they
proved that (1.6) implies that (1.8) holds with a, depending only on T, M, and B.
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Therefore, Luo and Tseng were able to obtain a global estimate of IIx xi+ll[ (cf.
Corollary 4 in [7]).

One of the main goals of this paper is to show that the sequence {xi} generated
by (1.3) converges with the assumption

(1.9) Z I]h ll <
i:1

which is weaker than (1.5). Moreover, {x } converges linearly if {h } converges linearly
to 0 (cf. Theorem 3.3). Since (1.5) and the linear convergence of {x } imply that {hi}
converges linearly to 0, the linear convergence of {h } is a weaker restriction on h than
(1.5). Also, it is easy to implement in practical situations, since the condition of linear
convergence of h can be set a priori. The proof of our results is almost the same as
the proof given by Luo and Tseng, except that we manipulate inequalities differently.
In addition, we show that Mangasarian’s method provides an alternative way to prove
the convergence of {xi} under the additional assumption that B is symmetric. The
alternative proof gives a different perspective of why {xi} converges.

In 2 we include some inequalities that are commonly used to study the conver-
gence of {xi} generated by (1.3). In 3, we show how to modify Luo and Wseng’s
approach to eliminate the restriction (1.5) on hi. Section 4 shows an alternative way
to prove the convergence of {xi} generated by (1.3) under the additional assumption
that B is symmetric. In 5 we give comments on how to extend the results to affine
variational inequality problems.

Commonly used notations are included here. lR_ :- {x E ]Rn x _> 0}. A
positive definite n n real matrix B induces an elliptic norm tl" liB on ]Rn, defined
by (xBx)l/2 for x in lRn. When B I, we have the Euclidean or two-norm (xx)l/2,
which we denote simply as I1" II. To avoid ambiguity, we make a standing assumption
for the following sections.

ASSUMPTION 1.1. M is symmetric positive semidefinite, M B + C is a regular
splitting, (1.1) has at least one solution, and h satisfy (1.9).

2. Preliminary lemmas. In this section we review some inequalities commonly
used to analyze the convergence of {xi}. The first lemma is proved by Luo and Tseng

LEMMA 2.1. There is a constant > 0 such that

IIx (Mx + q))+ll +

The following three lemmas are implicitly proved in [10] and [5]. For ey refer-
ence, we reproduce the proof here.

LEMMA 2.2. Let 2 be the smallest eigenvalue of B- C. Then

2 ( f(xi+
1

LEMMA 2.3. Let 2/ be the smallest eigenvalue of B- C. Then

fix’- x/[l V/--" lf(x) f(xi+)[ 1/2 -at- " llh’/ll[.

LEMMA 2.4. Any accumulation point of {xi} generated by (1.3) is a solution of
(1.1) and limi--. IIx xi+lll-- 0.



158 wu LI

Proof. One can verify that (cf. [10] and [5])

The above inequality can be rewritten as

Since (a + b)2 _< 2(a2 + b2) for a, b _> 0,

It follows from (2.1) and (2.2) that

(2.3) llx x +lilu < f(x ) /

Lemmas 2.2 and 2.3 follow from (2.3) and the inequality v/a + b _< x/-d + v/ for
a,b>_O.

Let fmin be the minimum value of f on ]R_. Then (2.1) implies

1
0 <_ (f(xi+l) fmin) __< (f(xi) fmin) -+" _. ]lh’+ll2.

Since E,I IIh’+lll < c (cf. Assumption 1.1), {llh’ll} is a bounded sequence; i.e.,
there is a constant/ > 0 such that IIh, ll _< for an i. Therefore,
-i/" Ilhi+ll < x). By (2.4) and Lemma 2.1 in [1] (or Lemma 2, [18, p. 441),
{f(xi) -fmin} converges. Thus {f(xi) -f(xi+)} converges to 0. Since the right-hand
side of (2.3) converges to 0, so does [Ix xi+lll. Finally, let x* be an accumulation
point of {x}. It follows from Lemma 2.1 that x* (x* (Mx* + q))+; i.e., x* is a
solution of (1.1). This completes the proof of Lemma 2.4.

Remark. It is clear from the proof that the conclusions of Lemma 2.4 hold under
the weaker assumption Ei__l Ilhi+lll 2 < CK). We only use this lemma as a preliminary
result for the proof of convergence of (xi} (cf. Theorem 3.3).

3. Convergence of the matrix splitting algorithm. First we state the key
inequality in Luo and Wseng’s proof of the linear convergence of (xi} [5], [6]. The
proof of the following lemma was implicitly given in the proofs of inequalities (3.18)
and (3.19)in [6].

LEMMA 3.1. There exist and r > 0 such that

f(xi) fmin

_
c-(llx xi+lll + [Ihi+lII)2 for i >_ r.

Based on this lemma and the assumption (1.5), Luo and Tseng proved that the
sequence {f(xi)} converges at least linearly, which implies the linear convergence of
(xi}. Here we want to show that careful manipulations of inequalities could replace
the assumption (1.5) by the weaker assumption (1.9). The following lemma is a
modification of the proof of Theorem 3.1 in [5].
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LEMMA 3.2. There exist constants r > O, 0 < < 1, and > 0 such that

v/f(xi+l) fmin _< " %ff(xi) fmin + (" ]lh/l]l for i >_ r.

Proof. By Lemma 3.1, there exist a and r > 0 such that

f(x) -fmin _< a(]]x’+l -x’]] + ]lhi+lll)2 for i > r.

Now, by Lemma 2.2 and the inequality (a + b)2 < 2(a2 + b2), we obtain

__(43 zlf(xi) fmin _< f(Xi) f(xi+l) A- X(’-1

which is equivalent to

(3.1) f(xi+l fmin _< 2. (f(xi) _fmin) + (2. [[hi+l II 2,
where A2 1 4-753 < 1 and 52 1/2(-1 + /). The lemma follows from (3.1) and the

inequality x/a + b <_ x/ + V for a, b > 0. [:]

THEOREM 3.3. The sequence (xi} generated by (1.3) converges to a solution of
(1.1). If IIhill <_ aO with some > 0 and 0 < 0 < 1, then (xi} converges linearly in
the root sense.

Proof. Let e := V/f(x) filE. It follows from Lemma 3.2 that

for m > r.

Therefore,

for m > r,

oo ei" Since [f(x/1) f(x)[x/2 < e ++ wewhich implies the convergence of ’i=1
have -]ioo=l [f(xi+)_f(xi)ii/2 < oc. By Lemma 2.3, we know that y]ioo=l [[xi_xi+l[ <. Thus {xi} is a convergence sequence. This proves the first part of Theorem 3.3.

Now, suppose {llhill} converges linearly in the root sense to 0; i.e., [[hi[[ < a0
with 0 < O < 1. By Lemma 3.2, one can use the induction method to prove the
following inequality:

j=r-bl

for i > r.

Therefore, there is a constant fl > 0 such that

+I

(3.2)
j-1

for i > r.

Let max{A, O} < 1. It follows from (3.2) that

(3.3) If(xi/1) f(xi)ll/ 3(1 + a)(i + 1)i.
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Since there is a constant 5 > 0 such that (i / 1)v <_
2.3 and (3.3) that

+u
Ilx- x+lll -< # 2

it follows from Lemma

for some constant # > 0. Thus {x} converges linearly in the root sense.

4. Mangasarian’s convergence analysis. In this section we give an alter-
native proof of the convergence of {x} under the additional assumption that B is
symmetric. The alternative proof is based on Mangasarian’s convergence analysis and
treats the matrix splitting algorithms as power methods. This provides a different
perspective of why {xi} converges.

Let oh(y) denote the solution x of the following LCP:

Bx + Cy + q- h > O, x > O, x(Bx + Cy + q- h) O.

For simplicity, denote qo o0. It is easy to see that any fixed point x* of o (i.e.,
x* o(x*)) is a solution of (1.1).

The key step in Mangasarian’s proof of the convergence of {xi} is to show that
qo is a nonexpansive mapping in the B-norm [10]; i.e.,

LEMMA 4.1. If B is symmetric, then o is nonexpansive in the B-norm.
The proof of this lemma is implicitly given in the proof of inequality (2.10) in

[10]. If IIhll 0 for all i, then x+1 o(x); i.e., {x} is generated by the power
method with respect to o. Let x* be any fixed point of o. Then

(4.1) IIx+* x*ll II(x) (x*)lls _< IIx x*lls for i 0, 1,2,

Therefore, {xi} is a bounded sequence. Since any accumulation point of {x } is a fixed
point of o (cf. Lemma 2.4), we may assume that x* in (4.1) is an accumulation point of
{xi}. Then {[[x x*[[B} is a decreasing sequence and has a subsequence converging
to 0. Therefore, {[Ix -x*l[S } itself converges to 0. This provides a very simple
proof of convergence of iterates generated by the power method for the nonexpansive
mapping o.

Moreover, it is proved "by Mangasarian and Shiau [11] that Oh(X) is Lipschitz
continuous with respect to h and x. As a consequence, there exists a constant a > 0
such that

(4.2) [loh(X)- o(x)lls _< . Ilhl[ for x,h e lRn.

We could view Oh as Lipschitz perturbations of o. Now {xi} generated by (1.3) can
be considered as the iterates generated by the following inexact power method for o:

(4.3) xi+ Oh+l (xi), i 0, 1, 2,

Then we can show that the iterates generated by the inexact power method with
respect to qo converges. Here we do not need any lemmas stated in 2 and 3.
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4.1. Alternative proof of convergence of {xi} when B is symmetric. It
follows from Lemma 4.1 and (4.2) that

B

(v-(v,./-/ (z.+-)) v-(v(z.+-)))
k=l B

(4.4) -- E IIk-l(q0h’+-k+l (xi+j-k)) k-l((xiTj-k))B

k=l k=l

where k denotes the composite of with itself k times. Let x* be a solution of (1.1).
Then (x*) x*. Hence

(4.5) II(x) x’liB -II(xy) (x*)llB IlxY X*llB.
It follows from (4.4) and (4.5) that

(4.6) Ilxi+ x* liB hk+j liB + IIx x* liB.
k=l

Since any two norms on Nn are equivalent and i=1 IlhII < , we have. Let j 0. Then (4.6) implies that {xi} is a bounded sequence. Let x be an
accumulation point of {x }. Fix j and let {x+i } be a subsequence which converges
to x. Then the remarks after Lemma 4.1 show that {i’ (xY)} converges to a solution
x* of (1.1). Letting i’ in (4.4), we obtain

(4.7) min Iix YlIB IIx x* lib " Ilhk+ liB,
yX*

k=l

where X* is the set of solutions of (1.1). Since limy E%l Ilhk+YllB 0 and (4.7)
holds for any j k 1, we get minyex. IIx YlIB 0 by letting j in (4.7). This
implies x e X* (i.e., x is a solution of (1.1)). Thus, any accumulation point x of
{xi} is a solution of (1.1), i.e., x (x). Therefore, we may assume that x* in
(4.6) is an accumulation point of {x}. Let e > 0 be any positive number. Since

=1 IIhllB < , there is an integer r > 0 such that

(4.8) Ilhk+YliB < e/2 for j r.
k=l

Since x* is an accumulation point of {xi}, there is j > r such that
Then it follows from (4.6) and (4.8) that

IIx+ -x*lIB < for i k 1.
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This proves that {x } converges to a solution of (1.1). D
Remark. With the exception of Lemma 4.1, the above convergence analysis is

self-contained. Moreover, the proof shows that, if h is any perturbation of qo that
satisfies

IIOh+, (x) --qo(x)[Is _< a. IIh+llIs
and {hi} satisfies (1.9), then the sequence {x} generated by (4.3) converges to a
solution of (1.1). This fact could be very useful in practice. For example, let xi+1 be
an inexact solution of the following problem:

Bx + Cx + q >_ O, x_>0, x(Bx + Cx + q) O, i=0,1,...,

where x is given. If we consider xi+ as a solution of (4.3) for some Oh+l then there
exists c > 0, depending only on B such that (cf. [12, Lemma 2])

 (x )llB --IIx +l  (x )llB I[min{Bxi+l + Cx + q, xi+iIllB,

where hi+1 :-- min{Bxi+1 + Cx + q,x+} and min{y,z} denotes the vector in
IR’ whose ith component is min{yi, zi}. Therefore, if Yi min{Bxi+ + Cxi +
q, xi+l }ll < o, then the sequence {xi} converges to a solution of (1.1). Notice that x
might have negative components here, while the feasibility of x is crucial in Luo and
Tseng’s convergence analysis (cf. the proofs given in 2 and 3). Therefore, the alter-
native proof gives more than a different proof of the convergence of {x } generated by
(1.3) under the assumption that B is symmetric.

5. Comments. The results and methods used in this paper can be easily ex-
tended to the symmetric affine variational inequality problem associated with a sym-
metric matrix M, a vector q, and a convex polyhedral subset X of lRn (cf. [6] and
references therein):

find an x* e X satisfying (x- x*)(Mx* + q) >_ 0 for x E X.

One can easily modify the results and their proofs in [51 and [6], as we did in 3,
to eliminate the assumption (1.5) on hi. If we assume further that M is positive
semidefinite and B is symmetric, then the corresponding matrix splitting method
induces a nonexpansive mapping qo in the B-norm. The proof in 4 also works.

Acknowledgments. I am in debt to Prof. Paul Tseng for our many stimulating
discussions on the subject. Also, I would like to thank Prof. Olvi Mangasarian for his
instructive suggestions and comments.
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GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION
ALGORITHMS FOR OPTIMIZATION USING INEXACT

PROJECTIONS ON CONVEX CONSTRAINTS*
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Abstract. A class of trust region-based algorithms is presented for the solution of nonlinear
optimization problems with a convex feasible set. At variance with previously published analyses
of this type, the theory presented allows for the use of general norms. Furthermore, the proposed
algorithms do not require the explicit computation of the projected gradient, and can therefore
be adapted to cases where the projection onto the feasible domain may be expensive to calculate.
Strong global convergence results are derived for the class. It is also shown that the set of linear and
nonlinear constraints that are binding at the solution are identified by the algorithms of the class in
a finite number of iterations.

Key words, trust region methods, projected gradients, convex constraints
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1. Introduction. Trust region methods for nonlinear optimization problems
have become very popular over the last decade. One possible explanation of their
success is their remarkable numerical reliability associated with the existence of a
sound and complete convergence theory. The fact that they efficiently handle non-
convex problems has also been considered an advantage.

As an integral part of this growing interest, research in convergence theory for
this class of methods has been very active. First, a substantial body of theory was
built for the unconstrained case (see [19] for an excellent survey). Problems involving
bound constraints on the variables were then considered (see [1], [9], and [21]), as
well as the more general case where the feasible region is a convex set on which the
projection (with respect to the Euclidean norm) can be computed at a reasonable cost
(see [4], [20], and [29]). The studied techniques are based on the use of the explicitly
calculated projected gradient as a tool to predict which of the inequality constraints
are binding at the problem’s solution. Moreover, trust region methods for nonlinear
equality constraints have also been studied by several authors (see, e.g., [5], [8], [25],
and [30]).

This paper also considers the case where the feasible set is convex. It presents
a convergence theory for a class of trust region algorithms with the following new
features.

The theory does not depend on the explicit use of the projection operator
in the Euclidean norm, but allows for the use of a uniformly equivalent family of
arbitrary norms.

The gradient of the objective function can be approximated if its exact value
is either impossible or too costly to compute at every iteration.
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The calculation of the "projected gradient" (with respect to the chosen
norms) need not be carried out to full accuracy.

When the feasible set is described by a system of linear and/or nonlinear
(in)equalities, conditions are presented that guarantee that the algorithms of the class
identify, in a finite number of iterations, the set of inequalities that are binding at the
solution. We note that this description of the feasible set does not need its partition
into faces.

In this sense, we see that our theory applies to problems similar to those considered
in [4], [9], [20], and [29], although in a more general setting.

An attractive aspect of this theory is that it covers the case where a polyhedral
norm is chosen to define an analog of the projection operator, allowing the use of
linear (or convex) programming methods for the approximate calculation of the pro-
jected gradients. This type of algorithm should be especially efficient in the frequent
situation where the feasible set is defined by a set of linear equalities and inequalities,
and where a basis for the nullspace of the matrix of the active constraints is cheaply
available. In network problems, for example, this can be very cheaply obtained and
updated using a spanning tree of the problem’s underlying graph (see [17] for a de-
tailed presentation of the relevant algorithms). Other examples include multiperiodic
operation research models resulting in staircase matrices.

The problem and notation are introduced in 2, together with a general class
of algorithms. The convergence properties of this class are then analyzed in 3. A
particular practical algorithm of the class is discussed in 4. The identification of he
active constraints is presented in 5. Section 6 presents an analysis of the conditions
under which the whole sequence of iterates can be shown to converge to a single limit
point. Additional points and extensions of the theory are discussed in 7. A glossary
of symbols can be found in Appendix B. All the assumptions used in the paper are
finally summarized in Appendix C.

2. A class of trust region algorithms for problems with convex feasible
domain.

2.1. The problem. The problem we consider is that of finding a local solution
of

(2.1) min f(x)

subject to the constraint

(2.2) x E X,

where x is a vector of Rn, f(.) is a smooth function from Rn into R and X is a
nonempty closed convex subset of Rn, also called the feasible set. We assume that
we can compute the function value f(x) for any feasible point x. We are also given a
feasible starting point x0, and we wish to start the minimization procedure from this
point.

If we define/= by

/ de____f X I"l {x e Rn f(x)

_
f(x0)},

we may formulate our assumptions on the problem as follows.
AS.1. The set/: is compact.
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AS.2. The objective function f(x) is continuously differentiable and its gradient
Vf(x) is Lipschitz continuous in an open domain containing .

In particular, we allow for unbounded X, provided the set remains bounded.
We will denote by (., "/ the Euclidean inner product on Rn and by I1" 112 the

associated 2-norm.
We recall that a subset K of R is a cone if it is closed under positive scalar

multiplication, that is, if Axe K whenever x e K and A > 0 (see [26, p. 13]). Given
a cone K, one can define its polar (see [26, p. 121]) as

(2.4) g0 de_,_f (y e Rnl (y, u) _< 0, VU e K}

and verify that K is also a cone, and that (K) K when K is a nonempty closed
convex cone.

Given the closed convex set X, we can define Px(x), the projection of the vector
x E Rn onto X, as the unique minimizer of the problem

(2.5) min IlY xll2-yEX

This projection operator is well known and has been much studied (see, e.g., [33]).
We will also denote by N(x) the normal cone of X at x e X; that is,

(2.6) Y(x) de___f {y e R (y, u- x) <_ 0, Vu e X}.

The tangent cone of X at x X is the polar of the normal cone at the same point;
that is,

(2.7) T(x) de__.f g(x)O cl{A(u- x)[A >_ 0 and u e X},

where cl{S} denotes the closure of the set S. We will also use the Moreau decompo-
sition given by the identity

(2.8) x PT(u) (x) / PN(y) (x),

which is valid for all x E Rn and all y X (see [22]). This decomposition is illustrated
in Fig. 1. In this figure and all subsequent ones, the boundary of the feasible set X is
drawn with a bold line.

We conclude this subsection with a result extracted from the classical perturbation
theory of convex optimization problems. This result is well known and can be found
in [14, pp. 14-17] for example.

LEMMA 2.1. Assume that D is a continuous point-to-set mapping from S c_ Re

into Rn such that the set D(e) is convex and nonempty for each e S. Assume also
that one is given a real-valued function F(y, e), which is defined and continuous on
the space Rn S and convex in y for each fixed e. Then, the real-valued function F.
defined by

(2.9) F.(e) de---f inf F(y,e)
uED()

and the solution set mapping y. defined by

(2.10) y,(e) de__f {y e D(e)lF(y, e)= F.(e)}

are both continuous on S.
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y + PN(y)(x

y +

y + N(y)

X

y + T(y)

FIG. 1. The normal and tangent cones at y, and the corresponding Moreau decomposition of x
(translated to y).

2.2. Defining a local model of the objective function. The algorithm we
propose for solving (2.1) subject to the constraint (2.2) is iterative and of trust region
type. Indeed, at each iteration, we define a model of the objective function f(x), and
a region surrounding the current iterate, say Xk, where we believe this model to be
adequate. The algorithm then finds, in this region, a candidate for the next iterate
that sufficiently reduces the value of the model of the objective. If the function value
calculated at this point matches its predicted value closely enough, the new point is
then accepted as the next iterate and the trust region is possibly enlarged; otherwise
the point is rejected and the trust region size decreased. With each iteration of our
algorithm will be associated a norm: we will denote by I1" II(k) the norm associated
with the kth iteration.

We now specify the conditions we impose on the model of the objective function.
This model, defined in a neighbourhood of the kth iterate xk, is denoted by the symbol
mk and is meant to approximate the objective f in the trust region

(2.11) Bk d___f {x e Rnl IIx xll(k <_ vlAk},

where vl is a positive constant and Ak > 0 is the trust region radius. We will assume
that m is differentiable and has Lipschitz continuous first derivatives in an open set
containing Bk, that

(2.12) mk(xk) f(xk),

and that gk de=f Vmk(xk) approximates Vf(xk) in the following sense: there exists a
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nonnegative constant 1 such that the inequality

(2.13) Ilell[] <_ lAk

holds for all k where the error ek is defined by ek
def

gk Vf(Xk) and where the
norm I1" II[k] is any norm that satisfies

(2.14) I(x, y) l_< I1 11( )IlYlII I

for all x, y E R’. In particular, one can choose the dual norm of II. I1 ) defined by

(2.15) def I<x,IlyllI l I1 11 )

Condition (2.13) is quite weak, as it merely requires that the first-order informa-
tion on the objective function be reasonably accurate whenever a short step must be
taken. Indeed, one expects this first-order behaviour to dominate for small steps.

Clearly, for the above conditions to be coherent from one iteration to the next,
we need to assume some relationship between the various norms that we introduced.
More precisely, we will assume that all these norms are uniformly equivalent in the
following sense.

AS.3. There exist constants al, a3 E (0, 1] and a2, (74

_
1 such that, for all kl _> 0

and k2 _> 0,

(2.16)

and

(2.17)

for all x Rn.
If (2.15) is chosen, then (2.17) immediately results from (2.16) with a3 l/a2

and a4 1/al.
We also note that (2.16) and (2.17) necessarily hold if the norms ]1" I](k2) and

I1" II[k.] are replaced by the t2-norm.
We finally introduce, for given k and for any nonnegative t, the quantity ak(t) >_ 0

given by

(2.18) ((t) de=f min (g, d)I,
xk+dX

that is, the magnitude of the maximum decrease of the linearized model achievable
on the intersection of the feasible domain with a ball of radius t (in the norm I1" I[())
centred at Xk.

We note here that ck(t) can be defined using the notion of support function of
the convex set {dlxk + d X and Ildll(k) <_ t}. The properties that follow can then
be derived in this framework. We have, however, chosen to use the more familiar
vocabulary of classical optimization in order to avoid further prerequisites in convex
analysis.

We then have the following simple properties.
LEMMA 2.2. For all k >_ O,
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(1) the function t -. ak(t) is continuous and nondecreasing for t >_ O,
(2) the function t - ak(t)/t is nonincreasing for t > O,
(3) the inequality

(2.19) c(t) < iipT()(_gk)ll[kt

holds for all t > O.
Proof. The first statement is an immediate consequence of the definition (2.18)

and of Lemma 2.1 applied to the optimization problem of (2.18). In order to prove
the second statement, consider 0 < t t2 and two vectors d and d2 such that

ck(t) -(gk, d) Ildlll() <_ t, xk + d e X,

and

(2.21) c(t2)- -(gk, d2) Ildull() <_ t2, xk + d2 e X.

We observe that the point x + (tl/t2)d2 lies between x and xk + d2, and therefore
we have that xk + (t/t2)d2 e X. rthermore,

t tl(2.22) d2 [d2[[(k) tl
(k)

and the point x + (tl/t2)d2 thus lies in the feible domain of the optimization
problem sociated with the definition of ak(t) and dl. As a consequence, we have
that

(2.23) ak(tl) > 1 rid2 ) k(t2)

and the second statement of the lemma is proved.
The third statement is proved follows. Applying the Moreu decomposition to

-g, we obtain that, for any d such that x + d X and (g, d} O,

(.)
(gk, d) {PT()(--gk), d} (PN()(--gk), PT()d} (PT()(--gk), d}

where we used the fact that d T(xk) and the fact that the tangent cone is the polar
of the normal cone to derive the lt inequality. Taking absolute values and applying
(2.14) thus yields that

(.) (,d) ldll()IlPr()(-)ll.
We then obtain (2.19) by applying this inequality to any solution d of the optimization
problem sociated with the definition of ak(t) in (2.18) and using the fact that

2.3. A class of trust region algorithms. We e now ready to define our first
algorithm in more detail. Besides a used in (2.13), it depends on the constants

(.e6) 0 < ,1 < , < 1, , e (0,1], ,4 e (0,1],

(2.27) 0 </23 </]2 <_/21, /]4 (0, 1],
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(2.28) 0 < 1 < 2 < 1,

and

0</1 --<2 < 1 </3.

ALGORITHM 1.
Step 0. Initialization. The starting point x0 is given, together with f(Xo) and an

initial trust region radius A0 > 0. Set k 0.
Step 1. Model choice. Choose ink, a model of the objective function f in the

trust region Bk centred at xk, satisfying (2.12) and (2.13).
defStep 2. Determination of a generalized Cauchy point (GCP). If ak ak(1) 0,
CC such that for some strictly positive tk > Ilsk II(k),stop. Else, find a vector sk

(2.30) x + sC e X,

(2.31) IIfll() <-- =i,

(2.32)

(2.33) mk(Xk 2r- 8Ck
_
mk(Xk) 2t- ]1 <gk,

and either

(2.34) tk

or

Set the GCP

(2.36) x xk + SkC.

Step 3. Determination of the step. Find a vector sk such that

(2.37) xk + sk E X C Bk

and

(2.38)

Step 4. Determination of the model accuracy. Compute f(xk + sk) and

(2.39) /()-/( +)
p

.() .( + )"
Step 5. Trust region radius updating. In the case where

(2.40) Pk > rh,
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set

(2.41) Xk-}-I Xk -}- 8k

(2.42) Ak+l E [Ak,’)’3Ak] if Pk _>

or

(2.43)

Otherwise, set

Xk+l Xk

if pk <

Ak-}-i E [lAk,’2Ak].

Step 6. Loop. Increment k by one and go to Step 1.

Of course, this only describes a relatively abstract algorithmic class. In particular,
we note the following:

1. We have not been very specific about the model mk to be used in the trust
region. In fact, we have merely stated that its value should coincide with that of the
objective at the current iterate, and that its gradient at this point should approxi-
mate the gradient of the objective at the same point. We will also impose additional
necessary assumptions on its curvature in order to derive the desired convergence re-
sults. This still remains very broad and requires further specification for any practical
implementation of the algorithm.

One very common model choice for a twice differentiable f is to use a quadratic
of the form

(2.46) + + +

where Hk is a symmetric approximation to V2f(Xk). In particular, Newton’s method
corresponds to (2.46) with the choice of Hk V2f(xk).

Another interesting choice is

+ I(x + ,),

that is, the model and the objective must coincide on X I3 Bk. In that case, Pk will
always be exactly one, and the trust region size Ak may be assumed to be very large.
We then obtain a convergence theory of an algorithm which is no longer a trust region
method in the classical sense. In particular, if the step sk is determined by a linesearch
procedure (see [1] and [29]), the present theory then covers both linesearch and trust
region algorithms in a single context.

2. When k 0 or xk =/= Xk-1 or Ak < /k-1, the definition of the model mk at
Step 1 and the condition that (2.13) be satisfied may require the computation of a
new sufficiently accurate approximate gradient gk.
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3. We now briefly motivate the conditions (2.30)-(2.35). Our main idea is to
avoid the repeated computation of the projection onto the feasible set X within the
GCP calculation, which is a convex nonlinear program. Instead, we allow the repeated
solution of convex linear programs. Furthermore, these linear programs need not be
solved to full accuracy. These two relaxations may indeed allow for a substantially
reduced amount of calculation. We have in mind the particular case where X is a
polyhedral set and I1" II(k) is polyhedral for all k.

Condition (2.30) is imposed because we want our algorithm only to generate
feasible points. This may be essential when some constraints are "hard," for instance,
when the objective function is undefined outside X.

Condition (2.31) simply requires the step to be inside a ball contained in the trust
region defined by (2.11). This is intended to leave some freedom for the calculation
of sk in Step 3, even when the GCP is on the boundary of that smaller ball.

Condition (2.32) introduces the desired relaxations, while relating the definition
c to that of a point along the projected gradient pathof xk

(2.48) xk(O) Px(x -Og) (0 >_ 0).

c achieves theIndeed, it can be shown that, if #3 1 and I1" II(k) I1" 112, then xk
same reduction in the linearized model as that obtained by the unique point Xk(Ok) on
the projected gradient path (2.48) having length tk, if such a point exists. Condition
(2.32) with #3 < 1 can therefore be interpreted as a weakening of the condition (for

c should be on the projected gradientexample, required in [9], [21], and [29]) that xk
path. This weakening is of great practical interest when the projection onto the
feasible domain X is not readily computable.

An example is shown in Fig. 2 using the g-norm, where the set of admissible
steps sk

c is represented by the shaded area, and where (2.32) with #3 1 is achieved
for the step dk(tk).

Conditions (2.33) and (2.35) are in the spirit of the classical Goldstein condi-
tions for a "projected search" on the model along the approximation of the projected
gradient path implicitly defined by varying tk. This projected search is similar to that
introduced in [29] and modified in [20]. Condition (2.34)completes (2.33) and (2.35)
by allowing the search to terminate with a point that sufficiently reduces the model
m while having a length comparable to the trust region radius.

We note here that the value of tk is never used by Algorithm 1 except in the
definition of sk.c It is unnecessary to explicitly define its numerical value, provided

c We note also that condition (2.32)its existence is guaranteed for the computed skc and the denominator of (2.39) are nonzero.implies that both sc in (2.36) is called a GCP because it plays a role similar to thatThe vector x
of the GCP in [4], [9], [20], and [29].

c satisfying the conditions ofAt this stage, it is far from obvious how a vector sk
Step 2 can be computed. The existence and computation of a suitable step will be
addressed in 4 and 7.1.

4. Again, much freedom is left in the calculation of the step sk in Step 3, but this
fairly broad outline is sufficient for our analysis. However, this freedom is crucial in
practical implementations, as it allows a refinement of the GCP step based on second-
order information, hence providing a possibly fast ultimate rate of convergence.

5. Only a theoretical stopping rule has been specified at the beginning of Step 2.
(This criterion will be justified in 3.) Of course, any practical algorithm in our class
must use a more practical test, which may depend on the particular class of models
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xk + dk(tk)

FIG. 2. An illustration of condition (2.33) using the -norm.

being used. The present hypothesis is, however, natural in our context, where we want
to analyze the behaviour of the algorithm as k tends to infinity. We will therefore
assume in the sequel that the test at the beginning of Step 2 is never triggered.

6. From the practical point of view, it may be unrealistic to let the trust region
radius Ak grow to infinity, and most implementations do impose a uniform upper
bound on these radii. This is coherent with (2.42), where a strict increase of Ak is
not required.

7. The condition (2.45) may seem inappropriate when Ilskll(k) is small compared
with the trust region radius/kk. Analogously to the observation in [29], this condition
may be replaced by the more practical

(2.49) Ak+ e [min(/o[ISkll(k), lnk),

for some 9’0 E (0, 1] without modifying the theory presented below.
8. The algorithm necessarily depends on several constants. Typical values for

some of them are #1 0.1, #2 0.9, #4 1,/21 1,/23 10-5, /24 0.01,711 0.25,
and ’3 2 Suitable values for the remaining constants7]2 ---0.75, 1 --O.01, 2 5,

will only become clear after extensive testing.
We call an iteration of the algorithm successful if the test (2.40) is satisfied, that

is when the achieved objective reduction f(xk)- f(xk + Sk)is large enough compared
to the reduction mk(xk) --mk(xk + Sk) predicted by the model. If (2.40) fails, the
iteration is said to be unsuccessful. In what follows, the set of indices of successful
iterations will be denoted by ,.
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3. Global convergence for Algorithm 1.

3.1. Criticality measures. If we are to prove that the iterates generated by
Algorithm 1 converge to critical points for the problem (2.1)-(2.2), we clearly must
specify how we will measure the "criticality" of a given feasible point. We say that a
feasible point x, is critical (or stationary) if and only if

(3.1) -Vf(x,) e N(x,).
We propose to use, as a measure of criticality, the quantity

(3.2) ak[x] de___f] min (Vf(x), d) [,
-dX

Ildll()l

which can be interpreted as the magnitude of the maximum decrease of the linearized
objective function achievable in the intersection of X with a ball of radius one (in the
norm [1" II(k)) centred at x. Observe that ak[x] reduces to [IVf(x)[[2 when X Rn

and [[. [l(k) --[[" ]]2.
LEMMA 3.1. Assume that AS.2 holds. Then, for all k >_ O, ak[’] is continuous

with respect to its argument.
Proof. The continuity of ak [.] with respect to its argument is a direct consequence

of Lemma 2.1 and of the continuity of Vf(x).
We now show that all the norms I1" II(k) are formally equivalent.
THEOREM 3.2. Assume that AS.2 and AS.3 hold. Then there exists a positive

constant Cl >_ 1 such that

1
(3.3) --kl[x] <_ Ck.[x] <_ ClCkI[X]

C1

.for all x E X and all kl >_ 0 and k2 >_ O.
Proof. We first observe that, using assumption AS.3,

(3.4) Ildll(k) 1 == al <_ Ildl12 <_ a2.

The lower (respectively, upper) bound in this last inequality represents the smallest
(respectively, largest) possible distance (induced by I1" 112) between x and the boundary
of any ball, Ildll(k) 1, for k >_ 0. The ball {x 4- d ll]dll2 <_ a2} then contains all the
balls of the form

(3.5) Ildl]() _< 1,

while the ball {x 4- d Ildll <_ o- } is contained in them all. Now consider

def def
min (Vf(x), d} I.(3.6) Cmetx +dexmin (Vf(x),d)l and min
+deX

Becus oth second,rtoLee.e (ith , VI()d {.[ .[),
we deduce that

2(3.7) amx min.

Hving established this property, we now return to the proof of Theorem 3.2 itself. If
kl Ix] k2 [X] the (3.3) is trivially stised. We thus only cosider the ce where
sy
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In this situation, we will show that both dl and d2, two vectors satisfying the relations

(3.9) akl[x] (Vf(x),dl), IIdllk) _< 1, x + dl e X,

and

(3.10) k2[X] -(Vf(x),d2), IId211(k2) < 1, x + d2 e X,

are such that

(3.11) 0.1 _< Ildxll _< z and 0.1 _< Ildzllz _< z.

We note that the two upper bounds in these inequalities immediately result from
AS.3 and (3.9)-(3.10). We therefore only consider the case where one or both lower
bounds in (3.11) are violated. Assume, for instance, that [1d1[[2 < al. This solution
of the minimization problem associated with akl [x] is therefore in the interior of all
the possible balls of the form (3.5). The only binding constraint at this point must
be x / d E X, and this is still true if the ball defined by I1" [l(k) is replaced by that
defined by I1" I[(k.). But this implies that (3.8) cannot hold, which is impossible. The
case where [Id2[12 < al is entirely similar. The inequalities (3.11) are therefore valid,
and we obtain that

(3.12) Omin

_
Ok IX]

_
Omax and Omin

_
Ok2 Ix]

_
Omax.

Combining these relations with (3.7) and (3.8), one deduces that

(3.13) ak [X] < Ok.[X

__
Omax

_
--Omin
0.2

_
--Okx0.2 [X]

0.1 0.1

defand (3.3) is proved with cl 0.2/0.1.
The fact that ak[x] can now be used as a criticality measure results from the

following lemma.
LEMMA 3.3. Assume that AS.I-AS.3 hold. Then, x. is critical if and only if

(3.14) ak[x.] 0.

Proof. Consider first the minimization problem of (3.2) where we choose I1" II<k)
112, and let us denote the analog of (3.2) by a2[x].
The criticality conditions for this problem can be expressed as

(3.15) 0 e 2d + Vf(x) + N(x + d),

(3.16) x + d X,

(3.17) Ildll _< 1,

and

(3.18) ff (lldllN 1) o.

Assume now that a2[x,] 0. Then the choice d 0 is a solution of the minimization
problem. The relation (3.1) then follows from (3.15).
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Assume, on the other hand, that (3.1) holds. Then the conditions (3.15)-(3.18)
are satisfied with d 0 and 0. It is then easy to verify that

0

follows.
As a consequence, x, is critical if and only. if (3.19) holds. But Theorem 3.2 and

the fact that the g2-norm can be considered as one of the (k)-norms then yield the
desired result.

Lemmas 3.1 and 3.3 and Theorem 3.2 have the following important consequence.
COROLLARY 3.4. Assume that AS.I-AS.3 hold and that the sequence {xk} is

generated by Algorithm 1. Assume .furthermore that there exists a subsequence of
{xk }, {Xk }, say, converging to x, and that

(3.20) lim ak [Xk] O.

Then x, is critical.
We note that, if formally equivalent, the criticality measures depending on k often

differ from the practical point of view, when used in a stopping rule. If the problem’s
scaling is poor, a scaled measure is usually more appropriate. This scaling can be
taken into account in the definition of the iteration-dependent norms.

On the other hand, if the only first-order information we can obtain is gk (under
the proviso (2.13)), then k[x] is unavailable, and one is naturally led to use

def(3.21) (k Ck(1) min (gk,d)I,
k A-d__X

which represents the amount of possible decrease for the linearized model in the in-
tersection of the feasible domain with a ball of radius one. Clearly, ak Ok[Xk] when
gk Vf(xk), but this need not be the case in general. The value ak was used in the
"theoretical stopping rule" in Step 2 of Algorithm 1.

The replacement of ak[xk] by ak has a price, however. It may well happen that
an iterate xk is a constrained critical point for the model mk, although xk is not
critical for the true problem. In that case, Algorithm 1 will stop at the beginning
of Step 2. The model mk should therefore reflect the noncriticality of x. The
discrepancy between ak and Olk[Xk] cannot be arbitrarily large, however, as is shown
by the following result.

LEMMA 3.5. Let xk E X be an iterate generated by Algorithm 1. Then

(3.22)

Proof. Define d and dk as two vectors satisfying

(3.23) c[x] (Vf(xk),d), IIdll() < 1, x + d e X,

and

(3.24) ck -(gk, dk) ]]dkl](k) < 1, Xk A- dk X.

Assume first that Ok[Xk] >__ k. Then we can write that

0 k[xk]- k (gk,dk)- (Vf(xk), d)
(3.25) (gk, dk d) + (ek, d)

-dl) +
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where we used the inequality (2.14). But the definitions of ck, dk, and d imply that

(3.26) (gk, dk) --k <_ (gk, d)

and hence (3.22) follows from (3.25). On the other hand, if ck[xk] < ck, then a
similar argument can be used to prove (3.22), with (3.25) replaced by

(3.27) 0 < ck --Ck[Xk] <_ (Vf(xk),d -dk)-t-Ilekll[k]
and (3.26) by

(3.28) (Vf(xk), d) --ck[xk] <_ (Vf(xk), dk). D

The bound (3.22) will be used at the end of our global convergence analysis.

3.2. The model decrease. The traditional next step in a trust region-oriented
convergence analysis is to derive a lower bound on the reduction of the model value
at an iteration where the current iterate xk is noncritical. This lower bound usually
involves the considered measure of criticality (k in our case), the trust region radius
Ak, and the inverse of the curvature of the model mk (see [9], [19], [21], [23], and [29]
for examples of such bounds). To define this notion of curvature more precisely, we
follow [29] and introduce, for an arbitrary continuously differentiable function q, the
curvature at the point x E X along the step v, as defined by

(3.29) Cok(q,x, v) de_f 2

ilvll, k
[q(x / v) q(x) (Vq(x), v)]

If we assume that q is twice differentiable, the mean-value theorem (see, e.g., [16,
p. 11]) implies that

1f01 v’v2q(x-t-T1T2v)v)
(3.30) COk(q,x, V) 2 T2 IlVII2 dT1 dT2.

(k)

It is also easy to verify that, if q is quadratic and I1" II(k) I1" 112, then cok(q,x, v) is
independent of x and of the norm of v, and reduces to the scaled Rayleigh quotient of
72q with respect to the direction v. We note that the Rayleigh quotient has already
been used for similar purposes in the context of convergence analysis, namely, in [7],
[28], and [29].

We then obtain the following simple result.
LEMMA 3.6. If AS.I-AS.3 hold, then there exists a finite constant c2 >_ 1 such

that

(3.31) wk(f, Xk, S) <_ C2

for all k >_ 0 and all s such that xk + s .
Proof. The Lipschitz continuity of Vf(x) implies that

(3.32) If(xk + s)- f(xk) (Vf(xk) s} < 1/2Llllsll 22
where nI is the Lipschitz constant of Vf(x) in the norm II" 112. We may then deduce
from (3.29) that

2

(3.33) cok(f, xk, 8) nf 11812(k)
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which gives (3.31) with c2 max[l, aLI] by using AS.3.
We are now in position to state the main result of this section.
THEOREM 3.7. Assume that AS.I-AS.3 hold. Consider any sequence {xk} pro-

duced by Algorithm 1, and select a k > 0 such that xk is not critical in the sense that
ak > O. Then, if one defines

one obtains that

(3.35) wk
c >_ O.

Furthermore, there exists a constant C3 E (0, 1] such that

C(3.36) mk(xk) mk(x + s) > c3cmin 1,

for all k O.
Proof. Let us first consider the ce where t 1. In this ce, we obtain from

(2.33), (2.32), the first statement of Lemma 2.2, and the definition (3.21) that

(3.37) mk(xk) mk(xk + S) ,l,3ak(tk) ,l,33k(1)

Assume now that tk < I. We first note that, because of (2.32), the second part of
Lemma 2.2, (3.37), and (3.21), we have that

c ak(tk) ak(1)(3.38)
<gk,sk )

,3 ,3
t t 1

Combining this inequality with (2.33), we obtain that

c
(3.39) mk(xk) mk(xk + S) , <9, Sk )

tk ,1,3ktk.
tk

Now, if condition (2.34) is satisfied, we can deduce, by using (3.39), that

(3.40) mk(xk) mk(xk + 8) lg3k min[aA, a].
C satisfies (2.35) we observe thatOn the other hand, if sk

2(1 ,2)[<g,s)l > 2(1
Cll( ) c

c and (2.35). Hence (3.35) is proved and, usingwhere we used the definition of wk
(3.38), we have that

k(3.42) t > 2(1- ,2) 23(1-
w 1 + w"

Substituting this bound into (3.39) then yields that

c satisfies (2.35)(3.34) wc def O)k(mk, Xk, 8) if 8k
0 otherwise,
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The inequality (3.36) now results from (3.37), (3.40), (3.43), (2.38), and u4 _< 1, with

(3.44) c3 #1#3#4 min[’3, ’4, 2#3(1 #2)] _< 1. FI

We end this subsection by stating an easy corollary of Theorem 3.7, giving a lower
bound on the decrease in the objective that is obtained on successful iterations.

COROLLARY 3.8. Under the assumptions of Theorem 3.7, one obtains that

[ l(3.45) f(xk) f(xk+) > rlC3ak min 1 Ak
1 + wk

forkE.
Proof. The inequality (3.45) immediately results from (3.36), (2.39), (2.40), and

(.4).
.3. Convergence o criical points. This section is devoted o he. proof of

global convergence of he ieraes generated by Algorithm i o critical points.
For developing our convergence heory, we will need o introduce additional -sumpions on he curvature of the models a. These sumptions, and he res of

our convergence analysis, will be phred in erms of the quantity

(3.46) flk=lq- max [max[w/C
i--O,...,k

c and sk vectors.We note that flk only measures curvature of the model along the sk
We also observe that the sequence {ilk } is nondecreasing by definition.

We first recall two useful preliminary results in the spirit of [29].
LEMMA 3.9. Assume that AS.I-AS.3 hold and consider a sequence {Xk} of iter-

ates generated by Algorithm 1. Then there exists a positive constant c4 >_ 1 such that,
for all k >_ O,

If(Xk + Sk) mk(xk + )[ < C4flkA2k

Proof. We observe that

/ II’alla)l’.,.’(f, ,’) (ma,,)1
(.48)

IIll[] I111)
+ llll[l(f,,)1 + I(m,, )1],

where we used the definition (3.29), (2.12), and the inequality (2.14). But
PlAk, and hence we obtain from (3.48), (2.13), (3.46), and Lemma 3.6 that

(3.49) If(xa + ) m(a + a)l

which then yields (3.47) with

(3.50) c4 2 C2 + m 1,

LEMMA 3.10. Assume that AS.I-AS.3 hold and consider a sequence {xk} of
iterates generated by Algothm 1. Assume fuheore that there exists a constant
e (0, 1) such that

(3.51)
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for all k. Then there exists a positive constant c5 such that

c5(.)

for all k.
Proof. Assume, without loss of generality, that

c0A0(a.a) < c(1 72)’

where "1 and 2 are defined in the algorithm (see (2.29) and (2.28)). In order to
derive a contradiction, sume also that there exists a k such that

(3.54)
C4

and define r the first iteration number such that (3.54) holds. (Note that r 1
because of (3.53).) The mechanism of Algorithm 1 then ensures that

(3.55) Z__ C3(1 2)
1 C4

where we used the relations

_ , (2.45), (3.54) with k- r, c3 1, and c4 1.
Combining the inequalities (3.51), (3.36), e < 1, r- 1, and (3.55), we now obtain
that

(3.56) mr-(xr-) mr-(x_ + sr-) cae min 1, Ar-, r-
The relations (2.39), (3.47), (3.56), and the middle part of (3.55) together then imply
that

(a.)

I- l
if(x_ + _) _(x_ + -)l < Z-- < ._(x_) _(x_ +_)

Hence p_ 2, and thus A A_. However, we may deduce from this lt
inequality that

7c3(1 2)(3.58) r_lAr_l
C4

which contradicts the sumption that r is the first index with (3.54) satisfied. The
inequality (3.54) therefore never holds, and we obtain that, for all k,

(3.59)
C4

The inequality (3.52) then follows from (3.59) by setting

(.0)
C4

We now formulate our first sumption on the model’s curvatures.
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AS.4. The series

(3.61) E --k--0

is divergent.
As shown in [29], this condition is necessary for guaranteeing convergence to a

stationary point. It is clearly satisfied in the common case where quadratic models
of the form (2.46) are used, whose Hessian matrices Hk are uniformly bounded. This
last assumption obviously holds when f(x) is twice continuously differentiable over
the compact set and Hk V2f(xk).

Before proving one of the major results of this section, we recall the following
technical lemma, due to Powell [24] (proofs can also be found in [9] or [32]).

LEMMA 3.11. Let {Ak} and {/3k} be two sequences of positive numbers such that
kAk C5 .for all k, where c5 is a positive constant. Let e be a positive constant, S
be a subset of {1, 2,...}, and assume that, for some constants /2 < 1 and "y3 > 1,

(3.62) Ak+l _< "y3Ak for k E S,

(3.63) Ak+l _< ")’2Ak for k

_ ,
(3.64) k+ >_ k for all k,

and

(3.65) E min Ak,kk
Then

k=lkk <O"
Using this lemma, we now show the following important result.
THEOREM 3.12. Assume that AS.I-AS.4 hold. Then, if {xk} is a sequence of

iterates generated by Algorithm 1, one has that

(3.67) lim inf ak 0.

Proof. Assume, for the purpose of obtaining a contradiction, that there exists an
e E (0, 1) such that (3.51) holds for all k >_ 0. Corollary 3.8 and the fact that the
objective function is bounded below on imply that

(3.68) 1C3 min 1, Ak, <_ [f(xk)- f(xk+)] < cx.

Thus, because of Lemma 3.10 and the inequalities e < 1 and k >_ 1, the sequences
Ak and fk then verify all the assumptions of Lemma 3.11, which then guarantees that

(3.69) E < c.
k=0
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This last relation clearly contradicts AS.4, and hence our initial assumption must be
false, yielding (3.67).

This theorem has the following interesting consequences.
COROLLARY 3.13. Assume that AS.I-AS.4 hold. Assume furthermore that

is a sequence of iterates generated by Algorithm 1 that converges to x,, and that

(3.70) lim [[el[[ O.

Then x, is critical.

Proof. This result follows directly from (3.70), Lemma 3.5, Theorem 3.12, and
Corollary 3.4.

COROLLARY 3.14. Assume that AS.I-AS.4 hold. If {xk} is a sequence of iterates
generated by Algorithm 1 and if , is finite, then the iterates xk are all equal to some
x, for k large enough, and x, is critical.

Proof. If , is finite, it results from (2.44) that xk is unchanged for k large enough,
and therefore that xk x, xj+l for k sufficiently large, where j is the largest index
in ,. The relations (2.45) and (2.29) also imply that the sequence {Ak} converges to
zero. Hence (2.13) ensures that (3.70) holds. We then apply Corollary 3.13 to deduce
the criticality of x.. [:]

If we now assume that S is infinite, we wish to replace the lim inf in (3.67) by a
true limit, taken on all successful iterations, but this requires a slight strengthening
of our assumption on the model curvature.

AS.5. We assume that

(3.71) lim k[f(x) f(x+l)] O.

As discussed in [9], this assumption is not very severe, as we always have that
(3.71) holds with the limit replaced by the limit inferior. Also, AS.5 is obviously sat-
isfied when using a model with bounded curvature, as is assumed in [20], for example.

THEOREM 3.15. Assume that AS.I-AS.5 hold. Then, if (xk} is a sequence of
iterates generated by Algorithm 1 and if the set , is infinite, one has that

(3.72) lim Ck O.

Proof. We proceed again by contradiction and assume that there exists an el E
(0, 1) and a subsequence (m} of successful iterates such that, for all m in this
subsequence,

(3.73)

If we define

def [1 ]1 1(3.74) C6 max --, cl
Cl

where c is given by Theorem 3.2, and if we choose

(a.75) ee 0,2(c+1)
Theorem a.12 then ensures the existence of another subsequence {i} such that

(a.76) c _> e for mi <_ k < i and
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We now restrict our attention to the subsequence of successful iterations whose indices
are in the set

(3.77)

where mi and gi belong, respectively, to the two subsequences defined above. Applying
Corollary 3.8 for k E ]C, we obtain that

[f(Xk)- f(Xk+) >_ 7c3e2 rain Ak,

where we used the inequalities e2 < 1 and k >_ 1. But AS.5 then implies that

(3.79) lim kAk O,

and hence, using (3.78), that

I(x)- I(x+) _> ,c3/x

for k K: sufficiently large. As a consequence, we obtain, for i sufficiently large, that

(3.81)

where the sums with superscript (]C) are restricted to the indices in ]C, and where

def O’2/21(3.82) c7
T1C32

Because of Lemma 3.1 and because the last right-hand side of (3.81) tends to zero as
i tends to infinity, we deduce that

(3.83) e( + 3)

for i sufficiently large. We note now that (3.79), k >_ 1, and (2.13) imply that gin, is
arbitrarily close to Vf(xm,), and hence Lemma 3.5 gives that

1(3.84) Io,, -., [.,]1 _<
2(o + 3)

for i large enough. We observe also that, because of (2.13) and (2.42),

where ki is the largest integer in ]C that is smaller than gi. As before, we now deduce
from (3.79), k _> 1, Lemma 3.5, and (3.85) that
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for large i. Hence, using Theorem 3.2, we obtain that

[(3.87) [Cm [xe] e [xe][ _< c6ce [xe] _< c6 ce + 2(c6 + 3)

for i sufficiently large. Using the triangular inequality together with (3.84), (3.83),
(3.87), and (3.86), we obtain that, for large enough i,

We then deduce from (3.76) and (3.75), that, for large enough i,

am, _< ag, (c6 + 1) + 1/2{[1 < {[1,

which contradicts (3.73) and proves the desired result. F1

As above, we can obtain conclusions about convergent subsequences where the
first-order information is asymptotically correct. If is finite, the convergence of the
iterates to a critical point results from Corollary 3.14. Hence, we now restrict our
attention to the case where S is infinite.

COROLLARY 3.16. Assume that AS.I-AS.5 hold. Assume furthermore that ,S is
infinite, that {xk} is a convergent subsequence of the successful iterates generated by
Algorithm 1, and that

(3.90) lim o.

Then x, the limit point of {xk, }, is critical.

Proof. The proof of this result is entirely similar to that of Corollary 3.13 except
that we have to consider only the successful iterates.

Finally, we are interested in what can be said on the criticality of limit points of
{xk} if we do not assume (3.70).

COROLLARY 3.17. Assume that AS.I-AS.5 hold, that {xk} is a subsequence of
successful iterates generated by Algorithm 1, and that xk} converges to x.. Then

(3.91) limsupak[x,] _< limsup

Proof. If ,S is finite, then the result immediately follows from Corollary 3.14 and
Lemma 3.3. Assume, therefore, that is infinite. Because of Lemma 3.1, Lemma 3.5,
and Theorem 3.15, we have that

lim sup ck, [x,] lim sup ak,

_< lim sup

<_ lim sup

Keeping in mind that the dependence of I1" II[k] on ki, and hence on i, is irrelevant
because of Theorem 3.2, Corollary 3.17 thus guarantees that all limit points are as
critical as the scaled accuracy of gk as an approximation to Tf(xk) warrants.
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4. A model algorithm for computing a generalized Cauchy point. A
major difficulty in adapting the framework given by Algorithm 1 to a more practical
setting is clearly the definition of a practical procedure to compute a GCP satisfying
all the conditions of Step 2.

As indicated already, such procedures have been designed and implemented in the
case where the projected gradient path defined by the classical g2-norm is explicitly
available (see [1] and [29], for example).

We now consider the more general case presented in 2 and 3, and we wish
to find, at a given iteration, a GCP satisfying (2.30)-(2.35). The difficulty is then
to produce a point that is not too far away from the unavailable projected gradient
path. This cannot be done without considering the particular geometry of this path,
which may closely follow the boundary of the feasible set. As a consequence, linear
interpolation between two points on the projected gradient path is often unsuitable,
and a specialized procedure is presented in this section.

For the sake of clarity, in this section we will drop the subscript k, corresponding
to the iteration number.

4.1. The RS Algorithm. We first define the following restriction operator as-
sociated with the feasible set X and a centre x E X. This operator is defined as

(4.1) Rx[y] de__f arg min II z YlI2
z[x,y]nx

for any y E Rn, where Ix, y] is the segment between x and y. The definition of Rx[y]
uses the g2-norm, but any other norm can be used because the associated minimization
problem is unidimensionM. The action of the restriction operator (4.1) is illustrated
in Fig. 3. It should be noted that computing R [y] for a given y is often a very simple
task.

Y2

X

Yl

FIG. 3. The restriction operator with centre x.

The GCP Algorithm relies on a simple bisection linesearch algorithm on the re-
striction of a piecewise linear path with respect to a given center, called the RS
Algorithm (Restricted Search Algorithm). Because of the definition of the restriction
operator, this last algorithm closely follows the boundary of the feasible domain, as
desired. It finds a point x. x + z in Rx[xl,xP, xU], the restriction of a nonempty
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piecewise linear path consisting of the segment Ixz, xp] followed by Ixp, xU], where xz,
xp, and xu are defined below. The restriction is computed with respect to the centre
x, and the resulting vector z is such that (2.33) and (2.35) hold with sk z. The as
Algorithm can be applied under the conditions that (2.35) is violated at R[x] and
that (2.33) is violated at Rx[x]. It therefore depends on the three points x, xp, and
xu defining the piecewise linear path, the centre x, and on the current model m (and
hence on its gradient g). It also depends on an arbitrary bijective parametrization of
the path Ix, xp, xU]. For example, one can choose the parameter to be the length of
the arc along the path measured in the g2-norm. More formally, if

6p llxp xll2 and 6 6p + llx xpll2,

we can define

6 xder xp 4-(1 ) if _< tip,
6-6, xU6_ + (1 _.)xp if _> 5p

for any E [0,6]. The inner iterations of Algorithm RS will be denoted by the
index j.

RS ALGORITHM.
Step 0. Initialization. Set 10 0, u0 6u, and j 0. Then define 60 1/2 (10 4-u0).
Step 1. Check the stopping conditions. Compute xj R[x(6j)], using (4.1) and

(4.3). If

(4.4)

then set

(4.5) lj+l lj and uj+ j,

and go to Step 2. Else, if

(4.6)

then set

(4.7) lj+l 6j and uj+ uj,

and go to Step 2; else (that is, if both (4.4) and (4.6) fail), set x. xj and STOP.
Step 2. Choose the next parameter value by bisection. Increment j by one, set

(4.s) 1/2 +
and go to Step 1.

The fact that a vector x. has been produced by the application of the RS Algo-
rithm on the path [xZ,xP, x’] with respect to the centre x and the model m will be
denoted by

(4.9) x, RS(x, m, x xp, xU).

We have the following simple result.
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LEMMA 4.1. Assume that the RS Algorithm is applied on a piecewise linear path
[x,xP, xu] satisfying the conditions stated in the paragraph preceding its description,
with centre x and model m. Then this algorithm terminates with a suitable vector
x. x + z at which (2.33) and (2.35) hold in a finite number of iterations.

Proof. We first note that (2.35) is violated at Rx[x] and that (2.33) is violated at
R[xu]. As a consequence, the validity of the result directly follows from the inequality
# < #2, the continuity of the model m on the restriction of the path Ix, xp, xU], and
from the fact that the length of the interval [lj, u] tends geometrically to zero, while
its associated arc on the restricted path always contains a fixed connected set of
acceptable points, rl

4.2. The GCP Algorithm. We now describe the GCP Algorithm itself. It
depends on the current iterate x E X, on the current model m and its gradient g, on
the current norm I1" II, and also on the current trust region radius, A > 0. Its inner
iterations will be identified by the index i. (Also recall that all subscripts k have been
dropped, yielding, for instance, a(t) instead of a(t) and instead of

GCP ALGORITHM.
Step 0. Initialization. Set 0, lo 0, z 0, and uo u2A. Also choose z as

an arbitrary vector such that IIzll > u2A and an initial parameter to E (0, u2A].
Step 1. Compute a candidate step. Compute a vector zi such that

(4.10)

(4.11) x + zi e X,

and

(4.12) <g, zi> <_ -/3c(ti).

Step 2. Check the stopping rules on the model and step. If

(4.13) m(x - zi) > m(x) +/1 (g, Zi},

then set

(4.14) Z
u

Li-t-1 i i+1 Zi

and

(4.15) li+l li, Zi+ Z

and go to Step 3. Else, if

(4.16) + z.) < ,= z.>
and

(4.17) ti < min[u3A,

then set

(4.18) Ui+l Ui, Zbl Z
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(4.19) li+l ti, zi+1 Zi

and go to Step 3. Else (that is, if (4.13) and either (4.16) or (4.17) fail), then set

(4.20) xC x + zi

and STOP.
Step 3. Define a new trial step by bisection. We distinguish two mutually exclusive

cases.

z0 or z+ Z. SetCase 1. z+l

ti+l -12 (/i+1 -- Ui+I),

increment by one and go to Step 1.
Case 2. zi+ z0 and z+ z. Define

(4.22) P [ [[Z+l[[] Zi+Zi+l max 1,
ilz+:ll

set

(4.23) P uxC RS(x, m, xi+l, Xi+l, Xiq_l)

where

(4.24) p p u
X - Zi.4_1: XiA_ X "4" ZiA_l XiA_ X - Zt+lXiq-1

and STOP.

The actual value of z is irrelevant in practice: this quantity is merely used to
detect if z+ has been updated in (4.14) at least once.

Figure 4 shows the situation at a given iteration of the GCP Algorithm in the
case where I1" II(k) I1" IIo. In particular, the use of the point xp as defined in Step 3

(Case 2) is illustrated. The symbols xr, xy, t, t, xt, Ct, and Ct= are not yet defined,
but will be introduced in the proof of Theorem 4.5 below.

We note that linear interpolation between xi+l Rx [xi+l 1] and xi+ Rx[xiu+l]
cannot generally be used in Step 3 (Case 2), because the geometry of the boundary of
the feasible domain may imply that the (unknown) projected gradient path consider-
ably departs from the segment [X+l, xi+l]. This is the reason why a call is made to
the RS Algorithm, which closely follows this boundary.

We emphasize that this GCP Algorithm is only a model, intended to show feasi-
bility of our approach, but is not optimized from the point of view of efficiency. Many
additional considerations are possible and indeed necessary before implementing the
algorithm, including

the details of the all-important solver used to determine zi in Step 1,
a suitable choice of to,
more efficient techniques for simple models (e.g., linear or quadratic), and

also for specific choices of the norm [[. [[.
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boundary of the ball
of radius t

boundary of the ball
of radius t

tu

the path Rx[x xp, xu]

X

FIG. 4. A "restricted path" with the l.oo-norm.

The solver used in Step 1 obviously depends on X and the norm It" II. For example,
Step 1 reduces to a linear programming problem if X is polyhedral and a polyhedral
norm is used; the classical projected, gradient may also be obtained when the g2-norm
is used and 3 1.

If we denote by

(4.25) xC GCP(x, m, nJ-II, A)

the fact that the vector xC has been obtained by the GCP Algorithm for the point x,
the model m, the norm I1" II, and the radius A, we then replace Step 2 of Algorithm 1
by the simple call

(4.26) xCk GCP(xk,mk, I1"
4.3. Properties of the GCP Algorithm. We now wish to show that the GCP

Algorithm converges to a point satisfying (2.30)-(2.35) and terminates in a finite
number of iterations.
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The first result shows that, if a step z satisfies (2.32), then all prolongations of
this step, that is, all vectors of the form TZ with " _> 1, also satisfy the same condition.

LEMMA 4.2. Assume that there exists a t >_ Ilzll such that

(4.27) <g,z> _--#30(t)

:for some z O. Then

(4.2s) <,> <_ -(t)

forT>_1.
Proof. Using successively (4.27), the inequality T >_ 1, and the second part of

Lemma 2.2, we obtain that

(4.29) <g, TZ> <--#3Tt
a(t)

<-#3t
a(Tt)

t Tt

yielding the desired bound.
We are now in the position to prove that the GCP Algorithm is correctly stated,

finite, and coherent with the theoretical framework presented in 2 and 3.
LEMMA 4.3. The GCP Algorithm has well-defined iterates.

Proof. We have to verify that all the requested conditions for applying the RS
Algorithm are fulfilled when a call to this algorithm is made. We first note that
the RS Algorithm can only produce a feasible point because of the definition of the
restriction operator. We also note that the mechanism of the GCP Algorithm ensures
that the piecewise path to be restricted is nonempty, that (2.33) is always violated
at Rx[xui+l] xUi+l, and, similarly, that (2.35) is always violated at Rx[x+l] Xi+l.l
The RS Algorithm is therefore applied in the appropriate context.

We now prove the desirable finiteness of the GCP Algorithm at noncritical points.
THEOREM 4.4. Assume that ( > O. Then the GCP Algorithm terminates with a

suitable xC in a finite number of iterations.

Proof. Assume that an infinite number of iterations are performed. We first
consider the case where

l=z0 for alli>0.(4.30) z
In this case, the mechanism of the GCP Algorithm implies that

(4.31) ti < (1
Hence we obtain that

(4.32) [Izill _< ti _< min [1, 2(1-Lm#l)#3a]
for all >_ il, say, where L, is the Lipschitz constant of the gradient of m with respect
to the norm ]]. I]. For all i _> 0, we have that

(a.aa) ,( + z,) ,() , (a. z,) ( ,)(a. z,) + i,il,
where we have used Taylor’s expansion of m around x and the definition of Lm. But
the second part of Lemma 2.2 implies that

(4.34) a(ti) > a(1)
a

t 1
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for all i >_ il, and hence that

for i >_ il, because of the inequality t >_ II  ll. Condition (4.12) then gives, for such i,
that

(4.36)

Introducing this inequality in (4.33), we obtain that

(4.37) m(x + zi) m(x) #1 <g, zi> <_ -(1 l)3llzll / 1/2LmllZ[I 2

for i _> il. Using (4.32), we now deduce that

(4.38) m(x + (g, <_ 0

for all i _> il. As a consequence, (4.13) is always violated for sufficiently large i, and
(4.30) is therefore impossible.

We thus consider the case where z z for all i. This implies that (4.13) is
always false and that the algorithm either stops through (4.20) (in which case the
convergence is clearly finite) or uses (4.19) at each iteration. But. the effect of (4.19)
is that li tends to u2A as i grows, and therefore (4.17) must fail for sufficiently large
i because u3 < u2. The algorithm then terminates with (4.20) after finitely many
iterations.

We conclude from these two arguments that, for the algorithm to be infinite, one
must have that z! z0 for some i > 0 and also that zi z must be defined
for some i2 > 0. But, because the mechanism of the algorithm guarantees that the
sequence (li} is nondecreasing and that the sequence (ui} is nonincreasing, Case 2 in
Step 3 therefore occurs for i max(il, i2). The RS Algorithm is thus used in (4.23),
and Lemma 4.1 again ensures finite temination.

THEOREM 4.5. The call (4.26) can be used as an implementation of Step 2 of
Algorithm 1.

Proof. We have to verify the compatibility of the GCP Algorithm with the con-
c cditions of Step 2 in Algorithm 1, that is, we have to check that the step sk xk xk

produced by (4.26) does indeed satisfy the conditions (2.30)-(2.35). All these condi-
tions except (2.32) are clearly enforced by the mechanism of the GCP and RS Algo-
rithms. We can therefore restrict our attention to the verification of (2.32) for the

c ctwo different possible exits of the GCP Algorithm and their associated sk xk Xk.
Dropping again the subscripts k, we have to verify that (4.27) holds with z xC- x.

The first case is when the GCP Algorithm terminates using (4.20). Then (4.12)
ensures that (4.27) holds for z zi.

The second and last case is when the algorithm terminates through (4.23). The
for somecondition (4.12) again ensures that, in this case, (4.27) holds for z z+

llZ+lll, and for z z+ for some +1 -> llZ+lll. For clarity of notations, we
drop the subscript + 1 below.

Ve analyze the stuaton n the pane containing z, z, and z, and define, for
> O, the convex sets

(4.39) Ht de=f {X + Z e H <g, z> < -3(t)},
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and

(4.41) G de=r/-/t 0 St.

For a given t > 0, Ht is the half-plane of all vectors x + z E H such that z satisfies
(4.27), irrespective of the constraints t _> Ilzll and x + z E X, while Ct is the subset
of Ht for which these constraints hold.

We again distinguish two cases. The first case is when

(4.42) llz [I IIz ll.
Using the first part of Lemma 2.2, we deduce that

(4.43) <g, Zu> __< --30(:u) __<

and therefore, using the inequality t _> IIz ll llz ll, that the complete segment
Ixl, x"] belongs to the convex set C,. Hence (4.27) holds for t at every point of the
segment Ix, xu] R[x, xp, x].

The more complicated second case is when (4.42) fails. The proof proceeds by
showing the existence of a continuous feasible path between x and xu, depending on
the parameter t, such that, for each point on this path, there is a t e ItS, tu] for which
(4.27) holds at this point. To find this path, we first define, for all t It, tu],

def(4.44) xt arg min Ily xll2,
y6Ct

that is, the projection of xu onto the convex set C. We note that both x and
belong to C,, and hence that the segment Ix, x,] lies in C,. We also note that
xu x 6 Ct. Finally, x clearly belongs to C for all t 6 [tl, t] because of (4.44).
Furthermore, this set of x determines a continuous path, as can be seen by applying
Lemma 2.1 to the minimization problem (4.44). The desired path from x to x then
consists of the segment [x, x,] followed by the path determined by x for t 6 [t, tu].

To complete the proof of the theorem for this second case, we use the path just
obtained to show that (4.27) holds for some t at every point of R[x,xP,x]. We
observe here that this restriction belongs to the plane H. We successively consider
three parts of the restricted path, and show the desired property for each part in turn.
This restricted path is that used by the GCP Algorithm. A case where I1" II 11"
is illustrated in Fig. 4.

The first part of the restricted path consists of the segment [x, xr] (where xr

R[xP]) which is the restriction of the segment Ix, xP]. Using Lemma 4.2 and the fact
that zp is a multiple of zl, we deduce that, for each point y 6 Ix, xr], there exists a
t such that (4.27) is satisfied at this point for z y- x. We also note that the same
argument implies the existence of tp >_ IlzPll IlzUll such that (4.27) also holds at zp.

The second part of the restricted path consists of the segment [xl,x], where
x:f Rx[xf] is the first feasible point on the segment [xP, xU]. (Note that [xl, xu]
may be equal to Ixp, x] when xp is feasible or may be reduced to the point x if this
is the only feasible point in Ixp, xU].) The segment [xI, xu] is also contained in X and
is therefore equal to its restriction. Because (4.27) holds with t min[tp, t] both for
zp and z, it must also hold, with the same t, for all z such that z y- x where
e c_
The third part of the restricted path consists of the restriction of the segment

Ixp, xY]. If xp is feasible, then the path reduces to xY xp, and the desired property
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results from the analysis of the first part of the restricted path. Assume, therefore,
that xp is not feasible. Then the restriction of Ixp, xf] lies on the intersection of the
boundary of X with H. It can therefore be viewed as the prolongation (as defined
before Lemma 4.2) of a part of the path from x to xu defined by the segment [x, xz]
followed by {xtlt E It, t]}. Lemma 4.2 then guarantees the existence, for each point
y x / z on the restriction of Ixp, xf], of a t such that (4.27) holds for z. This finally
completes the proof. [:]

The proof of this last theorem also shows that the path used by the GCP Al-
gorithm is not the only possible one. This can be seen, for example, by choosing

I1" I1" 112, in which case the projected gradient path (see [29]) is also acceptable
(in the sense that each of its points satisfies (4.12)) and may be different from the
restricted path used by the GCP Algorithm.

5. Identification of the correct active set. In this section we consider the
case where the convex set of feasible points X is defined as the intersection of a finite
collection of larger convex sets X, that is,

m

z
i--1

AS.6. We assume that, for all i E {1,..., m}, the convex set X is defined by

(5.2) x {x e Rlh(x) > 0},

where the function hi is from Rn into R and is continuously differentiable.
We will be interested in the behaviour of the class of algorithms presented in 2

as the iterates {xk} approach a limit point x,. More precisely, if we define the active
set at the point x X by

(5.3) A(x) {i e {1,... ,m}lh(x 0}

(note that A(x) may be empty if X has a nonempty interior that contains x), the
question we wish to analyze can then be phrased as "Is A(xk) A(x,) for k large
enough?"

We temporarily restrict ourselves to the case where only inequality constraints
are present. This is indeed the case where the constraints identification problem is
most apparent. We will discuss the introduction of linear equality constraints in 7.2.

5.1. The assumptions. Clearly, our present assumptions are too general for
such an analysis, and we need to strengthen them both from the algorithmic and the
geometric point of view.

We first state precisely the additional conditions that are required in Algorithm 1.
c indexed by A(xCk) shouldThe idea is that the active constraints at the GCP xk

be a good estimate of the constraints active at the limit point x, when k is large
enough, as in [4] and [9]. The test which ensures that the GCP asymptotically picks
up the correct active constraints is motivated as follows. Assume that an iterative
procedure is used to solve the linearized problem associated with ak(tk) in (2.18).

^C satisfying condition (2.32) is obtained in the course of this iteration,When a step sk
^c doeswe investigate if the correct active set has been found. If the current step sk

not approximately minimize the linearized model with respect to the constraints in
^CA(xk + sk ), we anticipate that this is because the correct active set has not yet

been determined. Consequently, additional constraints may need to be considered,
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for otherwise, the minimizer may be too far away--at infinity in the case of purely
linear constraints. We may then choose to continue our iterative procedure. On

^c approximately minimizes the linearized model with respect tothe other hand, if sk
this restricted set of constraints, we may hope that the correct active set has been
identified. In the worst case, this may result in finally solving the linearized problem
exactly: at the solution c, we know that (2.32) obviously holds, but also that this
step solves the relaxed version of the same problem where all constraints that are not

^cin A(xk + sk have been discarded. This technique motivates our next assumption, in
c but also that this step approximatelywhich we require not only that (2.32) holds at s},

minimizes the linearized model with respect to the constraints in A(xCk).
c and for all t > 0,More precisely, if the quantity (c(t) is defined, for a given xk

by

I,
Xk-bdEX

where

xf x,,
ieA(x)

we can then formulate our assumption as follows.
c suchAS.7. For all k sufficiently large, there exists a strictly positive t >_ Ilsk I1()

that

(5.6)

for some constant #3 E (0, 1].
We note that, because X c_ XkC,

>

for all t >_ 0, and hence condition (5.6) is stronger than (2.32)" it can therefore replace
this condition, for large k, in the formulation of Algorithm 1. (This is the reason why
the constant #3 has been reused in (5.6).)

We also note that it is always possible to satisfy AS.7 and (2.32) together because
c is chosen as the minimizer of the linearizedequality holds in condition (5.7) if xk

problem associated with the definition of ak(t) in (2.18) (see our motivation for AS.7
above).

Once the correct active constraints have been identified by the GCP one must
then make sure they are not dropped at Step 3 of Algorithm 1. This is ensured by
the following condition.

AS.8. For all k sufficiently large,

(5.s) A(xC C_ A(x + s).

In a way entirely similar to that used in the proof of Lemma 2.2, one can deduce
cthe following properties of ck (t) as a function of t.

LEMMA 5.1. For all k >_ O,
c1. the function t o (t) is continuous and nondecreasing .for t >_ O,

2. the function t H (t)/t is nonincreasing for t > O.
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By analogy with (3.21), we can also define

(5.9) akC de aC (1).

Using this quantity, we obtain the following counterpart of Theorem 3.7 and Corol-
lary 3.8.

THEOREM 5.2. Assume that AS.I-AS.3 and AS.7 hold. Consider any sequence
c(xk} produced by Algorithm I and assume that ck > 0 .for a k su]ficiently large. Then

there exists a constant cs E (0, 1] such that

[(5.10) mk(xk)- mk(xk / Sk) > csk
C min 1, Ak 1 / wk

for all k sufficiently large. Furthermore, one has that

(5.11) f(xk)- f(xk+l) > rhcsk
C min 1 Ak 1 / wk

Cfor all k S sufficiently large such that k > O.
Proof. The proof is entirely similar to those of Theorem 3.7 and Corollary 3.8, with

all Ck being replaced by kC, Lemma 2.2 replaced by Lemma 5.1, and the references
to (2.32) by references to (5.6).

c instead ofWe note that we can then pursue the development of 3.3, using
k, and deduce a counterpart of Theorem 3.12.

THEOREM 5.3. Assume that AS.I-AS.4 and AS.7 hold. Then, if (xk} is a
sequence of iterates generated by Algorithm 1, one has that

(5.12) lim inf ck
C 0.

k--o

Let us now examine the geometry of the feasible set. We will use the strong
constraint qualification based on the independence of the constraint normals at the
limit points of the sequence of iterates {xk } generated by Algorithm 1. We first define
L to be the set of all limit points of this sequence. Clearly, L is compact because of
AS.1.

AS.9. For all x, L, the vectors {Vhi(x,)}iA(x,) are linearly independent.
Assumptions AS.6 and AS.9 imply that the normal cone at any x, L is poly-

hedral and of the form

(5.13) N(x,)={yR,ly=_ iA(x.)Z/kiVhi(x,),Ai >_ 0}.
We complete our assumptions by requiring DunE’s nondegeneracy condition [13]

at every limit point x, L. Before stating this condition, we recall that the relative
interior of a convex set Y (denoted ri[Y]) is its interior when Y is regarded as a
subset of its affine hull, that is, the affine subspace with lowest dimensionality that
contains Y (see [26, p. 44] for further details). Using this concept, we now express
our condition as follows.

AS.10. For every limit point x, E L, one has that

(5.14) Vf(x,) e ri[N(x,)].
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As discussed in [3], this last condition can be viewed as the generalization of the
strict complementarity assumption used in [9] and [18]. It was also used in [2] and
in [3] in a similar context. As in [2] and [3], we note that AS.9, AS.10, and (5.13)
together imply the existence of a unique set of strictly positive multipliers. Thus, for
every x, E L,

ieA(x.)

for some uniquely defined Ai > 0.
We finally assume that the gradient approximations are asymptotically exact.
AS.11.

(5.16) lim Ilekll[kl O.

This assumption is not the weakest one for obtaining the results on constraint
identification presented below, but its presence simplifies the exposition. A weaker
requirement will be discussed in 7.

We note that none of the above assumptions requires the feasible set to be poly-
hedral, or even that it has quasi-polyhedral faces (cf. [3]).

5.2. Connected components of limit points. Using the assumptions pre-
sented in the preceding subsection, we examine the properties of the unique connected
component of limit points of L containing a given x, E L, which we denote by L,.
We first show the following remarkable fact.

LEMMA 5.4. Assume that AS.l-AS.10 hold. Then, for each connected component
of limit points L,, there exists a set A(L,) c_ {1,..., m} such that

(5.17) A(x,) A(L,)

for all x, L,.
Proof. Consider two limit points x,, y, L, such that

(5.18) A(x, A(y,

and assume, without loss of generality, that there exists j {1,..., m} such that
j A(y,) but j f A(x,). Because of the path-connectivity of L,, we know that there
exists a continuous path z(t) such that

(5.19) z(0) x,, z(1) y,, z(t) e n,, Vt e [0, 1].

Using the continuity of z(-) and hi(-), the condition (5.18) and the definition of j also
ensure the existence of t+ (0, 1] such that

(5.20) j

_
A(z(t)) Vt e [0, t+) and j e A(z(t+)).

Let us also consider a sequence {ty} in the interval [0, t+) converging to t+, and such
that A(z(t)) is constant, and equal to A_ say, for all j. Equation (5.15) implies that

(5.21) Vf(z(t)) : (t)Vh(z(t))
iA_

for all tj and for some uniquely defined A-(tj) > 0. We now wish to show by contra-
diction that the sequences {A-(tj)} are bounded for all i E A_. Assume indeed that
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the sequence of vectors {- (tj)} is unbounded, where these vectors have {- (tj)}ieA_
for fixed j as components. In this case, we can select a subsequence {Q} c_ {tj} such
that

(5.22) IIA-(Q)II2 x and
IIx-(t)II2

where o is normalized and has at least one strictly positive component. We then
obtain from (5.21) that

(5.23)
Vf(z(Q))

which gives in the limit that

(5.24) 0= E AVhi(z(t+)),
A_

using the continuity of z(.), Vf(.), and Vhi(.). If we now define

(5.25) A+ de__f A(z(t+)),

we note that (5.20) and the fact that the set {x RIA(x)

_
A_} is closed ensure

that A_ c A+. Therefore, because of AS.9 and the fact that z(t+) L, we may
deduce from (5.24) that all the components of Ao are zero, which we just showed to
be impossible. Hence the sequence {A- (tj) } must be bounded, as well as the sequences
of its components. From each of these component’s sequences, we may thus extract
converging subsequences with limit points A-. Using the continuity of z(-), Vf(.),
and Vh(.), and again taking the limit in (5.21) for these subsequences, we obtain
that

iA_

On the other hand, (5.15) implies that

(5.27) VI(z(t+))
iA+

for some uniquely defined set of A+ > 0. But the fact that A_ c A+ ensures that
(5.26) and (5.27) cannot hold together. Our initial assumption (5.18) is thus impos-
sible, which proves the lemma.

We now define the distance from any vector x to any compact set Y by

(5.28) dist(x, Y) de__f min
eY

and the neighbourhood of any compact set Y of radius 5 by

(5.29) Af(Y, ) def {x e R=]dist(x, Y) <_ 5}.

After showing that different active sets cannot appear in a single connected component
of limit points, we now show that connected components of limit points corresponding
to different active sets are well separated.
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LEMMA 5.5. Assume that AS.I-AS.10 hold. Then there exists a E (0, 1) such
that

(5.30) dist(x,, L’,) >_

.for every x, L and each compact connected component of limit points L’, such that
A(L’, A(x, ).

Proof. Consider any x, L. To this x,, we can associate the sets

Di de= {x e 1i e A(x)}

for i A(x,). For each x, e L,, there is only a finite number of such sets, and each
of them is compact. Because of Lemma 5.4, the sets Di and L, are disjoint for all
i

_
A(x,). From the compactness of L, we then deduce the existence of > 0 such

that

min min min[lx,-xl[2>.
x. ELiA(x.)xEDi

(Without loss of generality, we may assume that < 1.) Hence the distance from x,
to any L’, c L such that A(L’,) contains some index j A(x,) is bounded below by, which then implies the desired result. D

We next show that, for k large enough, every iterate Xk lies in the neighbourhood
of a well-defined connected component of limit points, and also that all constraints
that are not binding for this component are also inactive at xk.

LEMMA 5.6. Assume that AS.I-AS.10 hold. Assume also that the sequence
is generated by Algorithm 1. Then there exist a 5 e (0, 1/4), e (0, 1), and a kl >_ 0
such that, for all k >_ kl, there exists a compact connected component of limit points
L,k C_ L such that

(5.33) xk Af(L,k, )

and

(5.34) A(x) c_ A(L.) for all x Af(L., 5) q .
Proof. Because of the bounded nature of the sequence {Xk} (ensured by AS.l),

we may divide the complete sequence into a number of subsequences, each of which
converges to a given connected component of limit points. For k large enough, Xk
therefore lies in the neighbourhood of one such connected component, say L,k. The
inclusion (5.33) then follows for small enough and for k sufficiently large. We
then obtain (5.34) by using (5.32) and imposing the additional requirement that
5 < /4. O

We now prove that, if an iterate x is close to its associated connected component
c is boundedc has an incomplete set of active bounds, then akof limit points, but xk

away from zero by a small constant independent of k.
LEMMA 5.7. Assume that AS.I-AS.11 hold. Then there exists k2 >_ kt (where kt

is as defined in Lemma 5.6 with < 1/2) such that, if there exists j e {1,..., m} with

(5.35) j e A(L,) and j A(XCk)
.for some k >_ k2, then

(5.36) c%
c > e.



GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS 199

.for some e, E (0, 1) independent of k and j.
Proof. Consider, for a given x, e L with A(x,) and a given i A(x,), the

quantity

(5.37) a,, (x,) de=f min (Vf(x,), d) l,
,+dex(}

where X{i} is defined by

def(.3s) x [ x.
je{1 ,}\{i}

c,i(x,) is the magnitude of the decrease obtained by minimizing the linearized objec-
tive from x, in a ball of radius 1/2 (in the norm I1" II(k)) when dropping the ith (active)
constraint. Because of AS.9 and AS.10, one has that

(5.39) ,i(x,) > 0

for all choices of x, L and i A(x,). Lemma 2.1 and the continuity of Vf also
ensure that (,(x,) is a continuous function of x,. We first minimize c,(x,) on the
compact set of all x, L such that i A(x,). For each such set, this produces a
strictly positive result. We next take the smallest of these results on all i such that

A(x,) for some x, L, yielding a strictly positive lower bound 2e,. In short,

(5.40) min min a,i(x,) >_ 2e,

for some e, > 0.
Now consider k >_ kl. Then, by Lemma 5.6, we know that we can associate with

xk a unique connected component of limit points L,k such that (5.33) holds. We then
choose a particular x,k L,k [ Jf(xk, ), for which we have that

(5.41) {x,k / d e X{}[[[dll(k

_
1/2} C {xk + d e X{}[[[d[l(k <_ 1}

for all i e {1,..., m}, where we used the inequality 6 < 1/2. Observe also that (5.38)
implies that

(5.42) X{i} C_ XkC

for all/fig A(xCk).
Given a k _> k and such that xk satisfies (5.35), we now distinguish two cases.

c > a,j(x,k) in which case (5.36) immediately follows from (5.40).The first is when ak c (x,k). If define dk and d, as two vectors satisfyingThe second is when ak < a,j we c

(5.43) aCk (gk, dCk ) IIdll(k) < 1, xk +dCk e XC

and

(5.44) a,j(x,k) (Vf(x,k), d,),

we can write that

lid, ll() _< 1/2, x, + d, e X{},

(5.45)
o < ..(.) . (.} (vl(.).

(. -.} + (a vf(z.). .)
<_ (yk, dCk --d,) + 1/2llgk Vf(x,k)ll[k],
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where we used the inequality (2.14). Now combining (5.41), (5.42), and the definitions
of ak,c dk,c and d,, we obtain that

_<

Substituting this last inequality in (5.45), using AS.11 and the Lipschitz continuity
of Vf (reducing 5 if necessary), we can find k2 >_ kl sufficiently large such that

(5.47) 0 < (,j (x,k) k
C <_ e,

when k >_ k2. The inequality (5.36) then follows again from (5.40).
5.3. Active constraints identification. We now wish to show that, given a

limit point x,, the set of active constraints at x,, that is A(L,), is identified by
Algorithm 1 in a finite number of iterations.

We first show that, if the trust region radius is small and the correct active set
c (k large enough) which implies, by Lemma 5.7, that (5.36)is not identified at xk

holds, then the kth iterate is successful.
LEMMA 5.8. Assume that AS.I-AS.9 hold. Assume .furthermore that (5.36) holds

and

(5.48) kAk <_ c8e,(1- Y2)
4

for some k >_ k2. Then iteration k is successful (k S) and Ak+ >_ Ak.
Proof. We first observe that (2.28) and the inequalities ca _> 1 and cs _< 1 imply

that

(5.49) cs(1 2) <_ 1.
C4

Using Theorem 5.2, (5.36), (5.48), (5.49), and the inequalities e, < 1 and k >_ 1, one
then deduces that

(x) m(x + s) >

But this last inequality, Lemma 3.9, and (5.48) then ensure that

(5.51)
C8,

Hence Pk

_
?’]2, and the conclusion of the lemma follows. [:]

We also need the result that the gradient projected onto the tangent cone at a

point y having the correct active set goes to zero as both this point and the iterates
tend to a connected component of limit points.

LEMMA 5.9. Assume that AS.I-AS.11 hold. Consider any subsequence whose
indices form K c_ N such that

(5.52) lim dist(xk, L,) 0
kEK

.for some connected component of limit points L,,

(5.53) lim IlYk Xkll(k) 0
kEK
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.for some sequence (Yk}keK such that yk E X, and

(5.54) A(yk) A(L,)

for all k K. Then one has that

(5.55) lim PT(u (--gk O.
kK

Proof. We first note that Lemma 2.1 and the continuity of the constraints’ normals
imply the continuity of the operators PT(.) and PN(.) as functions of {ylA(y) A(L,)}
in a sufficiently small neighbourhood of L,. We also observe that the Moreau decom-
position of-gk gives that

+

Equations (5.54) and (5.56), limits (5.52) and (5.53), and assumptions AS.10 and
AS.11 then give (5.55) by continuity. [:l

Among the finitely many active sets {A(x,)}x, eL, we now consider a maximal
one and denote it by A,. This is to say that A, A(x,) for some x, L and that

(5.57) A,

_
A(y,)

for any y, L. We are now in the position to prove that A, is identified at least on
a subsequence of successful iterations.

LEMMA 5.10. Assume that AS.I-AS.11 hold and that the sequence {xk} is gen-
erated by Algorithm 1. Then there exists a subsequence {ki} of successful iterations
such that, for i large enough,

(5.58) A(xk) A,.

Proof. We define the subsequence {kj } as the sequence of successful iterations
whose iterates approach limit points with active set equal to A,; that is,

{kj} dej {k e SIA(L,k A,},

and assume, for the purpose of obtaining a contradiction, that

(5.60) A(xkj+l) A,

for all j large enough. Assume now, again for the purpose of contradiction, that

(5.61) A, c_ A(xCkj)
for such a j. Using successively AS.8, (5.60), and Lemma 5.6, we then deduce that,
for j sufficiently large,

(5.62) A, c A(L,k+I),

which is impossible because of (5.57). Hence (5.61) cannot hold, and there must exist
a pje A, A(L,k) such that pj A(x) for j large enough. From Lemma 5.7, we
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then deduce that (5.36) holds for all j sufficiently large. But Theorem 5.2 and the
inequalities e, < 1 and/k >_ 1 then give that

(5.63) /k [f(xk f(x+:)] >_ 7:c8e, min[/A e,],

for j large enough, and thus, using AS.5, that

(5.64) lim /kAk O.
j--*c

The inequality/k _> 1 and (2.11) then give that

(5.65)
1

for j larger than jl _> 1, say. But this last inequality and Lemmas 5.5 and 5.6 imply
that x}+ cannot jump to the neighbourhood of any other connected component of
limit points with a different active set, and hence xk+ belongs to JV’(L,, 5) again for
some L, such that A(L,) A,. The same property also holds for the next successful
iterate, say xk+q, and we have that A(L,k+q) A,. Therefore, the subsequence
{kj } is identical to the complete sequence of successful iterations with k _> kjl. Hence
we may deduce from (5.64) that

(5.66) lim/}Ak 0.

In particular, we have that

(5.67) /kAk <_ csv
2e, (1 72)

2c4

for all k E S sufficiently large. But the mechanism of the algorithm and (5.66) also
give the limit

(5.68) lim Ak O.
k--+o

c and xk / Sk all belong toAs a consequence, we note that, for k large enough, xk, xk
JV’(L,, 5) for a single connected component of limit points L,.

We also note that Lemma 5.8, the fact that (5.36) now holds for k E S, and (5.66)
together imply that

(5.69)

for k large enough.
We can therefore deduce the desired contradiction from (5.69) and (5.68) if we

can prove that all iterations are eventually successful.
Assume, therefore, that this is not the case. It is then possible to find a subse-

quence K of sufficiently large k such that

(5.70) k,S and k+lS.

Note that, because of (2.45) and the nondecreasing nature of the sequence {/k }, one
has that

(5.71) cs")’le, (1 Y2)< <
9’: 2c4
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for k E K sufficiently large, where we used (5.67) to deduce the last inequality. Now,
if one has that

(5.72) A(xC c A(L.),

then Lemmas 5.7 and 5.8 together with (5.71) and (2.29) imply that k e ,, which
contradicts (5.70). Hence (5.72) cannot hold, and AS.8 together with Lemma 5.6 give
that

A(xk + sk) A(xCk A(L.)

for all k K sufficiently large. Observe now that, since k S, one has that Xk+l xk
because of (2.44), and hence, using (2.12), that

But, using successively the identity xk xk+, the Cauchy-Schwarz inequality, AS.3,
(2.11), (2.13), and (2.45), we have that

(5.75)

for all k K, and also that

(5.76)

for all k K, where we have used the Moreau decomposition of--gk, the fact that

Sk+l s T(xk + Sk), (2.14), the fact that the cone T(xk + sk) is the polar of
N(xk + sk), (2.11), AS.3, and (2.45). Using (2.45) again, (5.74), (5.75), (5.76), and
the nondecreasing nature of {ilk}, we also deduce that, for such k,
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We now observe that, because of (2.37) and (5.68), we have that Ilskll(k) tends to zero
when k tends to infinity. Now applying Lemma 5.9 using (5.73) (with Yk Xk + Sk)
to the subsequence k e K, we deduce from (5.77), (5.55), (5.68), and (5.66) that

mkTl(Xk-t-1 + 8k+1)- Irtk(Xk "[- 8k)

_
--1/2Cs.Ak-t-1

for k large enough in K. On the other hand, we can also apply Theorem 5.2 to
iteration k + 1 and obtain

(5.79) f(Xk+l) mkTl(Xk+l + 8k+l)

_
C8,Ak+1,

where we used (5.66), the inequalities e, < 1 and/k+l >_ 1, and the fact that (5.36)
holds for all sufficiently large k E ,. Hence we obtain that

f(Xk) mk(Xk -- 8k)-- f(Xk+l) mk+l(Xk+l + 8k+1) -- mkTl(Xk+l -- 8k+1)+_
1/2c8,Ak+l
5Cse,Ak

for all k K sufficiently large. But then, using the definition of p, Lemma 3.9, and
(5.71), one obtains that

2c4(5.81) ]Pk- 1 &Ak 1- V2
C81 e.

and hence that Pk 2 for all k K large enough. But this lt inequality implies
that k S, which contradicts (5.70). The condition (5.70) is thus impossible for k
sufficiently large. All iterates are eventually successful, which produces the desired
contradiction.

As a consequence, (5.60) cannot hold for all j, and we obtain that there exists a
subsequence {k} c {k} such that, for all p,

A, A(xkp+) A(xp+q),

where kp + q is the first successful iteration after iteration kp. The lemma is thus
proved if we choose {ki } {kp + q}. fl

The last step in our analysis of the active set identification is to show that, once
detected, the maximal active set A, cannot be abandoned for sufficiently large k. This
is the essence of the final theorem of this section.

THEOREM 5.11. Assume that AS.I-AS.11 hold and that the sequence {Xk} is
generated by Algorithm 1. Then one has that

(5.83) A(x,) A,

for all x, L, and

(5.84) A(xk) A,

for all k sufficiently large.
Proof. Consider {ki}, the subsequence of successful iterates such that (5.58)holds,

as given by Lemma 5.10. Assume furthermore that this subsequence is restricted to
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sufficiently large indices, that is, k >_ k2 for all i. Assume finally that there exists a
subsequence of {k}, say {kp}, such that, for each p, there is a jp with

(5.85) jp e A(xkp) A, and jp A(xk,+l).
Now Lemma 5.6, (5.57), and (5.58) give that A(L,k) A,. Using this observation
and AS.8, we obtain that

(5.86) jp e A(L,) and jp A(x)
for all p. But Lemma 5.7 then ensures that

for all p. Combining this inequality with Theorem 5.2 and the relations e, < 1 and

k 1, one obtains that, for all p,

(5.88) ,[f(x)- f(x+)] cse, min[,A,, e,].
Using AS.5, we then deduce that

(5.89) lira kAk, O.
p

Theorem 5.2 and the inequalities e, < 1 and k 1 then imply that

(5.90) f(xk,)- mk,(Xk + Sk,) cse,Ak,
for all p sufficiently large. On the other hand, we have that, for all k,

+ (k)

() A+
where we used (3.29), (3.a6), (2.S), d (2.). Combining (5.90) with (5.91) taken
at k k, applying the third statement of Lemma 2.2, and dividing both sides by
Ak,, we obtain that

Assuming that the sequence (xk} converges to some x, in some L, (or taking a
further subsequence if necessary), using (5.89) and Lemma 5.9 (with g
Yk xk and A(L,) A,), we deduce that (5.92) is impossible for p large enough. As
a consequence, no such subsequence (kp} exists, and we have that, for large i,

(5.93) A, A(xk,+) A(n,k,+),
where we used Lemma 5.6 to deduce the lt inclusion. But (5.93) and the mimality
of A, impose that

(5.94) A, d(xk,+) d(L,k,+)
for i large enough. Hence we deduce that, for sufficiently large i,

A,,
where ki + q is the index of the first successful iteration after iteration ki. Hence
k + q e (k}. We can therefore repeatedly apply (5.95) and deduce that

(5.96) (ki) (k e Sk is sufficiently large },
and also that A(xk) A, for all k e S large enough, hence proving (5.84). Moreover,
A, is then the only possible active set for the limit poims, which proves (5.83).
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6. Convergence to a minimizer. The purpose of this section is to analyze
conditions under which the complete sequence of iterates produced by Algorithm 1
can be shown to converge to a single limit point. By Corollary 3.16 and AS.11, this
limit point is, of course, critical. We will assume in this section that there are infinitely
many successful iterations. Indeed, the convergence of the sequence of iterates is trivial
if all iterations are unsuccessful for sufficiently large k.

We define C, as the set of feasible points whose active set is the same as that of
all the limit points, that is,

(6.1) C, de {x e XlA(x A,}.

We also define V(x) as the plane tangent to the constraints indexed by A,, that is

(6.2) dd e 0},

where J,(x) is the Jacobian matrix whose rows are equal to {Vhi(x)T}iEA,.
As we wish to use the second-order information associated with the objective

function, we must clearly assume that it exists.
AS.12. The objective function f(.) is twice continuously differentiable in an open

domain containing X.
We can now prove that if the model curvature along successful steps is asymptot-

ically uniformly positive and if a limit point is an isolated local minimizer, then the
complete sequence of iterates converges to this single limit point. In the statement
of this result we use the second-order sufficiency condition that the Hessian of the
objective is positive definite on the tangent plane to the constraints at the solution
(see, e.g., Theorems 6.1 and 6.2 in [4]), which guarantees the isolated character of the
minimizer.

THEOREM 6.1. Assume that AS.I-AS.12 hold, that the sequence {xk } is generated
by Algorithm 1, and that the set , is infinite. Assume also that there is an e > 0 such
that

(6.3) liminf wk(mk,xk, sk) >_ e

and that, for some x, E L, V2f(x,) is positive definite on the corresponding tangent
plane V(x,). Then

(6.4) lim x} x,.
k--oo

Proof. We first observe that x, is a critical point because of AS.11 and Corol-
lary 3.16. We consider {xk}, a subsequence of successful iterates converging to x,.
We now choose 5i > 0 small enough to ensure the following two conditions. The first
is that we can define Z(x), a matrix whose columns form a continuous basis for the
tangent plane V(x). The existence of such a basis is ensured in a sufficiently small
neighbourhood Af(x,, 5l) of x, by assumptions AS.6 and AS.9. The second condi-
tion is that Z(x)TV2f(x)Z(x) (that is, V2f(x) restricted to the subspace V(x)) is
uniformly positive definite in Af(x,, 5l)F C,.

We now introduce

(6.5) 5, def 51 < 61
4a2 + e
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and define f, to be the largest value of the objective such that the level set

(6.6) d {x e Af(x,, 6x) C, If(x) <_ f,} c Af(x,, ,),

which is possible because the positive definiteness of Z(x)TV2f(x)Z(x) in (x,,
C, guarantees the strict convexity of f(x) in this set.

We then use Theorem 5.11 and choose i such that ki 0 is sufficiently large to
guantee that, for all i i,

(6.7)

and also, for all k 8 with k ki,

(6.8) xk C,

and

(.) (,,) .
We note that, for k O,

(6.10) sk e T(xk).

Because of (6.8) and Lemma 5.9 with yk x, we deduce that

(6.11) ]]PT(x)(--gk)][k] 5,

for all k $ larger than ki ki, say.
Now consider

2

where the equality results from (3.29) and the inequality from the definition of the
step sk,. Using successively (6.12), (6.9), the Moreau decomposition of-gk, and
(6.10), we then deduce that

-e (,, ,) 4 I(Pr(,)(-,),)l(.la) , II(,) < <

for i i2. Hence, using (2.14) and (6.11),

(.14)
45,

for i i2. Using this lt relation, the equivalence of norms, and the triangle inequal-
ity, we obtain that, for such i,

We now observe that
and all conditions that were satisfied a are again satisfied a ghe next successful
iteration after ki. The argument can herefore be applied recursively o show that

(.1) + e c (,, e)

for all j 1. Since 1 is arbitrarily small, his proves he convergence of ghe complete
sequence {}
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7. Discussion and extensions. The purpose of this section is to further dis-
cuss aspects of the theory presented above, from the point of view of both practical
implementation and interesting theoretical extensions.

7.1. Simple relaxation-based tests for inexact projections. A computa-
tional difficulty in the framework of Algorithm 1 is the practical enforcement of condi-
tion (4.12) in the GCP calculation. Indeed, although the left-hand side can be readily
calculated for any vector z, the right-hand side contains the quantity c(ti), which
may not be available. However, an upper bound on c(ti) can often be derived in the
following way.

Assume, for example, that we have computed a candidate for the GCP step, say
z, such that

(7.1) IIzll _< ti and I(g,z)l- (1111).

The last of these conditions says merely that zi minimizes the linearized model in a
"ball" of radius Ilzill. The aim is then to verify that zi satisfies (4.12), i.e., that zi
gives a large enough reduction of this linearized model compared to that obtained
by the minimizer in a ball of radius ti >_ Ilzill. Using the definition of ((ti) and the
second part of Lemma 2.2, it is easy to see that

(7.2) c(ti)

and (4.12) can thus be guaranteed by checking the stronger condition

(7.3) (g, zi) <_ -#3t

which is equivalent to verifying that

(7.4) I[zll >_ #3ti.

The situation described by (7.1) is far from being unrealistic. It may arise, for
example, if c(ti) is computed by an iterative method starting from x and ensuring
(7.1) at each of its iterations.

Another interesting case is when X is polyhedral and ]]. ]](k) is the infinity norm
for all k. We then find a vector zi satisfying (4.12) by applying a simplex-like method
to the linear programming problem (2.18). Using the fact that the current iterate is
feasible and adding slack variables if necessary, this problem can then be rewritten
(again dropping the k’s) as

(7.5) min (g, d)

subject to the constraint

(7.6) Ad 0

and the componentwise inequalities

(7.7) <_ d <_ u

for some constraint matrix A and some vectors of lower and upper bounds and u,
depending on the value of t in (2.18) (or, equivalently, of ti in (4.12)). If we use a
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simplex-based method for solving this problem, we calculate, at each iteration of this
method, an admissible iterate dt and an associated admissible basis Bt. It is then
easy to compute

(7.8) r gB[ and ttj max(0,rAej gj) (j 1,...,n),

where gBt, is the basic part of g, and e is the jth vector of the canonical basis of
Rn. Remarkably, rt and the vector #t (whose components are the #ti) provide an
admissible point for the problem

(7.9) max- (A1, r) (u l, #) + (g, l)

subject to

(7.10) rA- # _< g

and

(7.11) #_>0.

But this problem is the dual of problem (7.5)-(7.7) after the change of variables d’
d- 1. As a consequence, we can use the weak duality theorem for linear programming
(see, e.g., [17, p. 40]) and deduce that (A1, r} + (u- l, #t)- (g, l} is an upper bound
on the value of a(ti) in (4.12). We may then stop our simplex-based algorithm as
soon as

(7.12) [(g,d)l>_ #a min
r--1,...,

since this condition implies

[(Al, r,.) + (u- l, #,.)- (g, 1)],

(7.13) <g, dr>[>_ #3a(ti),

thus ensuring (4.12) for zi dr. This technique therefore allows for the inexact
solution of the linear program implicit in (2.18).

We also note that the use of interior point methods for linear programming (see,
e.g., [27]) seems quite attractive for solving the same problem in the case where I]" is a
polyhedral norm and X is polyhedral. These algorithms indeed provide a sequence of
feasible approximate solutions together with an estimate of the corresponding duality
gaps, which can then be used to stop the process as soon as condition (4.12) is satisfied.

7.2. Constraint identification in the presence of linear equations. We
now consider the case where the feasible domain X is defined not only by a set of
convex inequalities (as in AS.6) but also by a set of independent linear equations of
the form

where each of the pi is an affine function from Rn into R.
We first observe that identifying the active pi at the solution is trivial: they are

all active by definition. The only remaining question is then to examine whether their
very presence can upset the theory developed in 5. We also note that representing
an equation by two inequalities of opposite sign does not fit with this theory, because
AS.9 is then automatically violated. We therefore need to discuss this case separately.
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The simplest way to exploit the identification theory for inequalities is to eliminate
the linear equations and view Algorithm 1 as restricted to the affine subspace, say W,
where the equations (7.14) hold. We therefore consider the reduction of the original
problem to W as follows. Assume that Z is an n x n-q matrix whose columns form
an orthonormal basis of the linear subspace parallel to W. The problem can now be
rewritten as

(7.15) min ](y) de___f f(Zy)

subject to the constraints

(7.16) i(Y) de=f hi(Zy) >_ 0 (i- 1,..., m),
where y E Rn-q (see [15, p. 156] for an introduction to the variable reduction tech-
nique). The idea is to show that, if an adapted version of AS.6-AS.11 holds for the
problem including the constraints (7.14), then AS.6-AS.11 hold for problem (7.15)-
(7.16). The theory of 5 then applies without any modification.

Assumptions AS.6-AS.8 and AS.11 need not be modified for handling the con-
straints (7.14). Therefore, they also hold for problem (7.15)-(7.16). Assumption AS.9,
however, requires the following modification.

}i= are linearlyAS.9b. For all x, E L, the vectors {Vh(x,)}eA(,)and {Vp(x,) q

independent.
The formal expression of AS.10 is unchanged, but AS.6 and AS.9b imply that the

normal cone N(x,) is now defined by

(7.17) N(x,) {y Rnly=
ieA(x.)

q }> 0
i--1

instead of (5.13).
def

Defining x, Zy, and A(y,) df A(x,), we first note that AS.9 holds for problem
(7.15)-(7.16) as a consequence of AS.9b.

THEOREM 7.1. Assume that AS.9b holds. Then the vectors {Vi(Y,)}ieA(y.) are
linearly independent.

The proof of this result belongs to the folklore of mathematical programming,
and an easy proof is given in the Appendix A.

Similarly, AS.9b and AS.10 with (7.17) imply that AS.10 holds for problem (7.15)-
(7.16), as expressed in the following proposition.

THEOREM 7.2. Assume that AS.9b and AS.10 hold with (7.17). Then

(7.18) V/(y,) e ri[(y,)],
where

(7.19) j(y,) def { Z Rn-q[z AiVfz(y,), A _> 0}.eA(u,)

The proof of this result can also be found in Appendix A.
The conclusion of this simple reduction exercise is that all the conditions required

for the theory of 5 to hold are satisfied for problems (7.15)-(7.16). The presence of
equality constraints therefore does not affect the identification of active inequality
constraints in a finite number of iterations of Algorithm 1.
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7.3. Constraint identification without linear independence of con-
straint’s normals. One may note that AS.9 is a rather strong constraint qualifi-
cation and wonder if it can be weakened without affecting the result that "the correct
active set" is identified in a finite number of iterations.

In order to answer this question, we first note that Algorithm 1 and the GCP
and RS Algorithms do not depend in any way on the particular parametrization
(description) of the feasible set X that is used. The constraints functions hi were
indeed introduced only in AS.6 and play no role in the theoretical algorithm. As a
consequence, one can clearly add redundant constraints of the form

(7.20) ri(x) _> 0 (i-- 1,... ,mr)

to the set {hi}im=l without modifying the result that the algorithm will identify the
correct active constraints in the set {1,..., m}.

mrIdentification of the active redundant constraints in {ri}i=l will then depend on
the existence, for each of these constraints, of a set Ai c {1,..., m} such that

{x e XlA(x) Ai} G {x e Xlri(x 0}.
If this property holds for r, and if A A,, then the activity of r will clearly be
detected in a finite number of iterations.

For example, if r(x) is a multiple of hi(x), say, and if j E A,, then r is identified
as an active constraint in a finite number of iterations. Another example is given by
the problem

(7.22) minx + y

subject to

h(x,y) x >_ O, h2(x,y) y >_ O, r(x,y) x + 4y >_ O.

In this case, the constraint rl is active if and only if both hi and h2 are active
(A1 {1, 2}). It is therefore detected as an active constraint in a finite number of
iterations because the activity of h and h2 is also.

On the other hand, if we consider the problem

(7.24) min y

subject to

(7.25) h(x,y)=y-x2>_0 and rl(x,y)=y>_0,

we note that the activity of r at the solution may not be detected in a finite number
of iterations. This is because there is no subset A G {1,...,m} {1} such that
(7.21) holds.

The above arguments show that a weak active constraint identification is possible
without the assumption of linear independence of the constraints’ normals. In order to
avoid this assumption and to obtain this identification property more directly, several
researchers have used a purely geometrical description of the feasible domain for some
less general cases (see [3], [4], and [31]). It would be quite interesting to develop such
a geometric theory in our framework. This approach seems indeed possible, because a
specialization of our identification results to linear inequalities shows that the correct
active face of the corresponding convex polytope is identified by Algorithm 1 in a finite
number of iterations. This geometric rephrasing of nonlinear constraint identification
results is the subject of ongoing research.
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7.4. A further discussion on the use of approximate gradients. The tech-
nique for handling inexact gradient information, as proposed in 2.2, is identical to
that analyzed by Toint in [29], but is quite different from that proposed by Carter in
[6] for the unconstrained case, where he only requires that, for all k >_ 0,

(7.26) I]D-Tek 112 <- TIID-Tgk 112
for some T E [0, 1- 72) and some symmetric positive definite scaling matrices Dk
such that the norms IID-T(.)II2 do satisfy AS.3. Convergence is proved under this
remarkably weak condition by using the property that

(7.27) lim (1 Pk) < lim IID-Tek 112 < lim
T

A--.O A-O IID-Tgk 112 cos Ok A-0 COS Ok’

where Ok is the angle between Dksk and --D-Tgk. The next step in Carter’s de-
velopment is to show that Ok tends to zero when the trust region radius Ak tends
to zero, for a large class of trust region schemes applied on unconstrained problems.
The relation (7.27) then implies that Pk >_ r]2 for small enough Ak, and hence the
kth iteration is successful, the trust region radius increases, and the algorithm can
proceed.

This line of reasoning unfortunately does not apply to constrained problems,
where it may well happen that the negative gradient and its approximation both
point outside the feasible domain. As a consequence, if xk lies on the boundary of
X, the accuracy level T requested for ek may depend on vk, which can be bounded
away from zero as it depends on the angle of D-Tgk with the plane tangent to the
constraint boundary at Xk. For example, if one considers the problem

(7.28) min-2xl 2x2

with the constraints

(7.29) xl<_0 and x2_<3,

and if one assumes that Dk I, xk is the origin, and mk(s) --2s s2 for some

fi > 0, then it is not difficult to verify that- <_ (1 r) cos) _< (1 ,)fllv/4 + fl
is required in (7.26) for the iteration to be successful with Ak+ >_ Ak, and this value
depends on the geometry of the feasible set at xk (see Fig. 5, where the shaded area
corresponds to all steps that produce a model decrease).

A fixed value, as used in [6], is therefore insufficient to cope with a possibly com-
plex geometry of the feasible set X, and an adaptive scheme, such as that suggested by
(2.13), is necessary. Furthermore, our purposely broad assumptions (2.37) and (2.38)
are too loose to guarantee a well-defined (isotonic, for example) behaviour of Ok as Ak
tends to zero. Finally, Carter also exploits in his theory the fact that the problem is
unconstrained, and thus that IID-Tgkll2 can be viewed as a criticality measure for the
problem at hand. When constraints are present, this is not the case anymore, and the
lack of relation between a criticality measure and the right-hand side of (7.26) makes
the direct adaptation of this criterion to the constrained framework quite difficult.

Condition (2.13) also differs from the more abstract condition used by Mor6 in

[19], namely that ek should tend to zero for a converging sequence of iterates. This
condition is related to (3.70) and (3.90) in our analysis.
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x (o, o)

x, (0, 3)

--Vf(xk)

s (o, ) -g

X

FIG. 5. The impact of the ]easible set geometry on the angle

One attractive feature of Carter’s condition (7.26) is the fact that the accuracy
requirement is relative to the size of the approximating vector gk, and hence also to
the size of the true gradient Vf(xk), as can be seen as follows. From (7.26), we have
that

IID-Tgk I1 lID;Tk I1 11 -TDk gkll2
<1+ <1+(7.31) IID_TVf(Xk)II IID[TVf(xk)II2 IID_TVf(xk)II 2

and hence, using the fact that T E [0, 1),

(7.32) IID-Tgkll2 < IIID-TVf(xk)IIa,
--1--7"

yielding the desired inequality.
It is important to note that our condition (2.13) can be made relative as well, in

the form of the criterion

(7.33) IIkll[k] min[lAk, 2] Ilgkll[k],

where 2 E [0, 1). This relative criterion does in fact imply (2.13). This implication
is based on the following simple result.

LEMMA 7.3. Assume that AS.3 and (7.33) hold. Then there exists a constant
c9 > 0 such that

(7.34) Ilgklltk] < c9

for all k >_ O.



214 A.R. CONN, NICK GOULD, A. SARTENAER, AND PH. L. TOINT

Proof. Because of (7.33), we have that

3

and hence he compactness of implies ha (7.34) holds wih

1
(7.36) c9

As a resul of his lemma, we obtain from (7.33) ha

(7.37)

and (2.13) therefore holds with replaced by c9t. The theory developed in this
paper is therefore also valid when condition (7.33) is imposed instead of (2.13).

We end this subsection by noting that AS.11 can be omitted without altering
the constraint identification result of Theorem 5.11 in the ce where the complete
sequence of iterates converges to a single limit point x,, and where the model’s gra-
dients 9k converge to a well-defined limit g, such that -g, belongs to the relative
interior of the normal cone at x,. This amounts to replacing AS.11 by the following.

AS.11b.

(7.38) lim xk x,

and

(7.39) lim gk g, and g, e ri[N(x,)].

The theory of 5 must then be adapted accordingly. In particular, the proof of
Lemma 5.7 is modified by replacing Vf(x,) by g, in (5.37); the minimum over x,
then disappears from (5.40) and the rest of the proof follows.

The second crucial adaptation is the observation that Lemma 5.9 merely requires
that

(7.40) lim Ilell[}] 0,
k@K

which is weaker than (AS.11). Condition (7.40) fortunately holds whenever Lemma 5.9
is used: it is ensured by (5.68) and (2.13) in the proof of Lemma 5.10 and by (5.89)
and (2.13) in the proof of Theorem 5.11 since k _> 1 for all k.

Assumption AS.11b seems natural if the correct active set is to be identified at
all, since the vectors gk should clearly provide some consistent first-order information
for this property to hold.

7.5. An extension to noisy objective function values. We note that (2.12)
(specifying that the model and function values should coincide at the current iterate)
is not used anywhere in the convergence theory of 3, except in Lemma 3.9. This leaves
some room for a further generalization of Algorithm 1, where not only gradient vectors
are allowed to be inexact, but also where the objective function values themselves are
not known exactly.

Indeed, define the quantity Ek by

(7.41) Ek d=f f(xk) --mk(xk)
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Ek is therefore a measure of the uncertainty of the objective function value relative
to the predicted model decrease for the current step sk. Clearly, if IEkl is of the order
of one or larger, then the predicted model reduction is comparable to the uncertainty
in the objective, and the step sk is then likely to be completely useless: the algorithm
might as well stop at xk. Conversely, if IEkl is small, then the predicted model
reduction is significant compared to the uncertainty in the objective value, and the
algorithm may proceed.

This argument is very nicely supported by the theory, as can be seen as follows.
We first note that the term If(x)- mk(x)l now appears in the right-hand side of
(3.48) and (3.49), so that (3.47) becomes

/ / / C4ki
We then use this inequality instead of (3.47) to obtain that

(7.43)
C3

instead of (3.57), and the right-hand side of this inequality is smaller than 1- 2
provided that we assume the bound

(7.44) IEI
for all k and for some e [0, 1), and provided that (3.53) is replaced by

(7.45) e <

and (3.54) by

c4/0A0
3’ca(1 r/a)(1 )

")’1c3(1 r2)(1 -)(7.46) kAk <_
C4

One then can deduce (3.52) with

’7ca(1 r2)(1 -)(7.47) c5 e.
C4

The rest of the global convergence theory of 3 then follows as before. Hence we
conclude that, provided the relative uncertainty on the objective value Ek satisfies
the typically very modest bound (7.44) (IEkl <_ 0.1 for 0.8 and r2 0.75),
Theorems 3.12 and 3.15 still hold.

8. Conclusions and perspectives. In this paper, we have presented a class of
trust region algorithms for problems with convex constraints that uses general norms,
approximate gradients, and inexact projections onto the feasible domain. We have
proved global convergence of the iterates generated by this class to critical points.
Identification of the final set of active inequality constraints in a finite number of
iterations is also shown under slightly stronger assumptions. Interestingly, this theory
does not assume the locally polyhedral character of the constrained set.

We have also considered practical implementation issues, including an explicit
procedure for computing an approximate generalized Cauchy point. Application of
these ideas to problems whose linear constraints represent the flow conservation laws
in a network is presently being studied.
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Appendix A. Proof of Theorems 7.1 and 7.2. Considering the variable
reduction introduced in 7.2, we first note that

(A.1) V](y) zTVf(x) and Vt,(y)= ZTVhi(x).

A.1. Proof of Theorem 7.2. Assumption AS.10 with (7.17) yields that

(A.2)
q

ieA(x.) i--1

for some Ai > 0 and i 0. Applying ZT to both sides of this relation and noting
that ZTVpi(x,) --0 by definition, we obtain the desired conclusion.

A.2. Proof of Theorem 7.1. Assume that

(A.3) Vt(y,) 0.
eA(y,)

Premultiplying by Z and using (A.1), we obtain that

(A.4) ZZTVh(x,) O.
iA(x.)

Assume, furthermore, for the purpose of contradiction, that

(A.5)
A(.)

(I- zzT)Vh(x,) O.

Since I- ZZT is the orthogonal projection onto the subspace spanned by the vectors
{Vp(x,)}, we can write that

q

(A.6) E ,(I- zzT)Vh(x*)= E
ieA(x.) i--1

for some X, not all X being zero. Adding (A.4) to (A.6), we obtain

q

(A.7) @Vh(x,) XVp(x,) O,
ieA(x.) i--1

which contradicts AS.9b. Hence (A.5) does not hold, and

(A.8)
iA(x.)

(I- zzT)Vh(x,) O.

Summing (A.4) and (A.8), and using assumption AS.9b, we deduce that @ 0 for
all i E A(x,), which yields the desired conclusion.
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Appendix B. Glossary.
Symbol Definition

(2.18)

(3.21)

(s.)
(3.2)

(3.46)

i,

3
4
/21

2
3, U4

rl, (72, (3,

wk(q,x,v)

A(
A,
Bk
1

ea

e6

e8
c9

6’.
dist(, Y)
Dk

Ek

(2.42), (2.43), (2.45)
Lemma 5.6
(2.)
(2.40), (2.42), (2.43)
(.a)

(2.33), (2.35)
(2.ae)
(.3s)
(2.11)
(.3)
(.aa)
(2.39)
(2.16), (2.17)

Lemma 5.5

(a.)
(3.34)
(5.3)
(5.57)
(.)
Theorem 3.2, (3.3)
Lemma 3.6, (3.31)
Theorem 3.7, (3.44)
Lemma 3.9, (3.50)
Lemma 3.10, (3.60)
(3.74)
(3.82)
Theorem 5.2, (5.10)
Lemma 7.3, (7.36)
(4.a)
(6.1)
(5.2s)
after (7.26)
after (2.13)

(7.a)

after (2.1)
after (2.12)
(AS.6), (5.2)
after (2.46)
after (6.2)

Purpose

iteration dependent norm and its dual
the magnitude of the maximum linearized model
decrease achievable in the intersection of X and a ball of
radius centred at xk
()
the magnitude of the maximum linearized model
decrease achievable in the intersection of xkC and a ball
of radius centred at xk
a(1)
the magnitude of the maximum linearized objective
decrease achievable in the intersection of X and a ball of
radius 1 centred at x
monotonically increasing upper bound on the model’s
curvature along relevant directions (at iteration k)
contraction/expansion factors for trust region updating

the trust region radius
model accuracy levels
the model’s gradient accuracy relative to the trust region
radius
Goldstein-like constants for the projected search
the relative projection accuracy
model value relaxation w.r.t, value at the GCP
outer trust region radius definition parameter
inner trust region radius definition parameter
minimum steplength condition parameter
ratio of actual (function) to predicted (model) decrease
constants in the uniform equivalence of the norms
and I1"
lower bound on the distance between connected
components of limit points
the curvature of the function q from x along v

c)Wk (ink, xk, sk
the active set at x
the maximal active set at limit points
the trust region at iteration k
uniform equivalence constant for Cek Ix]
uniform upper bound on wk(f, xk, s)
model decrease parameter

upper bound on the model’s gradient norm
set of admissible GCP steps of length at most
set of feasible points with active set equal to A.
the distance from x to the compact set Y
symmetric positive definite scaling matrix at iteration k
difference between the model’s and the objective’s
gradients
uncertainty of the objective value relative to the
predicted model decrease
the objective function
the gradient of the model at iteration k, taken at xk
inequality constraint functions
symmetric approximation to the objective’s Hessian at xk
the Jacobian matrix of the hi restricted to rows whose
index is in A. taken at x
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Symbol Definition Purpose

Lemma 5.6

Lemma 5.7

before (AS.9)
(2.3)

after (3.32)
after (4.32)
5.2
Lemma 5.6

Lemma 5.5, (5.30)
2.2
(2.6)
(5.29)
(7.14)
before (2.5)
(7.20)
before (5.14)
(4.1)
4.
(2.30)-(2.35)
(2.37)-(2.38)
end of 2.3
before (2.30)
(2.7)
(6.2)

7.2

4.2
4.2
4.2
4.2
4.2
2.2
(2.48)
(.a)
(4.44)
(3.1)
after (2.2)
(5.1), (5.2)
(.)

7.2

before (6.5)

cone and its polar

set of all limit points

the intersection of the feasible domain with the level set
associated with f(xo)
the Lipschitz constant of the objective’s gradient

the Lipschitz constant of the model’s gradient

the connected component of limit points containing x.
the connected component of limit points associated with

connected component of limit points not eontaining x.
the model of the objective at iteration k

the normal cone to X at the feasible point x

neighbourhood of a compact set Y of radius 6

linear equality constraint functions

the orthogonal projection onto X
redundant inequality constraint functions

relative interior of the convex set Y
the restriction operator

restriction of the path [xl,xP, xu]
the step from x to the GCP
the step at iteration k

the set of indices of successful iterations

upper bound on the length of the GCP step

the tangent cone to X at the feasible point x

the linear subspace such that x + V(x) is the tangent
plane at x to the constraints indexed by A.
affine subspace determined by the linear equality
constraints Pi

the iterate of Algorithm 1 at iteration k

the projected gradient path starting from xk
the Generalized Cauchy Point

the projection of x on the convex set Ct
a critical point

the convex feasible domain

convex sets whose intersection is the feasible domain

relaxation of the feasible domain determined by the
constraints active at the GCP
matrix whose columns form an orthonormal basis of the
linear subspace parallel to W
matrix whose columns form a continuous basis for V(x)
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Appendix C. Summary of the assumptions.
AS.1. The set is compact.
AS.2. The objective function f(x) is continuously differentiable and its gradient XTf(x) is

Lipschitz continuous in an open domain containing
AS.3. There exist constants al,a3 E (0,1] and a2,4 >_ 1 such that, for all kl _> 0 and k2 _> 0,

0"I[[[[(kl) [[[[(,2) 02[[[[(1) and o3[[[[[A,1] IIII[,:] o’4[[x[[[A,1]
for all x E Rn.

AS.4. The series

is divergent.
AS.5. The limit

lim f/c[f(t) f(Xk+l)] 0

holds.
AS.6. For all {1,...,m}, the convex set Xi is defined by

x ( [(z) 0),

where the function hi is from R into R and is continuously differentiable.
AS.7. For all k suciently large,

-3a (t),

Cll( and some constant P3 (0, 1].for some strictly positive tk I1%
AS.8. For all k sufficiently large,

a(x) A(x + sk).

AS.9. For all x. L, the vectors {Vhi(x.)}ieA(x.) are linearly independent.
AS.10. For every limit point x. L,

-Vf(x.) ri[N(x.)].

hS.ll.

lim llekl[[k] 0.

AS.12. The objective function f(.) is twice continuously differentiable in an open domain
containing X.

(x.)}i= are linearly indepen-AS.gb. For all x. L, the vectors {Vhi(x.)}ieA(x. and {Vpi q

dent.
hS.llb.

lim xk=x., lim gk=g. and -g, ri[N(x.)].
k k
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A FINITE SMOOTHING ALGORITHM FOR LINEAR 01 ESTIMATION*
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Abstract. In this paper a new method for solving the linear 0 problem is described, analysed, and
tested. The method is based on smoothing the nondifferentiable 0 function. The smoothing can be done in
a well-conditioned manner since the method has finite convergence. Extensive numerical tests demonstrate
significant superiority to existing simplex-type codes. Furthermore, the tests show that the new algorithm
is very well suited for vector processing.
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1. Introduction. In this paper we consider the linear 0 estimation problem, i.e.,
we consider the problem of minimizing the functional

(I) F(x) Ir <x)l,
j=l

where

r(x) afx- bj, j 1,..., m,
#

r(x) Ax- b (AT [a,..., am])

is a set of linear functionals in R n. We consider a continuation method for minimizing
(1). At each iteration the nondifferentiable function F is approximated by a smooth
function, the Huber M-estimator [7],

(2) Fv(x)= Y p+(rj(x)),
j=l

where

(3) pv( t)
t2/ (25")

and the threshold 5" is a positive real number. Clearly, F is continuously differentiable,
and it can be demonstrated (see, e.g., Theorem 1 below) that a minimizer x of (2) is
close to a minimizer Xo of (1) when 5’ is close to zero. Furthermore, Theorem 1 shows
that the fll solution can be detected when 5’ > 0 is small enough, i.e., it is not necessary
to let 5’ converge to zero in order to find a minimizer of (1). This observation is essential
for the efficiency and the numerical stability of the algorithm to be described in this
paper. The algorithm produces a sequence xv,, 1,..., io, of minimizers of (2), where
{ 5’i} is a decreasing sequence of positive numbers. When the threshold is small enough,
an fll solution is detected and the computation stops. The minimizers of (2) are found
through a Newton-type iteration [10], and since "warm starts" are used, very little
work is necessary to find" one xv, when the previous is known. Extensive numerical
testing of the algorithm indicates that the number of different threshold values used
only increases very slowly with the size of the problem. For example, for problems
with 1000 variables, io is less than 20 on average.

* Received by the editors February 11, 1991; accepted for publication (in revised form) March 19, 1992.
Institute for Numerical Analysis, Technical University of Denmark, 2800 Lyngby, Denmark.
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During the past ten years several authors have used continuation methods for
minimizing the !1 function, or for solving related special problems. Clark and Osborne
[2], [14] also use the smoothing (2) in a method which can be used to minimize (1)
by letting 3’ go to zero. However, this method can only decrease 3’ in very small steps,
so it is computationally less efficient than the present method. Furthermore, Clark and
Osborne only prove the finiteness of the algorithm in the case where (2) has a unique
minimizer for each value of 3’. In our corresponding result (Theorem 1) no such
restriction is used. Other authors who use continuation methods for problems related
to the present one are Knoth [9], Pinar and Zenios [15], and Chen and Harker [3].

It is well known that the linear !1 problem is closely connected to the linear
programming problem. This fact is the basis for most algorithms for minimizing (1).
One of the most efficient methods is given by Barrodale and Roberts [1]. It uses a
specialized version of the simplex method to solve an LP formulation of the 11 problem.
Various "interior point" algorithms, related to the Karmarkar [8] algorithm, have
recently been developed for the linear fll problem [4], [16].

We compare our algorithm with the version of the Barrodale-Roberts algorithm,
which is in the Harwell Subroutine Library [6]. On a set of pseudo-randomly generated
test problems our method seems to be significantly faster for large problems, by a
factor which increases with n and m. For n 810, m 1620 our method is on average
19 times faster than the Barrodale-Roberts algorithm. We have not been able to compare
this with [4] and [16] since no code is available, but we have compared it with the
interior point algorithm OB1 (Marsten [11]) applied to the standard LP formulation
of the !1 problem. However, the code of [11] is sparse, whereas our code and the test
matrices are not, and this may be one reason why our method was already more than
50 times faster for n 50, rn 200.

The paper is organised as follows. In 2 the Huber estimator (2) and its relation
to F is analysed. The main result is Theorem 1, which shows how an il solution can
be calculated from a minimizer of Fy when the threshold value 3’ is small enough. The
algorithm is defined in 3 and finite convergence is demonstrated. Finally, in 4 our
code is discussed and a large number of numerical tests with our algorithm and the
Barrodale-Roberts algorithm are described. The tests include rank deficient problems.

2. The connection between F and F. In this section 3’ always denotes a positive
real number. When it is convenient we denote F by Fo. Without loss of generality we
can assume that a 0, j 1,..., m, and that A has rank n. Otherwise the problem
could easily be reformulated to have these properties.

When we analyse the function Fy it is essential to determine whether (x)<-%
rj(x) > 3,, or ]rj(x)l < 3’. These inequalities divide R" into subregions Uf, Uf, and U
separated by the parallel hyperplanes t)(x)= +3’. The set of all such hyperplanes is
denoted by By:

(4) By {x s RI=lj Ir(x)l 3’}.

Defining the sign vector sy(x)= (Sl(X),..., SIn(X)) 7" by

-1 for r(x)<-y,
(5) sj sj(x)= 0 for Irj(x)[ <- 3’,

1 for r(x)> 3’,

and introducing

(6) w w(x)-- 1 s}(x),
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we can write

yielding

(7)

1
wr(x)+ [ (x)-I ]

where Wy Wy(x) is the diagonal m x m matrix with diagonal elements wj(x), i.e.,
Wy has 1 in those diagonal elements that correspond to "small" residuals, and zero
elsewhere.

For x R" the gradient of Fy is given by

(8) F(x) Ar[Wy(x)r(x) + sy(x)],
and for x R"\By the Hessian exists and is given by

(9) F(x) =1 ATWy(x)A"

The gradient is a continuous function in R, whereas the Hessian is piecewise constant.
We say that s is a y-feasible sign vector if there exists x R"\By with sy(x)= s. If

s is y-feasible then Qs is defined as the quadratic, which is deduced from (7) by
inserting s instead of sy. Thus, for any x with sy(x)= s, we have

(10) Qs(y) 1/2(y- x) TF(x)(y- x) + F(x)(y-x) + Fy(x).

Clearly Fy(y)= Q(y) in the domain

(11) C, el {y s(y) s}.

For each 7 > 0 and z R" we have one or several corresponding quadratics Qs. If
z By then Q is characterized by z and 7 only (s sy(z)), but for z By the quadratic
is not unique. Therefore, we use a reference
(12) (% z, s)

to determine the quadratic. We say that
(y, z, s) is a feasible reference if s is a 7-feasible sign vector with z C, and
(y, z, s) is a solution reference if it is feasible and x xy minimizes
The set of indices

(13) Ay(x)-- {Jl 1 _<-j _--< m A sj(x)=0}

is called the y-active set at x and the subspace

(14) Vy(x) -= span {ai [i A(x)}

is called the y-active subspace at x. (If Ay(x) is empty, then we let Vy(x)= {0}.) We
can express the necessary condition for a minimum of Fv as follows:

(15) O=F(x)=l ,. O(x)aj+ X sj(x)aj,

" jAv(x jAv(x)
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where j Ay(x) means j {il 1 -< =< m ^ Ay(x)}. Since Ir (x)l/y 1 forj Ay(x), this
expression is similar to the necessary condition for a minimizer y of the function F:
There exists {} with Il--< 1 such that

(16) 0= jaj + sa, with 1,
jAo(y) jAo(y)

where Ao(y)={jll<=j<-m^)(y)=O} and s=s(y)=sign{r(y)} (see, e.g., Watson
[18]). Since the objectives are convex these necessary conditions are also sufficient.

For each of the functions F and Fv there exists a minimizer xv at which the active
subspace has dimension n, i.e., Vv(xv)= R" (see, e.g., [18] and [10]). A minimizer xv
for which V(x) R is called a degenerate solution.

We denote by Xo a minimizer of (1), by xv a minimizer of (2), and by r r(xv)
the residual corresponding to xv. As indicated above, Xo and xv are not necessarily
unique. However, convexity rules out possible existence of nonglobal local solutions.
The set of all minimizers of Fv is denoted by Mr. When no confusion is possible we
shall use the notation A, Wv, etc., for Av(x), W(xr), etc.

In the algorithm presented in 3 F is minimized through minimizations of Fv for
a decreasing sequence of positive ,/-values. For each new value of % information from
the previous minimum of F is utilized. The paper of Clark and Osborne [2] analyses
the variation of a minimizer xv of Fv as a function of ’/. It is shown that xv is a
piecewise linear function of ’/. The proof is an easy consequence of the necessary
condition (15) and of (8), which also provides formulae for following xv as ’/varies:
If v is a solution of

(17) (ArWvA)v Asv,
where Wv and s are evaluated at xv, then

(18) x_ =x+ev
and

(19) r(xT_) r(xT) + eAv

are corresponding minimizers and residuals of F_ provided (, x, s) is a feasible
reference for each intermediate/, ’/-e <-/-< ,/. This is utilized by Clark and Osborne
to construct a method which follows the solution by updating the sign vector each
time a hyperplane {x] Ir(x)l- } is met.

We now list some useful properties of F and its minimizers. Our main result,
Theorem 1, shows that if ,/> 0 is small enough then an D1 minimizer can easily be
found from any minimizer xr of Ft.

LEMMA 1. If xv is a minimizer of Fv, Wv=Wv(xv), and sv =sv(xv) then there
always exists solution (s) to (17).

Proofi From the necessary condition (15) it follows that (17) is equivalent to

(20) (ArWTA)v _1 ArWTr(xr).
,/

This system is the normal equation for an overdetermined system of linear equations,
and hence consistent.

LEMMA 2. Let xv be a minimizer of F. If v and w are solutions to (17) and
j Av(xv), then

rj(x+ + ev)= rj(x+ + ew) for e R.

Proofi Since (v-w) is in the null space of ATW+A, we have, by the definition of
Wr, that a(v-w) =0 forj Ar(x+). Hence the result follows from the definition of
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LEMMA 3. If there exists a minimizer xy
then r(x) is constant for x

Proof. Let s s(xy). Then Qs(y) Fy(y) for y Cs. Let y C fq My then y minim-
izes Q. Hence it follows from (10) that

F(xy)(y- xy) -0.

Then (9) implies af(y-xy) 0 since j Ay(xy), and thus r(y) r(xy). Hence r(y) is
constant for y C f’)

Let U be a neighbour subregion of C, i.e., cl (U) f’l Cs # 0. If U f’) My # then
there exist points x U f-I My with Irj(x)] < 3’ because r is continuous and My is a
convex set. Hence rj(x) is constant in U fq My because of the argument above, and
hence the continuity of r implies that r(x) r(xy) for x

Repeating this argument, Lemma 3 follows because the set My is connected.
Lemma 3 shows that the "small" solution residuals are easy to control when

has several minimizers. The next lemma shows that the "large" solution residuals,
although not being constant, remain "large" with constant sign. For easy notation we
use the following alternative sign vector definition:

(21)
-1 for r(x)=<-%

(x) 0 for Ir (x)l < %
1 for (x)_->y.

gy(x) is the vector (gl(X),..., gin(X)) .
LEMMA 4. gy(x) is constant for x My.
Proof Let x My. If Ir(x)[ < y then (y) is constant in My because of Lemma 3.

Next, assume r(x)>-% If there exists y My with r(y)< y then there exists z My
with [rj(z) < y because of the convexity of My and the continuity of r. But then we
have a contradiction because of Lemma 3. Hence r(y)>= y for y My, i.e., (y)= 1 in
My. Finally, if r(x)-<-y then the proof of (y)=-1 for y My is equivalent, and
Lemma 4 is proved.

We denote by gy the sign vector gy(xy), where xv My.
LEMMA 5. Let 0 < <- q < 3/. Ifg gv then g, gy.
Proof. Let x M, xy My, and

(22) x, 1 e)x + eXy, e r/- 6 / T 6 ).

Because of the linearity we have

(23) r(x,) (1 e)r(x) + er(xv),

and hence since 0 -< e _-< 1 and g gy we obtain gn (xn) g. Now the necessary condition
(15) can be rewritten as follows:

1
(24) 0=2 X r(x)a+

_
(x)a,

where Av {i 1 -<_ -<_ m ^ gi (x) 0}. Hence the sign vector identity, the optimality of
x and xy, and (24) imply that x, satisfies the necessary condition (15) for F,. Thus

xn is a minimizer of F, since this function is convex. Now the result is a consequence
of Lemma 4.
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THEOREM 1. Let xv be a minimizer of Fy and let vv be a solution of (17). Then
there exists Yo > 0 such that the following hold for 0 < y < yo"

(25) x=xv+(y-8)vy minimizes Fv and s(x)=sv(xv) for 0<8-<_%

1
(26) r(x) -afv for 0< -_< y andj Ao(xo),

(27) Xo xv + /vv minimizes the function F and Av(xv) Ao(xo).

Proof. It is a consequence of Lemma 5 that if , 0< 8 < y, then o for
all 0 with 0 < 0 & Thus, since the number of different sign vectors is finite there must
exist yo > 0 such that is constant for 0 < yo.

Since is constant for yo, s(x) is constant for < yo. This follows from the
linearity in the definition (25) of x by inspecting the cases where and s differ: If,
for instance, (Xo) Yo A (x) > for some < yo then the latter inequality holds for
any < yo. If (Xo) > yo and (x) for some < yo, then (xo) < 0 for 0 < ,
which contradicts o . Thus, if (Xyo) 1 then s(x) is constant (0 or 1) for < Yo.
If =-1 at yo a similar argument applies. If (Xvo)=0 then s(x)= (x)=0 for
< Yo. Thus it is demonstrated that s(x) is constant for < yo. Assume from now

on that y < Yo. Then (25) is a consequence of (18).
Equation (26) is proved as follows" If j Ao(xo), i.e., (Xo)= 0, then

rj(x) afx b af(x + )v) bj

(a xo- b,)-

--avv.

Equation (27) is a consequence of the following: Ifj Av(x) then [(x)[ 8 for
0< 8 7, since s(x) is constant. Hence the continuity implies (Xo) 0, i.e.,j Ao(xo).
Thus A(x) Ao(xo).

Since x minimizes F we obtain from (15),

1
(8) 0= E (x)a+ E s(x,)a.

j A jA

Since A(x) Ao(xo) this implies

1
(29) 0= (x)a+ s(x)a.

jAo jAo

Because of the constant sign propey (25), s(x)= s(xo) for j Ao, and hence (29)
is the necessary condition (16) for a minimizer of F. Therefore, Xo minimizes F because
of the convexity. Thus Theorem 1 is proved.

Theorem 1 is the key to our algorithm since it shows that an fl solution can be
detected directly from a minimizer of Fv, 7 > 0. Thus, we can avoid letting 7 0, which
would give numerical instabilities. Fuhermore, it is of course very easy, using (27)
and inspecting the signs, to check whether the constant sign vector s has been found.

3. The algorithm. The new algorithm for minimizing the objective F is based
on minimizing the smooth function F for a set of decreasing values of 7- For every
new value of 7 information from the previous solution is utilized. Finally, when 7 is
small enough, an fll minimizer can be found from (27) of Theorem 1.
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Thus our basic algorithm can be formulated as follows:

(30)

find an initial solution reference (% x, s)
repeat

decrease y
find a solution reference (% x, s)

until 7 0
{Xo is an minimizer}

The initial solution reference is found by letting xv be the least squares solution and
then choosing y and s appropriately.

In the strategy for decreasing y we use (17)-(19). Let

(31)
x(8) xv + (y- 8)v,

0 <- 8 _-< y.
y(8 r(x + y 8)Av,

If s(x(8)) =s(x) for 0<8-<y then we let y=0 and x =x(0). Otherwise we choose
a positive value of y by inspecting some of the points where y(8) changes status, i.e.,
where lYj(8)] 8 for some j, 1 _<-j <_- m.

More precisely, let {8i}, 1,..., N, with y > 81 > 82 > > 8N > 0 be the points
in ]0, y[ where ]yj(Si)]- 8 for some value(s) ofj. (If this set is empty then N =0.) Let
8N+l =0, let v be the number of elements in Av(xv), and let v be the number of
elements in {Jl [Y(8)I -<- 8}. Then y is chosen by the following procedure:

ifN=0then y=0

(32)

else

end

i:=1
find 81
while not STOP

i:=i+1
find 8i

end
3’ := min [0.9, %

STOP is a function which returns true if one of the following conditions holds"

N, li+ < 1/2( 1 "+" FI ), l’i+ li, > imax,

where imax is some fixed upper bound independent of n and m. (In our numerical
experiments we have used imax 20.)

The motivation for using the bound 1/2(v+ n) in the stopping criterion is that
normally v > n when N # 0, and in nondegenerate cases there are n active residuals
at the !1 solution 10]. So the philosophy is that when we have gone "half-way" from
v to n then we accept y. A similar kind of argument motivates the condition v+l ->_ v.
Note that this search guarantees that unless we have identified the 11 solution there is
at least one change in the sign vector at the new value of 2’. The reason for trying to
choose y outside of the set of kink points {8} is that then the procedure for finding
the new solution reference is more stable.

We have experimented with other strategies for reducing the threshold, e.g., the
much simpler algorithm y := 1/2y. The experiments show that it is inefficient to let the
threshold decrease too quickly. The reason is that then the positive effect of the warm
starts in the Newton iterations disappears and the whole iteration becomes less efficient.
Although there was no evident difference between halving y and (32) we chose the
latter because it was the best on average.
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The method for finding the new solution reference is a modified Newton iteration
as given in [10] or [13]. The iteration is started from z=x(8) as given by (31) with 8
chosen as the new value of 3’. The search direction h is normally found by minimizing
Qs where s s(z). More precisely, we consider the equation

(33) Q’’h -Q’s(z).

If Q’’ has rank n then h is the solution to (33). Otherwise, if the system is consistent
(i.e., the problem may be degenerate) then we use a basic solution to (33). Finally, if
(33) is not consistent then we compute h by a Marquardt-like modification of the
system. For details see 4 and 5 in [10] or 2 in [13]. The next iterate in the modified
Newton iteration is found through a line search which is very cheap because of the
simplicity of Fv. It is shown in 10] that this iteration is finite, i.e., after a finite number
of iterations we have z+h Cs,.) and thus (z+h) minimizes F because of (10), (11),
and the convexity of Fv.

To summarize, the modified Newton iteration is the following:

{there is given a reference (7, z, s)}
repeat

find h from (33)
if (z + h) C then

z:=z+h
(34) stop := true

else
z := z + ah {line search}
s:=s(z)

until stop
{the new reference is (3", z, s), i.e., xv z}

The method of Clark and Osborne [2] follows a solution xv as 3’ varies, using
(18) and updating the direction each time a change in the sign vector occurs. This is
a strategy rather similar to using the simplex method of linear programming to solve
the 1 problem. In the first version of our algorithm we used a combination of the
method of [10] and the Clark-Osborne strategy, using the first method initially and
the latter close to the solution. However, experiments showed that the simpler method
(30)-(34) on the average is faster as well as more robust than the hybrid method. It
enhances the numerical stability of our method that the values of 3’ used in (34) are
chosen outside of the set of kink points. In the Clark-Osborne method directions are
updated at the kink points, and this occasionally gives rise to numerical instabilities.

THEOREM 2. The algorithm (30)-(34) stops at a minimizer Xo after a finite number
of iterations.

Proof. The number of loops in (30) must be finite as a consequence of Theorem
1 since 3’ is at least decreased by a factor of 0.9 in each loop. Thus Theorem 2 follows
from the fact that the inner loop (34) is finite [10].

4. Numerical results. In this section we present results computed in Fortran 77
on an IBM PS/2 Model 55SX with an Intel 387 SX coprocessor and a Stardent Titan
1500 with a choice between scalar and vector mode computation. On the IBM PS/2
we have used the Lahey F77L version 4.00 compiler with production optimization,
and on the Titan we have used release 2.2 of the Fortran compiler with "inlining" of
subroutines. On both computers the machine accuracy is e4 2-52 2.2o-16.

For details of our implementation of algorithm (30)-(34), see [13]. The major
part of computing time is spent in solving the systems (33) and (17). We use the
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package AAFAC [12] for performing LDL7" factorization of the matrices Q’’=
ArWv(x)A, and in most of the iteration steps we only need simple down- and updatings
of the factors L and D, corresponding to the equations leaving and entering the active
set; in this case the cost of one iteration is 0(n2). Occasionally a refactorization is
needed (see 2.2 in [13] and Tables 1 and 2 below); this is an O(n3) process.

In order to enhance accuracy we use one step of iterative refinement when solving
a system of linear equations with matrix Q’’, and the vr of Theorem 1 is found by
solving (20) rather than (17); cf. [13, 2.3, 3.3].

The implementation makes intensive use of BLAS subroutines [5] for performing
tasks like y := ax+ y, y := Ax/ fly, etc. The computation of the L and D factors involves
a series of updates of the form (x, y):= (x+ ay, y+ fix), where we use our own code
[12]. For medium-sized problems (m200, n=100) the BLAS routines and the
computations of L and D each account for about 45% of the execution time on the
IBM PS/2. Note that without "inlining" the calls of BLAS routines imply an overhead,
but they lead to a simpler code, and on the Titan 1500 in vector mode we have used
a vectorized version of the BLAS routines, thus helping to speed up computation.

First, consider the well-known stack loss data set; see, e.g., Table 5.1 in Osborne
[14]. Our algorithm needs five different values of the threshold y to obtain the D1
solution. Table 1 illustrates the five loops of the outer iteration (30). "iter." is the
accumulated number of solutions of (33) or (17), and "refac." is the accumulated
number of refactorizations in connection with computing the L and D factors.

TABLE
Results for the stack loss data set. m 21, n 4.

iter. y refac. Av(xv) xy

7.238 {1,...,21}
9 .226 4 {2, 8, 10, 12, 16, 18}
11 .0232 4 {2, 8, 10, 16, 18}
13 .0067 4 {2, 8, 16, 18}
14 0 4 {2,8,16,18}

(-39.92, .716, 1.295,-.152)
(-39.62, .833, .586, -.066)
(-39.81, .832, .574, -.060)
(-39.73, .831, .576, -.061)
(-39.69, .832, .574, -.061)

Note that three refactorizations are used during the Huber iteration to find x.226;

they involve at most 6 out of the 21 equations. No further refactorizations are needed.
Our results for v and xv agree with Table 5.4 in Osborne [14].

In the other test problems the elements of A and I are computed by a random
number generator, and modified so that condition (16) is satisfied for a given y and
so that Ao(y)-{1,..., Vo}, with Uo given as input. This generator is similar to the
generator for Huber problems in [10], and is based on ideas from [2] and [17]; details
are given in 13, 4.1].

In Fig. 1 we illustrate the typical behaviour of the algorithm" Each of the seven
horizontal lines correspond to one loop in the outer iteration (30); the threshold values
are shown in logarithmic scale. The circles indicate the current number of active
equations u. An "iteration" is counted as one solution of (33) or (17), corresponding
to one loop in the inner iteration (34) or updating the threshold, respectively. The first
iteration corresponds to finding the least squares solution; i.e., m 200, which is
outside of the figure.

Note that the first loop of (30) requires 14 loops in (34), and v(xv) is reduced
from 200 to 120. In the remaining loops of (30) we have better approximations to the



232 KAJ MADSEN AND HANS BRUUN NIELSEN

140

120

80

60

40

20

y= 1.610-3
’= 1.110-3

7 4.01fl-4

0
0 5 10 15 20 25

t= 2.61o4-- 1.11o-4
7= 6.510-5

,: 2.010-5
30 35

iteration no.

FIG. 1. Typical behaviour of the algorithm, m 200, n ;’o 100. Each horizontal line corresponds to one
loop in (30). Each circle corresponds to one loop in (34).

solution reference and therefore fewer loops in (34). For 3’ 2.01o- 5 we find s(x())
s(x) for 0< <-3’ (cf. (31)), and the iteration stops.

In Table 2 we give results for a number of problems. For each set of (m, n, 90)
we give average results for 10 different problems. "refac." and "iter." are explained
above, and "io" is the number of threshold reductions, i.e., number of loops in (30).
For comparison we also give results for the same problems when solved by the Harwell
MA20AD implementation of the method of Barrodale and Roberts [1]. Here "iter."
is the number ofsimplex iterations. For both methods the variation over the 10 problems
is about 20%, and in all cases the solution is found with accuracy O(eM).

In most of the problems the solution Xo found is unique and the number of
elements in the active set Ao(xo) is equal to n. These are all the problems with ’o n,
and these we assume to be of greatest practical interest.

TABLE 2
Performance of Algorithm (30)-(34) and MA20AD. Above line" Times on an IBM PS/2 model

55SX; Below line: Times on a Stardent Titan 1500, scalar mode.

Algorithm (30)-(34) MA20AD

m n Vo refac, iter. io time (secs) iter. time (secs)

200 100 90 6.6 73.4 12.2 389 251 290
200 100 100 2.3 36.6 7.2 207 250 289
200 100 110 2.0 24.9 3.6 176 263 304
66 60 60 1.5 14.4 4.5 21 70 16
90 60 60 2.5 28.0 7.8 46 103 33
120 60 60 2.3 31.8 7.1 57 142 60
180 60 60 3.1 38.4 6.0 88 186 121
240 60 60 2.9 31.6 5.5 103 209 183

200 100 100 2.3 36.6 7.2 15 250 16
320 160 160 2.3 48.9 9.5 59 431 69
480 240 240 2.4 53.3 10.3 170 736 260
720 360 360 2.3 67.4 13.0 518 1211 946
1080 540 540 2.3 80.9 13.2 1606 2042 3553
1620 810 810 2.5 106.5 16.8 5319 3790 14700
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In the first three sets of problems, however, we illustrate the effect of Vo being
different from n. The first set of problems, for instance, is constructed such that there
exist solutions Xo with rank less than n, i.e., the rank corresponding to the active set
Ao(xo) less than n. However, there also exist solutions with full rank in these cases
since the matrix A has full rank. This means that the solutions are not unique in the
first set of problems. The Barrodale-Roberts method seems to be almost unaffected
by this, whereas our method is best when the solution is unique. The reason may be
the following: if there are several solutions then our method will probably find a
solution Xo where the rank corresponding to Ao(xo) (and of Av(xv) for y small) is less
than n. This may slow down the rate of convergence in the inner iterations (34). The
Barrodale-Roberts method, however, will find a solution at a "corner" of the simplex
polytope, i.e., at a point where the rank is full. Therefore, the latter method may be
unaffected by the fact that there exist solutions with rank less than n.

The next five sets of problems illustrate the dependence on

(35) tx m/ n.

Note that the numbers of refactorizations and of y-reductions are almost constant,
and that the required number of iterations seems to reach a maximum for/z 3. For
the Barrodale-Roberts method the number of iterations grows monotonically with m.

In [13] we give more examples, and based on these experiments we have found
that for both methods the number of iterations is roughly modeled by

(36) number of iterations A(/x) n,
where a 0.5 for our method and a 1.25 for the Barrodale-Roberts method. In Fig.
2 (double logarithmic scale) this relation is illustrated by a number of problems with
/x 2, Vo n. The lines are fitted in two groups" the large problems are the last five
sets of problems in Table 2, while the smaller values of n include the second set of
problems in Table 2 and some smaller problems. There is good agreement with model
(36). The lines correspond to a(2) 4 for our method and a(2) 0.8 for the Barrodale-
Roberts method.

Now we can estimate execution times" For a typical iteration the time is O(n2)
for both methods, but the occasional (although very few) refactorizations imply that
for our method (denoted T.m.)

(37) timeT.m. b(/z)n + c(l)n2"5

104

103

Barrodale Roberts

o This method o.. ..""

=,.=.=’==

102

no. of unknowns

FIG. 2. Number of iterations as functions of n. m 2n, Vo n.
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should be a fairly good model, while

(38) timea_R d(l)n3"25.

For the last five sets of problems in Table 2 a least squares fit with these models gives
(b(2), c(2), d(2))-(8.9, 32, 5.2). 10-6 seconds.

We have also solved the last five sets of problems in Table 2 using vector mode
on the Titan 1500. In Table 3 we give results for run times of our method, the speed-up
(i.e., ratio between times in scalar and vector mode), and the ratio between vector run
times for the two methods.

TAaLE 3
Times and speed-up (g). m 2n. Vector mode on a Stardent Titan 1500.

n timeT.. (secs) gT.m. gB-R times_R/timeT.m.

160 8.6 6.8 1.45 5.5
240 21.7 7.8 1.45 8.2
360 59.2 8.8 1.45 11.0
540 172.4 9.3 1.45 14.2
810 530.2 10.0 1.45 19.1

For comparison it should be mentioned that on the Titan 1500 the theoretical
limit for speed-up is g 16, but g <_- 11 is found in practice. We get very close to this
limit, whereas the MA20AD is seen to vectorize very poorly.

5. Conclusion. We have defined a new algorithm for solving the linear !1 problem.
The algorithm is efficient and compares favorably with well-known methods. For full
matrix problems the new method seems to be better than Simplex-type methods by a
factor O(n25).

The method is very well suited for sparse matrix techniques, so future work will
extend the method to the sparse case. A sparse version is interesting, especially because
the relationship between the il problem and the linear programming problem indicates
that our method may also be used to solve the latter class of problems. Introductory
experiments in this respect are encouraging.
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UNIFORMLY EXTREMAL SOLUTIONS IN SOBOLEV FUNCTION SPACES
FOR THE QUADRATIC CASE:

CHARACTERIZATION AND APPLICATIONS*
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Abstract. Important in optimization issues in many areas, the uniformly extremal solutions in a real
Sobolev space which minimize f") in Lo norm and interpolate the given data {(x, y)}’ are characterized
for the quadratic case n 2. In contrast to comparable results, the characterization uses only elementary
facts and adds some useful perspectives on extremal solutions. Its consideration of uniformly extreme splines
suggests a simple and fast method for computing optimal solutions; problems with p 200 points can be
solved in less than two seconds of cpu time. It also leads, in another application, to an elementary proof
of Karlin’s characterization theorem, which has so far relied on a wide range of advanced mathematical
tools. Thus, this analysis of uniformly extremal solutions is fruitful for the quadratic case and offers a
promising framework for generalizing the elementary proof and efficient solution approach for the higher-
degree and other related problems.

Key words, optimal quadratic splines, uniformly extremal solutions in Sobolev spaces, Karlin’s perfect
spline theorem
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1. Introduction. Often we need to infer about an interesting property of the
underlying function from its values at a certain number of points. For example, what
is the minimal value of IIf<)ll or IIf<=)ll,..., required by a function f to be able to
interpolate the given points? It is obvious that this depends critically on the property
of interest and the assumptions one can reasonably make in the context. For many
problems, the most natural and important of these variables relate to the continuity,
differentiability, and boundedness of the underlying function and its derivatives. Here
we study a problem of this kind that has been discussed in the literature for a long
time. We consider functions f, which pass through the p given points {(xi, yi)}P on the
plane, whose (n- 1)th derivatives are absolutely continuous, and whose bounded nth
derivatives exist almost everywhere in Ix1, xp]. Then we ask: What is the minimal value
of IIf()ll, and which f, among these, achieves the minimum?

More precisely, let F)[a, b], -c < a < b < oo, be a subset ofthe real Sobolev space

W)[a, b]= {f:f cn-l[a, b]’,f(n-l) abs. cont.; f(") L[a, b]},

defined by

F)[a, b]= {f: f W)[a, b]; f(x,) yi, i= 1,..., p},

where {yi}t E Rp, {xi}t E Rp with p=>2, x <x+,, x a, Xp =b, and all xi[a, b] are
given" problem data. Note that absolute continuity off<"-) simply implies that it can
be obtained by integration off<"), and Loo[a, b] denotes the set of essentially bounded
functions in [a, bJ, that is, functions bounded everywhere in In, bJ, except, at most,
at a set of points with measure zero. Then we define the nth degree minimization
problem as

(1) inf{llf<")ll f F)[a, b]}.
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Applications of such problems are in various fields, including operations research,
statistics, control theory, and numerical analysis [10], [11], [14]-[16], [20], [21].

Probably due to the difficulty of the general problem, many special cases of (1)
have been considered: Glaeser [7], Louboutin [12], Schoenberg [14], and others [8],
[17], [18]. Here we introduce and give a characterization of uniformly extremal
solutions for the quadratic case n- 2 with increasing xi. The motivation for doing so
is manifold:

(i) Since the convexity (concavity) of a functionf is determined by f(2), and since
bounds on f(2 can be used to compute error bounds in often used approximations of
nonlinear functions, the quadratic case is important. For example, we get a bound
[15] on the function error: maxa<_x<_b If*(x)-](x)l--< Ilf*(-)ll/8, where ], obtained
from joining the adjacent points {(xi,f(x))}, is the piecewise linear approximation
of somef F[a, b],f* is a solution of (1) for n=2, and 8 maxl_<__<p_ (X+l-X).
Since f* is a solution, and therefore IIf*(=ll_-< IIf(=ll for all f F([a, b], such a
bound can be used in the error analysis of convex separable programs [15], [16].

(ii) The constructive nature of the arguments used to study uniformly extreme
splines gives insight into the mechanism underlying the characterization theorem, in
terms of both the perfectness of the solution, and the number of knots leading to a
fast method of computing optimal solutions.

(iii) The resulting characterization depends only on elementary facts. This is in
contrast to the current approaches to the general problem (as reflected in Karlin’s
characterization theorem discussed below) which require a substantial range of non-
elementary mathematical tools [1], [3], [4], [9], [11], [13].

THEOREM (Karlin [10]). There is a solution f of (1) which is a perfect spline of
degree n with at most (p-n- 1) knots in [ a, hi; that is, f maintains a constant absolute
value of the nth derivative with a sign change at each of the at most (p-n- 1) knots in
[a,b].

Karlin’s [ 11 method to prove the theorem is based on deep analysis. It uses many
total positivity properties of the kernel (x- t) and advanced topological results on
the degree of mapping of nonlinear transformations. The existence of the solution of
(1) is also shown by Jerome [9] and Fisher and Jerome [3]. This approach uses
representations forf W"[a, b] obtained from Peano’s theorem, and shows that any
nonempty intersection of {f":f F"[a, hi} with a closed ball in L[a, b] is sequen-
tially weak* closed in L[a, b]. Their other result [4], which characterizes solutions
of (1), is accessible via calculus, but it uses their above existence result and further
relies on such results as open mapping and Arzela-Ascoli theorems. In contrast to
these works, DeBoor [1] has given a short proof of Karlin’s theorem. However, in
terms of tools, a representational theorem for the divided difference linear functional,
the Riesz duality theorem, the Hahn-Banach theorem, Holder’s inequality, the smooth-
ing of functionals using Gaussian kernels, and finally a limiting process, are used in
the proof.

In this paper we show that for our special case, consideration ofuniformly extremal
spline solutions leads to a characterization and a solution method based on the
consequences of the following elementary observation. For a continuous function f(x),
x [a, bl, with a fixed mean value ,, its slope essentially bounded by a constant m,
and the value f(a) constrained in [l, h], the maximum (minimum) attainable value
f(b) is realized by (i) f starting at a with the lowest (highest) possible value l(h), (ii)
having rn (m) slope initially, and then (iii) switching to m(- rn slope at an appropriate
point in [a, b] to have its mean value equal to ,. Note that this construction (i) is
optimal in attaining the maximum (minimum) f(b), (ii) has at most one knot in [a, hi,
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and (iii) is a perfect spline. Thus, we would expect it to be related to optimal solutions
of the problem and to such a result as Karlin’s theorem. Here we show that it actually
leads to an efficient computational method and to an elementary characterization that
adds up to the full statement of Karlin’s theorem.

In the next section we consider a related problem and study some basic properties
of its solutions. These properties are then used to motivate our characterization result
in 3.1, and show how its consideration of uniformly extremal solutions suggests a
fast approach to computing optimal solutions of the problem in 3.2. Section 3.3
shows how it leads to an elementary proof of Karlin’s theorem. The summary and
concluding remarks follow in 4.

2. Preliminary analysis. Our case is n =2, with x <X/q-i, 1,..., p-1. Thus,
specifically, we want to characterize and compute extremal solutions of

(2) inf{llf(=)[Ioo:f F)[a, b]},
and show, in terms of Karlin’s theorem, that it has a solution which is a perfect spline
of second degree with at most (p- 3) knots, for p => 3. For p 2 the solution is trivial
and has no knots.

2.1. A related problem. In the following analysis, we work with an easier problem,
(), instead of (2). For degree n and p given points {xi};, {y}lp Rp, with a x <. <
Xp b, consider problem (:)"
(5) inf{llf()ll:f ](1)[a, b]},
where

(3) /3(n)[a, b] f(x): f(x) e W")[a, b]; f(x) dx (Yi+I--Y,)

for i= 1,...,p-1.

Note that f*(x), a solution of (2), is given by f (x)= xlf (x) dx +el, where f*(x)
is a solution of (), with knots of f* and f* obviously the same in number and at
identical x-coordinates. Finite-dimensional mathematical programming techniques
have been used recently [17], [18] to solve problem (). Illiev and Pollul [8] also use
(2) for convex quadratic splines; however, as compared to Karlin’s theorem adapted
for convex splines, their characterization result is significantly weaker regarding the
more difficult "perfectness" part [ 11, p. 27].

2.2. Notatioa and defiaitioas. We use the following notation and definitions.
(a) For any positive integer i, k_->0, xi <Xi+l, and the given problem data, let

d, =(y,+l- y)/(X,+l-Xi) Ayi/Ax,, ki- k(X,+l-X,)/2, and Hi di+ k(Xi+l-X,)/2-
di + ki, Li di k(Xi/l xi)/2 di ki. Note that for k > 0, Hi > Li.

(b) For given real constants a, b, c, let h[a, b, c] define a real affine fun-
ion on R, passing through the point (a, b) and having slope c everywhere. Thus
h[a, b, c](a) b, h(1)[a, b, c](x) c for all x R.

(c) For a positive integer i, xi < Xi/l and real s, k-> 0; y, y-; x, x- both in the
interval [xi, Xi/l], we define a pair of continuous piecewise affine functions on a single
interval

(4)

h[xi, s, k](x),g-[s, k] h[x-, y-, -k](x),

gC, [s, k] h[xi, S
h[xC, ,yC,,k](x),

where h[xi, s, k](x) y and h[xi, s, -k](x-) y-, ruling out any jumps in g-[s, k],
gC,[s, k] at x, x-, respectively (see Fig. 1).
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FIG. 1. The g and g? functions.

Since [ s, k] and [xi, s, + k] are frequently used, except when given for emphasis, we
drop them (others will be given) and denote the corresponding functions by g-, g-,
h+, and h- For referring to both g and g-, we will use gi. The values x, y, x-,
and y- are determined by ceain conditions to be satisfied by gi’s. Note that g (g)
is a perfect spline of order 1 on [x, x+] with at most one knot.

When x x+, x? x, we have g g? h+ for all x [xi, Xi+I], and we will
denote this function by g+. Similarly, when g g h-, it will be written g-. These
functions are needed for their extremal propeies, explored below.

(d) For the given real values s,s’<s,kO, positive integers i,j(j i+ l),
j-i+ 1, and a p-point problem data {x}, {y}, consider, in relation to problem (2),
the following sets of functions defined in [x, x]:

o(s,k)={feu(k): f(x)=s} and (s’,s,k)={feE(,k): te[s’,s]}.

For a function in any of the above sets, it is often convenient to call f(x) the
starting value andf(x) the ending value, and to say thatf has mean values d,..., d_l,
fcovers d,..., d_, or d,..., d_ are covetable by f (we may, to emphasize the value
of k being used, add with value k" or with k") in [x, x+],..., [x_, x], or, briefly,
that fcovers [x, x]. Thus fe u(k) if it covers [x, x] with value k; fe u(s, k) if, in
addition, it stas at s, and fe 0(s’, s, k) if it stas somewhere in Is’, s].

Let k= min{lf(1)]]: fe )[x, x]}; then we will denote the set of solutions of
this p-point problem by So[k]. Note that with this value of k, E(k)= So[k]. The
solutions that satisfy the conditions in Karlin’s theorem (for the corresponding problem
(2)) will be called Karlin solutions of (). For a p-point problem the maximum number
of knots a Karlin solution may have is (p- 3); it is called the Karlin count for the
problem. From 2.1 we know that a Karlin solution of () gives us a Karlin solution
of (2) with the same number of knots.

For these sets of functions when they are nonempty, and for rj, we would
need the supremum and infimum values, defined, for example, for the set Eu(k) by
h(k)(l(k)) sup(inf){f(x)"f Eu(k)}. Similar definitions apply for the other sets.
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Except when given for emphasis, we will drop the second subscript j, when j + 1.
A solution Go S,j[k], starting off with Go(x, sup{f(x,)"f S0[k]} Go(x,/1)=

inf{f(x,/l)’f S,j[k]},..., is called the (upper) uniformly extreme solution in S,[k].
Similarly, we can define G S,[k] as the (lower) uniformly extreme solution which
starts off at x, with the minimum attainable value and achieves minimum and maximum
attainable values (among all f S,[k]) at alternating points x,,..., x. We call Go, G
(though they may ,not always be distinct) the uniformly extreme pair in S,j[k] for the
p-point problem (2), G,(xi) the extremal starting value at x,, Go(x,/1),... G,j(xj-1)
the extremal values at x,/l,..., x_, respectively, and Gi(xj) the extremal ending value
at x. Similar terminology applies to G and uniformly extreme solutions in Ei(k),
E,(s, k) and E,(s’, s, k).

2.3. The untlerlyiag elementary properties. Using the above notation, we now give
some basic results, which will be used to prove the main theorem in the next section.
We begin by summarizing the elementary properties of functions gi’s and functions in
E,(s, k), E,(s’, s, k) in Proposition 1. The proofs of these basic facts require some
details, but they are elementary and are given in the Appendix.

PROPOSITION 1. For a positive integer i, k >-_ O, and a two-point problem data (x,, y),
(Xi/l, Yi+I), Xi Xi/l, we have

(A) (i) For s Hi, E,(s, k)= {g--}. (ii) For s L,, E,(s, k)= {g-/}. (iii) For L,
s H,, there are unique real numbers x? (x,, X,+l), x- (x,, X,/l), y?, y-; givingfunctions
g?, g, which are in E,(s, k), with g-(X,/l) g-(Xi+l)’, left-sided derivatives g-l(x,+l)
k, g)(x/)=-k; and one knot in (x, X/l). (iv) E(s, k) is nonempty if and only if

(B) Let L, - s - H,, g-, g? E,(s, k); then g(x,/) f(Xi+l) g(Xi+l) for any
f Ei(s, k).

(C) Let L, <- s’ < s <- H, thenfor any [ s’, s there are unique g7,[ t, k] E, (s’, s, k)
and g[[ t, k] E,(s’, s, k).

(D) Let L, <- s’ s <- H,. Let G" [s’, s - R, G" s’, s - R, be defined by G(t)
g7, t, k](X,/l) and G’(t) g-f[ t, k](xi+) for a fixed xi+, where g-[ t, k] and g[ t, k] are
both in Ei(s’, s, k) (note that by (C) above, gC,[t, k] and g-fit, k] exist). Then (i) G(t),
G’(t) are decreasing functions of t, Is’, s]. (ii) G(t), G’(t) are continuous functions
oft, [s’, s]. (iii) Thefunctions gC, [s’, k] Ei(s’, k) and g[ Ei(s, k) have thefollowing
properties "1

gC, [s’, k](Xi+l)--sup{f(x,/): f El(St, $, k)};

g(xi/l) =inf{f(xi/)" f E,(s’, s, k)}.

(iv) If k’ < k, [s’, s], E,(t, k’) c, then gO,It, k’](X,/l) < gC, [t, k](X,+l) and gf[t, k’]
(x,+,) > g-[ t, k](X,+l).

Note that Proposition 1 is stated in terms of the starting value s at x. However,
just as a given starting value at x, and a value of k determines g- and g functions
uniquely, a given ending value s at x+ and the value of k also determine them uniquely.
Hence all the symmetrical results in Proposition 1 can be similarly proved in terms of
an ending value at x+.

The above proposition describes the properties of an (i 2)opoint problem. In
Proposition 2 we discuss three others, needed for iN 2.

The often used arguments [s, k] in g: functions and [xi, s, +k] in h functions are not written (except
for emphasis), hence g-- g[s, k], h -=- h[xi, s, -k]" see 2.2(c).
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PROPOSITION 2. For the given i-point (i-> 2) problem data {Xr} il, {yr}il, and k with
Ei(k) b, we have the following:

(A) Let there be some k’ < k with Ei(k’) b. Let q be a uniformly extreme perfect
spline (UEPS) in Eli(k). (i) (a) If q attains the lowest extremal value at the last data
value xi" q(xi)= lili(k), then the left-sided derivative at xi" ql)(xi)=-k. (b) If q attains
the highest extremal value at the last data value xi q(xi)- h li(k), then the left-sided
derivative ql)(xi)= k. (ii) (a) Ifq attains the lowest extremal value at the first data value
Xl" q(xl)= li(k), then the right-sided derivative at Xl" q(Xl)= k. (b) If q attains the
highest extremal value at the first data value Xl" q(xl)- hi(k), then the right-sided
derivative q 1)(Xl) k.

(B) Let ql q2 be UEPSs in Eli(S’, s, k) rh (i even, so that the patternmlow at
xi, high at xi_, ,mends up high at x) such that the lowest ending value q2(xi) > ql(xi);
then we must have the highest starting value q2(xl)-<-ql(xl). That is, if the lowest ending
value ofa UEPS is not as low as that ofanother UEPS, its highest starting value cannot
be higher than that of the other UEPS. Analogous statements also apply to the other
highest (lowest) ending values and odd (even) cases.

(C) Let q be a UEPS for k and the (i 1)-point problem defined by the first (i 1)
points of the given data; i.e., UEPS q Eli_l(k). Let q(xi-1) be the highest (lowest)
attainable value h i- i-1

i-1 (k) (/li-1 (k)) at xi_. Let the last point (xi, y) of the data be such
that h i- i-li_l(k) Li_l (/li_l (k) Hi-l); thenEi(k’)=bforanyk’<k; i.e.,kistheminimal
value needed for the i-point problem.

3. Main result and applications. Considering uniformly extremal splines, we dis-
cuss and prove the main theorem in 3.1. Then follow the applications to computing
optimal solutions of the problem and deriving an elementary proof of Karlin’s charac-
terization theorem.

3.1. Characterizing uniformly extremal solutions.

3.1.1. Outline of the proof. The basic idea ofthe proof ofthe main characterization
theorem, given below, is as follows. Suppose that we have a UEPS q for an /-point
problem. Let us incorporate an additional data point {Xi+l, Yi+l}. If the new data point

(that is, the extremal value underis, say, dominated by the previous data {Xr,
consideration at xi as determined by the previous data remains unaffected by the new
data point, i.e., remains the same for the (i + 1)-point problem), then q can be extended
to the last (new) interval with exactly one additional knot to serve as the UEPS for
all the data, that is, for the (i + 1)-point problem. However, if the new data point
dominates the previous data (the extremal value at xi is changed by the new data
point), we show that the first data point is dominated by the remaining /-point data
{Xr, yr}+1 with respect to the corresponding extremal value at x2. Therefore, as in the
previous case, we can use the UEPS for the data {xr, y}/+ and extend it to the first
interval with exactly one additional knot to be the UEPS for the (i + l)-point problem.
Here we see a perfect symmetry of dominance between the first and the last single
data points, or equivalently, between the first and last group of/-data points in the
given (i + 1)-data points. In the proof below, the new data point is dominated by the
previous data in case (a), while it dominates the previous data in case (b).

THEOREM 1. Let k* be the minimal value k* min{llf)ll: f/(cl)[x1, Xi]} for the
given i-point >= 2) problem (2) defined in [x, xi]; thenfor any k larger than the minimal
value k> k* + e, e >0, there exists a UEPS pairin Eli(k), each ofwhich has (i-2) knots.

Proof We will use induction to prove the theorem. Assuming that the /-point
problem has a UEPS pair with (i-2) knots we show that an (i+ 1)-point problem,
obtained by adding a point (xi/, Yi/) coverable with k (i.e., Eli+(k) # b) has a UEPS
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pair with (i- 1) knots. We do this by showing that the additional point necessitates
exactly one more knot than the UEPS for the /-point problem. We will discuss the
UEPS in Eli+l(k), which attains the lowest ending value li+(k) at xi (in our ter-
minology, an upper (lower) uniformly extreme spline if" is even (odd)). A similar
approach can be used for a UEPS that attains the highest ending value at xi, giving
us the pair.

Let si := li(k), the lowest extremal value at xi for the /-point problem data. Let
us add another data point (Xi+l, Yi+l), coverable with k. Let q be the UEPS in Eli+l(k)
for all data with q(xi)- i+l(k). We consider the only possible two cases (a) and (b)
separately.

(a) Li < si <-- Hi. Consider the interval [xi, xi+l]. Clearly, if (i) Hi < si for the new
point, then Ei/l(k) b (Proposition 1 (A)(iv)). Therefore, this case cannot arise, since
the value of k considered in the proposition covers the problem data. (ii) If Hi
then by Proposition 2(C), k is the minimal value; this eliminates this case and thereby
the possibility that the additional point does not necessitate any additional knots
at all. (iii) If L<si<Hi, then q(xi)=si since obviously in this case q(xi)
max(si l,(k), L, =l,/(k))=si, that is, Li<si=the starting value of q at
hence q has a knot in (xi, xi/l) (Proposition 1 (A)(iii)).Thus for an (i + 1)-point problem,
taking q to be the UEPS for the /-point problem in [x, xi], and extending it in the
last interval [xi, xi+l] by defining q(x)=gC,[si, k](x), xi<-x<-xi+l, we see that q has
as many knots as the UEPS for the /-point problem in Ix1, xi], no knot at xi (by
Proposition 2(A)(i)(a), the left- and right-sided derivatives match at xi, both being
-k), and one more in (xi, xi+l). Therefore, q has (i-2)+ 1 (i-1) knots, as asserted.
(iv) If Li si, then again q(xi)= si, and there is a knot at xi, since at xi, g-f+[si, k],
needed to cover di (Proposition l(A)(ii)), obviously has k as the value of its right-sided
derivative, while the UEPS achieving the lowest value at xi for the /-point problem
has -k as its left-sided derivative (Proposition 2(A)(i)(a)). In this case also (as in (iii)
above), q has (i- 1) knots, the correct count for an (i + 1)-point problem. Thus there
exists a q as desired for Li <- s < Hi, q having a new knot in the last interval [xi, X/l).
Now we consider the only possibility left out: Li >

(b) Li > si. In this case we show that the UEPS q of the /-point data {x, Y2
which exists by our induction assumption, can be extended in the first interval [x,
with exactly one additional knot to give a UEPS with (i 2) knots for the (i / 1)-point
problem data (x,

We know that in Ei/l(k) for any r= 1,..., i, the lowest extremal value at
because the lowest extremal value of a problem must be greater than or equal to the

li/(k) Li. But inlowest extremal value of any of its subproblems. In particular,
this case max (si lili(k), Li)-Li, therefore, li/(k)Li - lli(k). That is, the lowest

i/ is greater than li(k), the lowestextremal value at xi for the/-point problem (x,
ending value for the/-point problem (x, y)il. Therefore, by Proposition 2(B) for odd
i, the highest starting extremal value at x for the /-point problem (x, y)/ is less
than or equal to the highest starting extremal value at x2 for the /-point problem

2(Xr, y)" h2i/(k) h2i(k). Now, obviously (again because the highest extremal value
of a problem is less than or equal to the highest extremal value of any of its subprob-
lems), hi(k) H2 thus h2i+(k) <- h2i(k) <- H2, and by Proposition 2(A)(ii)(b) the
right-sided derivative of a UEPS in EEi+(k) attaining the highest extremal value at x2
is -k. Therefore (similar to (a)(iii) above), for hEi+l(k) < HE there is a starting value

sl (see the observation following Proposition 1) such that g-[sl, k](x) covers dl with
the ending value g-[s, k](x2) h2+l(k) q(x2) and one knot in (Xl, x2). And (similar
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to (a)(iv) above), for h2i+l(k)= H2, there is sl such that g-+[sl, k](x) covers dl with
q(x) H2 ++g [s, k](x2) and a knot at x2. This gives us the desired UEPS.

3.1.2. Different perspectives. As compared to Karlin’s theorem, there are two
useful, and perhaps more satisfying, perspectives from which we may view the statement
of Theorem 1. First, it applies to all the values k > k* (the minimal value) in a positive
way; that is, for any such k the claimed extremal solution exists. Second, there is no
ambiguity about the number of knots. For any k > k*, all the uniformly extreme perfect
splines for the /-point problem have exactly (i-2) knots (one more than the Karlin
count). Recall that Karlin’s characterization theorem ( 1) emphasizes the minimal
value k k*, and gives only an upper bound on the number of knots.

Of these, the certainty of the number of knots is crucial in Theorem 1. It compels
us to consider uniformly extremal splines, which are amenable to fast computation by
direct formulas and therefore useful in finding optimal solutions of the problem. We
discuss this application below.

3.2. Computing optimal solutions. To compute optimal solutions of (.) and thus
of (2) (as shown in 2.1), the above discussion suggests the approach outlined below.

For all values of k larger than the minimal value k* min{llf)ll:y fi)[x, xi]},
Theorem 1 asserts that there exists a UEPS in E(k) "covering" the given data. If
such a spline exists, let us call the given value of kfeasible; otherwise, call it infeasible.
To determine the minimal value k*, we need to check whether a given value of k is
feasible or not because, to approach the minimal value k*, a given value of k needs
to be increased if infeasible and decreased if feasible. Once found, the infeasible and
feasible values will also serve as lower and upper bounds on the minimal value we
want to compute. Therefore, if we can check the feasibility/infeasibility of a given
value of k, we can easily use a search-type procedure, such as bisection, to reduce the
difference between these upper and lower bounds in each iteration and find the minimal
value within any desirable tolerance. Knowing the minimal value k*, then, also allows
us to compute an optimal spline [18], [19].

Now, checking the feasibility of a given value of k by considering uniformly
extremal splines is simple. It is essentially based on the successive (r 2,...) application
of the facts that to attain the lowest (highest) extremal value at x, we start at the
highest (lowest) extremal value at Xr- ofthe (r- 1)-point problem and use a g+_[t, k]
(g-_l[t, k])-type function (Proposition l(D)(iii)). Using these, for a given interval and
data to its left, we get formulas to compute the extremal ending values and conditions
to check whether the data to its right is "coverable" or not; that is, whether a given
value of k is feasible or not.

Using extremal value formulas and feasibility criteria implied above, a direct
algorithm and its implementation in FORTRAN are given in [ 19]. The algorithm seems
fast for even large values of p; problems of up to p 200 points were solved in less
than two seconds on an IBM3090 under CMS. The optimal k* was obtained to within
a tolerance of +e 0.00001 in about 15 to 25 iterations for all the problems solved.
Once the minimal k* is found, the method to compute an optimal spline function and
maximum/minimum envelopes [5], [6] are also given in [19].

3.3. An elementary proof of Karlin’s theorem. As discussed before, Theorem 1
offers perspectives on (uniformly) extremal solutions related to but somewhat different
from Karlin’s theorem. In fact, however, it is equivalent to Karlin’s theorem. Since
Theorem 1 depends only on elementary facts, this gives us, for the quadratic case
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treated here, an elementary proof of Karlin’s theorem, which otherwise requires many
advanced mathematical tools, as discussed in 1.

THEOREM 2. Theorem 1 is equivalent to Karlin’s theorem.
Proof. Consider an /-point problem, and some k’> k, where k is the minimal

value for the /-point problem. Assume that Theorem 1 is false; that is, there is no
UEPS in Eij(k’) with (i-2) knots. If knots of q, any arbitrary UEPS in Eli(k’), are
less than (i-2) (i.e., less than or equal to (i-3)), then k’ is minimal, since one can
show (essentially using Rolle’s theorem) that any perfect spline solution with knots
less than or equal to (i-3) is a solution of the problem [2], [8]. So assume that q
attains the highest extremal value at xi and one has one extra knot than what Theorem
1 asserts: it has (i-2)+ 1 i-1 knots. We will show that this implies that Karlin’s
theorem is false for an (i + 1)-point problem constructed below. Add the (i+ 1)th point
(Xi+l, Yi/l) such that di q(xi)+ k’(xi+-xi)/2. Then it is clear by the construction
(which implies hi(k’)=Li(k’)) that k’ has become minimal for the (i+l)-point
problem (Proposition 2(C)), and that there is no knot at xi since the left-sided derivative
ql(xi) and the right-sided derivative of a g+-type function at xi needed to cover
in [xi, Xi+l] both have the value k (Propositions 2(A)(i)(b) and l(A)(iii)). Therefore,
any perfect spline solution for the (i+ 1)-point problem has at least (i- 1) knots, one
more than the Karlin count for an (i+ 1)-point problem, which implies that Karlin’s
theorem is false. This proves that Karlin’s theorem implies Theorem 1.

Now assume that Karlin’s theorem is false. We will show that this implies that
Theorem 1 is false, showing that Theorem 1 implies Karlin’s theorem. Again consider
the (i+ 1)-point problem given above. Since we are assuming Karlin’s theorem to be
false, any perfect spline solution of the (i + 1)-point problem has at least one more
knot than its Karlin count equal to (i+ 1)- 3 i- 2; that is, it has at least (i-2)+ 1
(i-1) knots, and by construction no knot at xi. Now dropping the (Xi+l, yi+l) point
and considering the /-point problem we see, again by construction, that k’ is larger
than the minimal k for this problem, and since there was no knot at xi, any uniformly
extreme perfect spline will have at least (i-1) knots. For any/-point problem, this is
a contraction of Theorem 1.

4. Summary and concluding remarks. For the quadratic case, the analysis of
uniformly extremal splines in the above framework leads to a simple and effective
computational method and to significant simplification of the arguments characterizing
the optimal solutions of problem (1). The approach can be expected to be useful for
the higher-degree problems in two parallel ways: (1) The constructive details of the
analysis, e.g., how we attain the maximum/minimum ending or staring points (extremal
value formulas), or how one checks if a given k= IIf(=)ll value is feasible for an
additional data point (feasibility criteria), may be used to help compute the optimal
solutions of such problems efficiently. As discussed before, this has been successfully
implemented for the quadratic case. (2) By appropriately identifying the roles offl
with fn- and f2 with fn in a suitable framework, it may form a starting basis for
an elementary proof of the general characterization theorem. In addition, (3) since
nothing restricts uniformly extremal splines specifically to problem (2), they can be
used for other relatedproblems, e.g., problem (1) with convexity/concavity requirements
onf [8], 17], and the problem of finding maximum/minimum function value envelopes
for a given a priori bound on IIf(")ll [5], [6], [19]. The study of (1)-(3) would seem
a fruitful and challenging research task for the future.

Appendix. Proofs of Propositions 1 and 2.
Proof (Proposition 1). (A)(i) By the definition of Hi, gZ,- Ei(s, k). If there is

any otherf Ei(s, k) different from gi let it have a different value at x’
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Then either f(x’)< gC,-(x’), or f(x’)> g[-(x’). Let x*= x’ in the former case. In the
latter case, since [x’+lf(x)dx= Ix’+’ gC,-(x)dx= di, we must have some
such that f(g) g--(); let x*- 2. Then ((f(x*)-f(xi))/(x*-xi)) -, therefore,
f W)[x,xi+] could not have [If(1)[[oo-<k, contradicting the statement that f
Ei(s,k). (ii) Similar to (i). (iii)(a) Define M(t)=J’, h-(x)dx+ hit, ht, k](x)dx,
where ht h-(t), then by taking 8 < ((e/k+ )/2_), for any , in [xi, Xi/l] with
[1-2[< 8, and 8 =x+-2, we can show that M(t) is a decreasing continuous
function of in [x, xi+], with M(xi)> di, and M(xi+)< di. Therefore there must be
a unique x- (xi, xi+) such that M(xT,)= di, giving us the desired g-. Similarly we
can find g. (b) Now, since in the neighborhood of xi g-> g- and "’+’ g-(x)dx
x, gV,(x)dx di, there must be some x’ (xi, xi+) such that g-(x’)< gV,(x’). To do

this, g must have changed the sign of its slope in (xi, x’). But g can do this only
once by definition, hence g < g- for all x Ix’, xi/]. The other conclusions follow
from this. (iv) Let s < Li,f Ei(s, k). Since ,’/’ f(x) dx x,[X’/ gv,-(x) dx andf(xi) s <
Li gV,-(xi), as in (i) above, IIf(ll k, contradicting the statement thatf Ei(s, k).
The same is true if s > Hi. For Li =< s -< Hi, functions in Ei(s, k) have been defined in
(i)-(iii) above.

(B) Letf Ei(s, k) and f(xi+) > gr,(x+). Since x,l’’+’ f(x) dx ,[’+’ gr,(x) dx, there
must be x’ e (xi, xi+) with f(x’) < gr,(x’). Then (a) if x’ e (xi, x-), considering points
(xi, s), (x’,f(x’)),it is clear thatf(1) < -k somewhere in (xi, x’), and (b) ifx’
then considering points (x’,f(x’)), (xi+,f(xi+l)), we must have f()> k somewhere in
(x’, Xi+l). In both cases IIJS)ll k, a contradiction to fe Ei(s, k). Similarly, one shows
the other inequality.

(C) Since [s’, s] c__ [Li, Hi], by A(i)-(iii), for any e [s’, s], Ei(s’, s, k) is nonempty
containing unique g-[ t, k] and g[ t, k].

(D)(i) If > t’, we have g-[ t, k] > g[ t’, k], and g;-[ t, k] > g-[ t’, k] in the neigh-
borhood of x. Then the arguments as in proof (A)(iii)(b) imply that g-[t, k](Xi+l)<
g[t’, k](x+) etc., and it follows that G(t), G’(t) are decreasing functions of e [s’, s].
(ii) The continuity of G(t), G’(t) is also seen directly: for any e >0 we can take
15 < e(Xi+l-X-f)/(xf -xi), ,5’< e(Xi+l-XC, )/(x[-x), implying that Ig/[t, k](xi+)-
g?[t’,k](x,+)l< for all It-t’l<8, and [gr,[t,k](xi+)-gr,[t’,k](xi+)l<e for all
It-t’[< ’, t, t’, both in [s’, s]. (iii) Clearly, [s’, s] is compact, and as just shown,
a(t) g-f[ t, k](Xi+l) and G’(t) g-[ t, k](xi+) are both continuous and decreasing in
t, e[s’,s]. From this it is clear that gi’s defined by (4) have g-f(Xi+l)<--f(Xi+l)<=
g[[s’, k](xi+), for any fe Ei(s’, s, k). (iv) Let g := g,[t, k] and g’:= gr,[t, k’]. Since in
the neighborhood of xi, g’> g, therefore, as in the proof (A)(iii)(b), g’(x)< g(x) for
all x [x’, xi+]. The other inequality follows similarly.

Proof (Proposition 2). (A)(i)(a) q(xi)=/ili(k) Consider h := h i-(k), the extremal
value at xi-1. Proposition l(D)(iii) implies that q(x)= g-_[h, k] in x_ <-x<-xi, since
we must start at the highest value at xi_ and use the g_ function to attain the lowest
ending value at xi (among all the functions in Ei_i(lv,l(k), h-i (k), k)). The value of
the left-sided derivative at xi is -k by definition for the function g-_l[h, k], except, of
course, when it coincides with g_[h, k]. This occurs if and only if h Li_ (Proposition
l(A)(ii)), which, due to g-_+l[h, k’](x) < g--+l[h, k](x) for xi-1 <x <xi, and Proposition
l(D)(iv) implies that for any k’<k we have E_i(li-(k) h -1li li (k), k’)=b. This
obviously means Ei(k’)= b. Since this is a contradiction, g[_l[h, k] cannot coincide
with gf_+l[h, k], and we always have q(1)(xi)--k. (b) q(xi) h ili(k). Here we must
have q(x)= gC,_[li17(k), k], xi-1 <-x<--xi, and our conclusion follows parallel to (i)(a)
above. (Note that this proposition holds for the last xi value since it is unfettered by
any data to its right; it may not be true at other values.) We can prove (ii)(a) and (b)
similarly.
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(B) This is a direct consequence of the following facts: (i) to attain the lowest
(highest) extremal value at Xr, we start at the highest (lowest) extremal value at xr_l

of the (r- 1)-point problem and use the g+_l[t, k] (g-_[t, k]) function (Proposition
l(D)(iii)). (ii) Both gr+_[t, k](x) and g-_l[t, k](x) are decreasing functions of
(Proposition l(D)(i)), thus the higher the starting value, the lower the ending value;
and (iii) since, clearly, the lowest (highest) extremal value of a problem cannot be
lower (higher) than the lowest (highest) extremal value of any of its subproblems, the
maximum of{Lr, gr+--l[t, k](Xr)} (minimum of{H, g-_[t, k](x)}) determines the lowest
(highest) extremal value at xr in Er(k). Applying these in each interval [Xr, Xr/],
successively, r 1,..., i- 1, it is clear that if q2 starts off at a higher value than ql at
x, it will end up attaining at least as low a value as qlat xi. Thus, if q2 does not attain
as low an ending value as ql at xi, q(xi)> ql(xi), then we must have the starting value
q(xl)--< q(x). (The other cases follow similarly.)

(C) We consider q(xi-1)= h i-i_l(k) Li-1, the other case follows similarly. First
note that we may have Ei_l(k’) b for any k’ < k; in that case, obviously, Ei(k’)
Hence, let Ei_(k’) ch for some k’ < k. Proposition l(D)(iv) implies that the highest
attainable ending value at xi_l with a value k’ < k cannot be higher than when we use
k; i.e. hi-1 i-1 i-hli_l(k’)<hi_(k)= Li-1, we have theli-l(k’)--< hli-l(k) Under inequality
highest possible starting value of a function, which is to cover di-1 in (xi_, xi), lower
than Li_. But, by Proposition 1 (A)(iv), this cannot be done, implying Eli(k’)= th. In
the equality case h i-1 hli-1li_(k’) (k), notethatby Proposition l(A)(ii) whenthe starting
value s Li-1, the only function g Ei-li(S, k) which covers di_ in (xi-1, xi) is g-_+l[S, k].
However, since gf[s, k’] < g_[s, k] for k’ < k, x (xi_, xi), it is clear that g_+l[s, k’]
cannot cover di_ in (xi-1, xi), and we must have Eli(k’)= b, and k is the minimal
required value for the /-point problem.
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Abstract. Best entropy estimation is a technique that has been widely applied in many areas of science.
It consists of estimating an unknown density from some of its moments by maximizing some measure of
the entropy of the estimate. This problem can be modelled as a partially-finite convex program, with an
integrable function as the variable. A complete duality and existence theory is developed for this problem
and for an associated extended problem which allows singular, measure-theoretic solutions. This theory
explains the appearance of singular components observed in the literature when the Burg entropy is used.
It also provides a unified treatment of existence conditions when the Burg, Boltzmann-Shannon, or some
other entropy is used as the objective. Some examples are discussed.

Key words, convex analysis, duality, existence, generalized solution, image reconstruction, maximum
entropy method, moment problem, partially finite program, spectral estimation
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1. Introduction: Best entropy estimation. A very common problem in many areas
of the physical sciences consists of trying to estimate an unknown density by measuring
some of its moments. More precisely, given a number of integrals of an unknown
function with respect to known weight functions, and a real interval in which the
function is known to take its values, we seek to estimate the function. Typically, the
weight functions are trigonometric polynomials, frequently multidimensional (so the
given moments are Fourier coefficients), or algebraic polynomials (giving power
moments), and the given interval is often (though not exclusively) the nonnegative reals.

Given only a finite number of moments this estimation problem is clearly under-
determined. One extremely popular method for selecting an estimate from the family
of all functions satisfying the prescribed moment constraints is to choose it to minimize
some objective functional (subject to the given constraints). This objective is typically
some measure of entropy--hence the term "best entropy estimation." This approach
has been widely and successfully used in such diverse areas as astronomy, crystallogra-
phy, speech processing, tomography, geophysics, and many others. For surveys, see
[31] and [35] (containing in total almost 700 references), and the recent collections,
[54], [53], [17], and [51].

Phrased mathematically, the best entropy estimation problem becomes, in its
simplest form,

minimize I- b (x(s))
(1.1) d

subject to | aix=bi fori=l,...,n.

The variable density to be chosen is x, the a’s are the known weight functions, and
the bi’s are the measured moments. The function b reflects our choice of entropy" it
may take the value + to incorporate the known range constraint on x. For reasons
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discussed in [6] we may as well restrict ourselves to closed, proper, convex functions
b. The two classical choices correspond to the Boltzmann-Shannon entropy, perhaps
first suggested in this context in [27],

ulogu if u>0,
(1.2) b(u) := 0 if u =0,

+c ifu <0,

and the Burg entropy, first proposed in [12],

-logu if u>0,
(1.3) b(u) :=

0 if u -< 0,

although numerous other entropies have appeared in the literature, including L2 and
Lr entropies [25], [29], and [3], and the general families proposed in [40], [39], and 13].

The debate over the relative merits of the various entropies has been intense, as
the above references will testify. The choice between 1.2) and 1.3) has been particularly
controversial (see, for example, [28] and [52]). The issues in this debate can be grouped
into three rather distinct areas. The first might be termed a priori reasons for selecting
a particular entropy, generally involving a probabilistic, statistical, or information-
theoretic discussion of the underlying phenomenon we seek to measure (see for
example, [40], [52], [28], [39], and [13]). The second area of debate is empirical: the
performance of the method is judged by its ability to reconstruct a known density from
its moments (see, for example, [40], [28], [52], and [29]). Both of these areas lie outside
our current scope.

The third area might be called a posteriori reasons" mathematical properties of
the estimates arising from a particular choice of entropy are studied. Two particular
properties have attracted attention" the existence of the optimal estimates, and their
convergence to the underlying density as the number of given moments grows. For
questions of convergence, see [52], [37], [22], [50], [18], [34], [19], [13], [7], [5], and
11 ]. In this paper we shall concentrate on the first property: the existence of an optimal

solution for the estimation problem (1.1).
The basic idea for solving (1.1) has been explained widely in the applied literature,

although for the most part without any degree of rigour: the form of the optimal
solution is derived by attaching Lagrange multipliers A1,..., An to the constraints, and
then differentiating (formally), giving

(1.4) (s) := (d’)-(l ,a,(s))
where the Ai’s are chosen to ensure that is feasible. Two existence questions need
to be addressed to make this rigorous. First, when do the multipliers A1,..., An exist?
Put differently, we require the existence of an optimal solution to the dual problem
for (1.1). As usual in convex programming, the required condition is a primal constraint
qualification for (1.1). This is straightforward to check: a general theory for "partially-
finite programs" (convex programs with an infinite-dimensional variable subject to a
finite number of linear constraints) is developed in [9] and [6].

The second question is more delicate: when does (1.4) give the optimal solution?
Under mild conditions, it does so provided that we know a priori that an optimal
solution exists. This is the case, for example, when the objective function has weakly
compact level sets, as is the case with the Boltzmann-Shannon entropy [7], but the
important case of the Burg entropy is not covered by this idea. Existence was shown
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for important special cases in [15] and [56], and a general condition ensuring existence
was introduced in [32] together with a demonstration that it may fail in general.

A fascinating concrete example of the nonexistence of a best Burg entropy estimate
appeared in [40] (see also [52] and [14]). The problem was very simple: the unknown
function was a probability density on the unit cube in R3, with three of its (multi-
dimensional) Fourier coefficients given equal to a parameter a in [0, 1). It turns out
that the Lagrange multipliers always exist, and, at least for small a, (1.4) gives the
correct best Burg entropy estimate. However, as a increases to a certain critical value
the solution becomes more and more concentrated, and beyond this value (1.4) fails
to give even a feasible estimate.

The explanation given in the above papers in a self-professed nonrigorous fashion
is that part of the real solution has condensed to a point mass, a claim also supported
by considering discretized versions of the problem. The initial motivation of this work
is to give a rigorous explanation of this phenomenon. In the course of this explanation
we will develop a rather general duality and existence theory for the problem (1.1).

If, as the above example suggests, we should accept the possibility of measure-
theoretic solutions to (1.1), then the question arises of how to reformulate the objective
function. The constraints give no difficulty providing the ai’s are continuous, and the
case where b is piecewise linear and continuous is also clear--there is a strong analogy
with semi-infinite linear programming, where point-mass solutions are familiar (see,
for example, 1 ]).

The correct approach in the general case turns out to be to replace the objective
function in (1.1) by what is essentially its second conjugate, which becomes a functional
defined on measures. This idea is not in itself particularly new: see, for example, the
discussion of "generalized solutions" in [16] and [47]. What is more remarkable is
the simplicity and tractability of the resulting problem. In the first three sections of
this work, relying heavily on the work of Rockafellar [43]-[47], we derive this extended
primal problem, and investigate its relationship with the original primal and dual
problems.

The next section returns to the underlying question of the existence of an optimal
solution for the original problem (1.1). Using the extended solutions, we provide a
general theory linking the boundary behaviour of the entropy and the local geometry
of the underlying measure space with the existence question. This provides a unified
and illuminating explanation of previous results in the literature [15], [56], [32], [6].
The last section discusses how extended solutions can be computed, and ends with
some examples including a resolution of the example described above.

Just prior to submitting this article for publication, the authors became aware of
recent unpublished work [20], [21] on some similar questions. The approach therein
is very different from the purely convex analytic attack employed here. It relies on
discretization and a Bayesian statistical interpretation, which lead to the application
of large deviation theory (building on results in 13]). This probabilistic method, while
seemingly less constructive than the convex programming approach, suggests intriguing
connections between the two.

Problem (1.1) is a very general partially-finite program. As such, it models very
many problems other than best entropy estimation. In particular, as outlined in [9],
it includes numerous examples from constrained approximation, interpolation, and
smoothing (see, for example, [38], [26], and [10]); the duality theory developed here
also applies to some of these problems. The theory in this paper also allows an arbitrary
linear functional to be added to the objective function. There has been recent interest
in log-barrier penalty methods for semi-infinite linear programming, in the context of
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the asymptotic behaviour of Karmarkar’s method [42], [55], and our results may be
applied here.

In the interests of economy, many reasonably routine computations and proofs
are omitted; they can be found in [8] and [33].

2. Preliminaries. The measures of entropy with which we shall be concerned are
integral functionals of the form J cb(x(s)), where b :R-+ (-oo, +oo] is a closed, proper,
convex function. We shall use the notation and terminology of [45] throughout. The
conjugate function is denoted by 4*, and the recession function 40+ "R (-oo, +oo]
is given by ($0+)(u) lim_,+oo (1/A)b(Uo+ Au), where Uo is arbitrary in the domain
of b (see [45, Thm. 8.5]). The following result defines the constants p and q, which
will be crucial in this paper. (These are entirely unrelated to the notation for the spaces
Lp and Lq.) The proof is standard (see [8, Lemma 2.2]).

LEMMA 2.1. The following limits exist:

(2.2)
q := limu_,+oo b(u)/u (-oo, +oo],

p := limu_,_oo b(u)/u [-oo, +oo).

Furthermore, p <= q,

(2.3)
u ifu>O,

(b0+)(u) ifu=O,

IPU ifu <O,

and int (dom (ok*)) (P, q). Thefunction qb is affine ifand only ifp q (so dom (b*)
{p}).

Lemma 2.1 characterizes dom (4*). It will also be helpful to have some notation
for dom (4), so define /3 in (-oo, +oo] as sup(dora ) and ce in [-oo, +oo) as
inf (dora b), so int (dom ())= (ce,/3). The ideas of essential strict convexity and essen-
tial smoothne,s [45] will be useful to us. These concepts are particularly simple for
univariate functions. We have that 4 is essentially strictly convex (or, equivalently, 4
is strictly convex on dom (4)) if and only if 4* is essentially smooth. This in turn is
equivalent to p < q and 4* ditterentiable on (p, q) with lim, (*)’(v) -oo ifp > -oo,
and lim, (*)’(v)= +oo if q < +oo. In this case,

ock.(v)={(cb*)’(v)} ifve(p, q),
(2.4)

0 otherwise.

One particularly well behaved class of convex functions is that of Legendre type
[451.

DEFINITION 2.5. We say 4 is of Legendre type if it is essentially smooth and
essentially strictly convex.

LEMMA 2.6. Suppose cb is of Legendre type. Then, so is ok*, and ok’: (ee, )-
p, q), (*)’ p, q) (, are continuous, strictly increasing, and mutually inverse maps
between the interiors of the domains of b and ok*. Also, q < + oo if and only if + oo

and p > oo if and only if o oo.
Proof. See [45, Thm. 26.5]. The last part is immediate.
We will use the notation, for u in R, u/ := max {u, 0}, and u-:=-min {u, 0}, so

u=u/-u and ]ul=u++u-. If we adopt the convention that (+oo) 0=0, we can
rewrite (2.3) as (b0+)(u) qu/-pu-.

The results in this paper will revolve around the computation of the conjugates
and subdifferentials of various convex integral functions. We will rely heavily on the
ideas and results of Rockafellar [45], [46]. For convenience, we will summarize the
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notation to be used throughout the paper before proving the technical results that will
be applied.

$ is a compact Hausdorff space, with Zo C(S), the Banach space of continuous
functions on S. Furthermore, 0 =< p s M($), the Banach space of regular Borel measures
on S, and p has full support [48]. I4,’Ll(S,p)-(-oo +oo] is defined by I(x):=s ck(x(s)) dp, and I." Lo(S, p) (-c, /] is defined by I6.(z):= s qb*(z(s)) dp.
J6. "C(S)- (-, +] is defined as the restriction of I6. to C(S). We have b ", and
a=(al,...,a,)(C(S)). The map A’LI(S,p)" is defined by (Ax):=
s a(s)x(s) dp for 1,..., n. Finally, B’ C(S) is defined by BA := hra.

Some comments are in order concerning these definitions. We will often treat
C(S) with its usual supremum norm as a subspace of L(S, p). We can regard M(S),
with its usual norm, as the dual of C(S). The continuous linear map A has adjoint
A*’R" L(S, p), which may be identified with the continuous linear map B, as is
easily checked. Also, B*’M(S)" is continuous and given by (B*p) := a dp. For
the relevant ideas, see, for example, [48] and [49].

The function is a normal convex integrand, so the integral functional I6 is a
well-defined, convex, lower semicontinuous function, with conjugate I6. [46]. The
function J6. is also well defined and convex (see, for example, [47, Thm. 3]). Much
of this section will be devoted to studying its conjugate.

We will write, for any in M(S), +-- for the Jordan decomposition,
+ for the Lebesgue decomposition with respect to p (so << p and & p),

and (d/dp) L(S, p) for the Radon-Nikodym derivative [48].
THEOREM 2.7. efunction J6. is well defined, lower semicontinuous, and convex.

It is continuous on the set {z C(S) z(s) (p, q) for all s S}. e conjugate function
J." M(S) (-, +] is given by

(2.8) J*(#)
k do

(s) do + q2(S) -p;(S).

The proof of this result in the ane case is a straightforward calculation, while
the case p < q is a direct application of [46, Thin. 5] (see also [8, Thin. 3.1]).

COROLLARY 2.9. Suppose x LI S, p) and 0 , M S). Ifd x dp +d d
then J.() I(x)+ q(S)-p(S) with equality if p, , and are mutually singular.

oofi Let 7 := -. Then 7
+ and 7- (see [48, p. 127]). By Theorem 2.7

and the definition of 0+,

J.()= x(s)+(s) do+q2(S)-p;(S)

N (x(s)) + (0+)
k

(s)

d (s)-p (s) do + q2(S)=U(x) + q
I,(x)+ qr(S)-prS(S)+ qr(

,(x)+

I, (x) +p((s) (s)) + (q -p)(s).

If 0, v, and are mutually singular, then =0, so dye/do(s)=0 almost everywhere,
p] on S, and y+ (by Hahn decomposition), so we have equality above.
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We now compute the subdifferential of J**. This will be fundamental in deriving
optimality conditions.

THEOREM 2.10. Suppose z C(S) and Iz M(S). Then Iz OJ,.(z) (or equivalently,
J,.(z)+J.(tz)=Js z(s) dtz) if and only if

z(s)[p,q] forallsS,

dlz----Z (s)O$*(z(s)) a.e.[p] onS,

support (/z+) c {s z(s q},

and

support (/z) c {slz(s)=p}.

Proof. We will assume that $ is not affine: the affine case, like Theorem 2.7, is a
straightforward calculation, and we will not use this case in what follows. We assume,
therefore, that p < q, and apply Corollary 5A of [46]. As in the proof of Theorem 2.7,
we will apply Rockafellar’s result with D(s):= (p, q) for all s in S. Writing R+ for the
nonnegative reals, the normal cone to cl (D(s)) is given by

-R+ ifv=p,

(2.11) N[p,q](1))-- {0} if v (p, q),
R+ if v q,

for v in [p, q]. Applying Rockafellar’s result shows that/ OJ,.(z) is equivalent to
the first two statements along with/z being Ntp,ql-valued: in other words (using the
fact that/z << [/[),

(2.12) dlgl Np,q(z(s)) a.e. [I/xl] on S.

The remainder of the proof is reasonably straightforward measure theory (see [8, Thm.
3.5]).

3. Primal and dual constraint qualifications. The optimization problem that we
wish to consider is

inf fs g,(x(s)) + Zo(S)x(s)] at,,

subject to a,(s)x(s) dp b,
s

for i= 1,..., n,

xLI(S,p),

or in our previous notation,

(P) inf {I4,(x)+(Zo, x)lAx b and x L,(S, p)}.

The extra linear functional corresponding to Zo in the objective is introduced to
allow us to model some best entropy estimation problems where a prior estimate is
given (see, for example, [28] and [29]), and to consider the log-barrier penalty function
for semi-infinite linear programming [55]. We could consider the problem (P) posed
in any of the spaces Lr(S, p), for 1 -< r_-<oo, or even in C(S), but since LI(S, p) is the
largest of these spaces, it is the natural choice if we wish to find an optimal solution.
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Unfortunately, LI(S, p) is not typically a dual space, so we are unable to use
weak-star compactness arguments to prove attainment. Furthermore, unless p
and q +, the level sets of 16 will not typically be weakly compact in L1 (see [7]).
In this case special arguments are needed to prove attainment, dependent on the
underlying measure space (S, p) and the constraint map A (see, for example, [6]).

The idea of considering solutions to optimization problems in L1 which may have
singular components is not new. An example in optimal control appears in [4], and
was extended in [41 ]. In this latter thesis the approach taken is to consider the problem
in Fenchel form and then to solve the second dual. This gives a so-called "weak"
solution (see [16, III.6]).

For this reason we introduce the following "extended primal problem:"

(P) inf{J.(/z) + (Zo,/z)[ B*/z b and/z M(S)}.

(P]) subject to

Using Corollary 2.9 we can rewrite this as

inf fs [g,(x(s))+ Zo(S)x(s)] dp+ qv/(S)-p,,-(s)+ fs ZO(S) d,,

f, a(s)x(s) dP + fs ai(s) dv= b, for i= l, n,

xL,(S,p), uM(S), uA_p.

Notice that (P) is exactly (P) if we require the singular component u =0. Under
reasonable conditions (P) will always have an optimal solution: as we shall see, the
singular component corresponds with singularities observed in practice when (P) fails
to have an optimal solution. In fact, Corollary 2.9 allows us to omit the constraint
u_l_ p if so desired (see [8, Thm. 5.3]).

Our arguments are based on duality techniques. The dual problem for (P) (see
[6]) is

(P*)

which we may write as

(3.1)

or as

(3.2)

sup {b’h I4,.(A*h Zo)Ih "},

sup {b

We denote the value of an optimization problem (Q) by V(Q) [-c, +o]. We say
(Q) is consistent if there is a choice of the variable that satisfies the constraints and
has finite objective value.

As usual, we have an easy weak duality result. The problems (P) and (P*)
(written in the form (3.1)) are Fenchel duals of each other, so a simple dual constraint
qualification ensures that V(P)= V(P*) and V(P) is attained (the motivation for
its introduction). We will henceforth ignore the case where is affine, which is trivial.

Dual Constraint Qualification. The function is not affine, and there exists a
in " with tTa(s)--Zo(S)G (p, q) for all s in S.

Note that the assumption that is not affine ensures that p < q. If, as frequently
occurs in practice, one of the a’s is a nonzero constant function, Zo O, and is not
affine then the Dual Constraint Qualification will hold.

sup{b x-f dplh a "}.
s
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In order to ensure attainment in the dual problem (P*) we need a primal constraint
qualification. We recall from [9] that if x lies in a convex subset C of a topological
vector space X, then x is a quasi-relative interior point of C (x qri(C)) if cl (cone (C
x)) is a subspace.

We will write [a,/3] for the order interval {xLl,<-_x(s)<-_13 almost
everywhere}. The usual constraint qualification for (P) is written

(PCQ1) b ri(A dom(I6)

(see, for example, [43]). Since this condition may be difficult to check, we will rewrite
it in a more familiar Slater-type form.

(PCQ2) There exists qri(dom(I6)) which is feasible for (P).

This in turn can be stated in the following equivalent but more applicable form.
Primal Constraint Qualification. There exists a function : in LI(S, p) such that

(s) ri(dom (b)) almost everywhere, and A= b.
(Of course, ri(dom (b))= (a,/3) unless b is the indicator function of a point.)

The following result may be found in [33].
LEMMA 3.3. The Primal Constraint Qualification, (PCQ1), and (PCQ:) are

equivalent. Furthermore, ri(A dom (16)) ri(A[a, fl]L,), and providing a < ,
att (Adom (16)) =aft (A[a, fl]/,) Range (A): Range (B*).

If the constraint functions al,..., a, are pseudo-Haar, or, in other words, linearly
independent on every subset of S with positive measure (see [6]), then the Primal
Constraint Qualification can be weakened to"

(PCQ3)
There exists an in LI(S, p) with A: b, and

p{s sl , < (s) <}> o.
For a proof, see [33]. In summary, the Primal Constraint Qualification is easy to check
in practice.

THEOREM 3.4 (duality). V(P) >-_ V(PE) >= V(P*). If the Dual Constraint
Qualification holds, then V(PE)= V(P*), and if, furthermore, (P) is consistent then
V(P) is attained. If, on the other hand, the Primal Constraint Qualification holds then
V(P)= V(P) V(P*), and if, furthermore, (P*) is consistent then V(P*) is attained.

Proof. The first claim (weak duality) is straightforward (see [8, Prop. 4.3]). Suppose
the Dual Constraint Qualification holds. By Theorem 2.7, J6* is finite and continuous
at B-Zo, where is the point in the Dual Constraint Qualification. Thus by [46,
Thm. 3],

min {J.(/z)+ (Zo, )l B* b, and/z M(S)}

=sup {bh-J.(B,X-zo)l h g"},

which is exactly the required result. If, on the other hand, the Primal Constraint
Qualification holds, then V(P)= V(P*) by Corollary 2.6 of [6]. It follows by weak
duality that V(P) V(P V(P*). D

Our next step is to derive the optimality conditions. The proof is an easy application
of weak duality and Theorem 2.10 (see [8, Thm. 4.10]).

OCP
/2 is feasible for (P), and

z 0.( Zo),
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(OCP)

(, ) is feasible for (P),

(s) O*(ra(s)- Zo(S)) a.e. on S,

support (+) {s e Sirra(s) Zo(S) q}, and

support (-) c {s e Sirra(s) Zo(S) p},

(OCP)
, g is feasible for (P), and

(s) o*(a(s)- Zo(S)) a.e. on S.

THEOREM 3.5. (i) (OCPE) holds ifand only if is optimalfor (PE) and is optimal
for (P*), with equal objective value.

(ii) (OCP) holds if and only if (, ) is optimal for (P) and is optimal for
P*), with equal objective value.

(iii) (OCP) holds if and only if2 is optimalfor (P) and is optimalfor (P*), with
equal objective value.

COROLLARY 3.6 (strong duality). Suppose that the Primal and Dual Constraint
Qualifications hold. Then the two primal problems (P) and (P) (and (pl)) and the
dual problem (P*) all have equal, finite value, and there exist optimal solutions I for
(P) (and (, )for (P)), and for (P*), satisfying OCP (or OCP1), respectively).

Part (iii) of Theorem 3.5 is extremely instructive. In practice * is usually
ditterentiable, so the last condition of (OCP) becomes

(3.7) g(s) (*)’(a(s) Zo(S)).

It has been a frequent error in the more practical literature to assume that if A is dual
optimal then (3.7) gives the optimal solution of the primal problem (P). The feasibility
of this g is justified by differentiating under the integral in (3.2) with respect to A.
Unfortunately, as we shall see, in quite simple examples (satisfying the Primal and
Dual Constraint Qualifications) the g given by (3.7) can lie in L1 and yet fail to be
feasible.

Theorem 3.6 shows that, under reasonable conditions, the g given by (3.7) corres-
ponds to the absolutely continuous part of an optimal solution of the extended primal
problem (P). It will be optimal for the original primal problem (P) if and only if it
is feasible. If it fails to be feasible this is due to singular components of the optimal
solution, supported on the set where Ta (s) Zo(S) hits the boundary of the domain
of *. In principle, if this set is large, these singular components could be very
unpleasant, making any practical application or interpretation impossible. In fact, we
can generally restrict our attention to singular components consisting of finitely many
point masses (see [8]).

For the time being we confine ourselves to interpreting the singular components
in terms of primal optimizing sequences (cf. [16, Prop. 111.6.1]). A standard argument
(see [8, Thm. 4.13]) gives the following result.

THEOREM 3.8. Suppose the sequence (Xr)7 in LI(S fl) is an optimizing sequence
for the primal problem (P)" Axr-> b and I,(x)+(Zo, X)--> V(P) as r->c. Suppose also
that the Primal Constraint Qualification holds. Then the limit ofany weak-star convergent
subsequence of (x dp) in M(S) is optimal for the extended primal problem (Pe).

Standard compactness arguments show that there will exist weak-star convergent
subsequences in the above result if, for example, S is metrizable, (u) + for u < 0,
and for some j, ag(s)> 0 on S (see [8, Cor. 4.14]).
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In [33] these results are applied to progressively refined discretizations of the
primal problem: it is shown that the corresponding optimal solutions typically have
weak-star convergent subsequences, any of which converge to an optimal solution of
the extended problem. This provides another more concrete justification for considering
this extension of the primal problem.

4. Primal attainment. As we saw in 3, the existence of an optimal solution of
the extended primal problem (P) (or any ofits equivalent formulations) is a straightfor-
ward consequence of the Dual Constraint Qualification. By contrast, attainment in the
original primal problem (P) is a much more delicate matter: as we shall see, there
may fail to be an optimal solution in even very simple examples. The existence question
depends not only on the function b in the objective but also on the smoothness of
the constraint functions a1,..., a,, on Zo, and on geometric and measure-theoretric
properties of the underlying space (S, p). This question was addressed in [6], where
the existence of an optimal solution was demonstrated in particular for classical
(algebraic and trigonometric) moment problems with the Burg entropy as objective,
when (S, p) is a one-dimensional interval with Lebesgue measure. This had been known
previously for the trigonometric case (where the interval is [-r, +r] and the moment
conditions consist of the first n Fourier coefficients of x) using very special contour
integral techniques [ 15], and for the two-dimensional trigonometric case in [56], and
more generally in [32]. The approach of the latter two papers is a direct investigation
of the map that takes a polynomial to the moments of its reciprocal. A contrasting,
duality-based approach is taken in [36]: some technical difficulties remain, as discussed
after Corollary 3.6.

In this section we will extend and clarify the results in [6] by using the results in
3 on the existence of extended primal solutions. In particular, our new results will

give an entirely rigorous proof that the Burg entropy also entails the existence of an
optimal solution in the two-dimensional trigonometric case. By contrast, as we shall
see, simple three-dimensional problems fail to have optimal solutions. The idea is very
simple: given an extended primal solution (2, ), we need a condition to ensure, via
Theorem 3.5, that the singular part vanishes.

To summarize, the approach here has three substantial advantages over [6]. First,
it is extremely natural, unlike the techniques in [6]. Second, it generalizes the results
in [6] to other important practical cases. Third, it reveals exactly the sense in which
existence can fail.

We begin with an informal discussion. Let us denote by :I"--> (-o, +c] the
function I6.(A*(. )- Zo), so the dual problem (P*) consists of minimizing the convex
function (h)-bTh. Suppose for simplicity that a(s) is nonzero for every s in S. Then
it is easily checked that the interior of the domain of the dual objective function is
equal to

int (dom ()) {h I" Ih ra(s) Zo(S) (p, q) for all s S}.

Suppose the Primal Constraint Qualification holds so there exists a dual optimum, say, with b 0(). As is usual in convex analysis, the difficulties, if any, occur at the
boundary of dom (), while if int (dom ()) easy arguments identical to those that
follow show the existence of a solution to the primal problem (P). Of course, this
must be the case if dom () is open. However, it will be true more generally, provided
there are no boundary points in dom at which subgradients exist. The difficulty is
in checking this, since boundary subgradients may exist even when b* is essentially
smooth.
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That is the origin of the following condition; we will work with it directly, but
similar arguments show it implies that 0(A)= whenever A int (dom ()). This also
has important computational consequences. In practice, (P) is generally solved via
the dual, so we seek to minimize . When the condition below holds any minimizer
must lie in int (dom ()). Thus we can apply unconstrained search techniques
(appropriately safeguarded).

INTEGRABILITY CONDITION. For any function z := A 7"a Zo (with A in ), if
z(s)(p, q) almost everywhere on S and (b*)’(z(.))Ll(S, p), then it follows that
z(s) (p, q) for all s in S where a(s) is nonzero.

THEOREM 4.1. (i) Suppose
are both optimal for the extended primal problem (PI) then 1 2, so in particular the
original primal problem P) has at most one solution.

(ii) Let us supposefurthermore that the Primal Constraint Qualification holds. Then
the dual problem P*) has an optimal solution, and if .
is optimal for (P*), then

(4.2) (s) (b*)’(]a(s)- Zo(S)) a.e. on S;

so, in particular, if P) has an optimal solution it is given uniquely by (4.2).
(iii) Moreover, suppose also that the Dual Constraint Qualification holds. Then (P)

has an optimal solution (, ) with the absolutely continuous part given uniquely by (4.2).
(iv) If in addition, the Integrability Condition holds, then the singularpart vanishes,

so (4.2) gives the unique optimal solution of P).
Proof Part (i) follows by strict convexity.
Parts (ii) and (iii) follow by Theorem 3.5 and (2.4). Assume finally that (, ) is

optimal for (P) with given by (4.2), and suppose the Integrability Condition holds.
If we write So := {s S[a(s)=O} then, from (OCpI), is supported on So, and by the
Dual Constraint Qualification, -Zo(S) (p, q) for all s in So.

But now (, 0) is also feasible for (P), with a corresponding drop in the objective
value of

q+(S)-p-(S)+IsZO(S)dg:fs (q+zo(s))dO+-Is (p+zo(s))d->O,

unless 0. Hence the result.
The Integrability Condition actually turns out to be necessary, as well as sufficient,

for the existence of a primal solution in general. That is the substance of the next result.
THEOREM 4.3. Suppose qb is of Legendre type and the Integrability Condition fails.

Then there exists a right-hand side b in R such that the primal problem (P) satisfies the
Primal Constraint Qualification, but has no optimal solution.

Proof. Since the Integrability Condition fails, there exists a function $ := Ta- Zo
satisfying (s) (p, q) almost everywhere and with (. ):= (b*)’((.)) in LI(S, p), but
with S :-" {S Sla(s) O, e(s) --p or q} nonempty. Define/:= A. Note that a <g(s) <
/3 almost everywhere by Lemma 2.6. Thus b ri(A dom (I6)) by Lemma 3.3.

Now choose any u in M(S), with

support (,+) {s S[ a(s) # O, (s)= q},

support (u-)c {s S]a(s) # O, (s) =p},
and B* u s a du O. For example, a point mass at any point of S (with the appropriate
sign) will do. It follows by Lemma 3.3 that

b := 6+ eB*u ri(A dom (I6)),
provided that e > 0 is sufficiently small.
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Clearly now, the Primal Constraint Qualification holds (Lemma 3.3). Furthermore,
if we write := e,, then (2, ) and satisfy (OCP) and thus are optimal for (P)
and (P*), respectively, so is the only possible optimal solution of (P), by Theorem
3.5(ii) and (iii). However, is not feasible for (P), since b

We now pursue a slight digression, to discuss the approach of [56] and [32]. We
will show that their key supporting result, which is of some independent interest, can
be subsumed by this approach. The idea of Woods, and Lang and McClellan (working
in the special case where the ai’s are multidimensional trigonometric polynomials and

is the Burg entropy) is to consider the nonlinear system of equations in h R derived
(formally in these references but rigorously above) from the optimality conditions
(OCP)"

(NLE) f a,(s)(ch*)’(ATa(s)-zo(S)) dp bi for i= 1,..., n.
s

Assuming the existence of a dual optimal A (a difficulty not addressed in the above
papers), the primal optimal solution 2 (if it exists) must have the form (*)’ (A Ta(s)-
Zo(S)), so it may be obtained by solving (NLE) for A.

Assuming is of Legendre type it is clear, as in the proof of Theorem 4.3, that
(NLE) is certainly not solvable unless b eri(A[a,/3]L1). The point (obvious from an
optimization viewpoint but surprising ab initio) is that the Integrability Condition
gives a complete characterization.

COROLLARY 4.4. Suppose is ofLegendre type and the Dual Constraint Qualification
holds. Then (NLE) is solvable for every b in ri(A[t,/3]L1) ifand only if the Integrability
Condition holds.

Proof. The first direction follows from Theorem 4.3 and the comments above. The
converse follows from Theorem 4.1.

Taking th to be the Burg entropy and the ai’s as (multidimensional) trigonometric
polynomials, we obtain the result in the Appendix of [32].

These results demonstrate the importance of the Integrability Condition for the
question of attainment in the original primal problem. The remainder of this section
will be devoted to investigating for what spaces (S, p), objectives and Zo, and
constraints a it holds. We shall see that the important features are the local geometry
of the set S, and the growth rate of (*)’ near p and q. We adopt an approach which
gives unified conditions for the cases ofcommon interest, namely, S c Rm for m 1, 2, 3.
We shall suppose for the remainder of this section that S is a compact metric space
with metric d(.,. ), and we write B(s, r) for the open ball, centre s, radius r. For any
s in S we define xs(r):=p(SfqB(s, r)). The following result is derived from an
elementary estimate of the integral in the Integrability Condition (see [8, Thm. 6.6]).

THEOREM 4.5. Suppose S is a compact metric space, al, an and Zo are Lipschitz
on S, is essentially strictly convex, and the following two conditions hold for any So in
S and k>0"

lim inf r[(1/e)(Xso(r+e)-Xo(r))][(*)’(q-kr)]>O, ifq<+;
5,0

lim inf (-r)[(1/e)(Xo(r+e)-Xo(r))][(6*)’(p+kr)]>O, ifp>-o.
,1,0 0<er<__

Then the Integrability Condition holds.
In practice S is often a compact subset ofm with Lebesgue measure, and in this

case we can often simplify the required conditions. The Dubovitskij-Miljutin (DM)
cone will be useful in what follows (see, for example, [2]).
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DEFINITION 4.6. For a subset K of a normed space V, and for s in cl K, we define
Dr(s):= {v Vls+(0, e]B(v, e)c K for some e >0}. We say that K is DM-regular if
Dr (s) is nonempty for all s in K.

The condition of DM-regularity ensures that the sets in which we are interested
have no cusps. In a normed space it is easily checked that any convex set with nonempty
interior is DM-regular. A subset of a normed space defined by inequalities will be
DM-regular providing a suitable constraint qualification holds everywhere (see [2,
p. 126], for example). Obviously, an arbitrary union of DM-regular sets is DM-regular.

Let us denote m-dimensional Lebesgue measure by -,,. Using the fact that an
open convex cone must intersect the surface of the unit sphere with positive area, we
obtain the following (see [8, Lemma 6.11]).

LEMMA 4.7. Suppose S " (with Euclidean distance) is compact and DM-regular,
and for some k > O, la >- k’,, on S. Then for any So in S,
(4.8) lim inf rl-m[(1/e)(Xso(r+e)-Xso(r))]>O.

0

We can now derive a more useful version of Theorem 4.5.
THEOREM 4.9. Suppose that S is a compact, DM-regular subset of g", and p

dominates a positive multiple of Lebesgue measure on S. Suppose that a1,..., an and Zo
are Lipschitz on S. Finally, suppose that b is essentially strictly convex, with
lim r,0 rm(b*)’(q r) > 0 ifq < +o, and ifp > -c, lim r0-- r"(qb*)’(p+ r) > O. Then the
Integrability Condition holds, so if in addition the Primal and Dual Constraint
Qualifications hold, the original primal problem P) has a unique optimal solution.

Proof. By Lemma 4.7, for any So in S, (4.8) holds. Now for any k > 0, if q < +,
lim inf r[(1/e)(Xso(r+e)-Xso(r))][(ck*)’(q-kr)]

(since both factors are nonnegative). The first factor is strictly positive by (4.8), and
the second is strictly positive by assumption. The first condition ofTheorem 4.5 follows,
and a similar argument shows the second condition. The result now follows from
Theorem 4.5.

Probably the most important application of this result is when S is a compact
interval of and b is the Burg entropy (1.3). In particular, we obtain the original
existence result of [15].

The periodic case. In many cases in practice the moment conditions are given by
Fourier coefficients. In other words, the constraint functions a,...,a, are
trigonometric polynomials (possibly multidimensional) and hence periodic. In these
cases it is often possible to weaken the conditions for attainment in the original problem.

DEFINITION 4.10. Suppose el,..., e" form a basis of Rm. With respect to this
basis, we say ScR" is covering if t.J ozm (S+Yj=I 0Je) =R We say a function
z" S- R is periodic if z(s)= z(s’) whenever s- s’=

The idea is to use the following simple result [8, Lemma 6.16].
LEMMA 4.11. Suppose z" S- is periodic, with Vz Lipschitz on S, and suppose S

is covering. Suppose z(s)<-_ q for all s in S and Z(So) q. Then for some kl >0, z(s) >-

q-klls-soil= for all s in S.
Using this to estimate (b*)’(z(s)) we arrive at the following refinement of

Theorem 4.9.
TI-IEOREM 4.12. Suppose that S is a compact, DM-regular, covering subset of m,

and p dominates a positive multiple ofLebesgue measure on S. Suppose that Va1,..., Van
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and VZo are Lipschitz on S and a1,..., an and Zo are periodic. Finally, suppose that
is essentially strictly convex, with lirn ro r" (b*)’(q r2) > 0 if q < +, and lirn ro
rm(b*)’(p+ r2)>0 ifp>-o. Then the Integrability Condition holds, so if in addition
the Primal and Dual Constraint Qualifications hold, the original primal problem (P) has
a unique optimal solution.

Again, probably the most important application of the above result is when b is
the Burg entropy and S [-Tr, r]2 with trigonometric polynomials al, a,..., an, Zo.
In particular, we obtain the existence result in [56].

Theorems 4.9 and 4.12 involve growth conditions on (b*)’. It is easy to translate
these into conditions on tp’, if so desired, using Lemma 2.6 (see [8, Lemma 6.19]).

5. Computation, primal uniqueness, and examples. In this section we will discuss
how to solve the extended primal problem (P), and give conditions ensuring it has
a unique solution. Suppose that the Primal and Dual Constraint Qualifications hold
and that b is essentially strictly convex, so b* is essentially smooth. From the Strong
Duality Theorem (Corollary 3.6) we know that the dual problem (P*) has an optimal
solution , and (P[) has an optimal solution (g, ), where the absolutely continuous
part g is given uniquely by

(5.1) g(s) (6*)’(Xa(s)- Zo(S))

(by Theorem 4.1), and the singular part can be chosen arbitrarily, provided that it
satisfies the optimality conditions (OCP). In order to compute a solution we first
solve the dual problem. This is a concave maximization problem, and the objective
function is continuously differentiable on the interior of its domain, so a wide variety
of standard numerical techniques may be applied.

The continuous part of the primal solution is now given by (5.1), while the
singular part is any measure which is singular with respect to p and satisfies

(5.2) support (p+)c {s Sl7"a(s)-zo(s)= q},

(5.3) support (-) c {s SlTa(s) Zo(S) p}, and

(5.4) a,(s) dv b,- a,(s)g(s) do for i= 1,..., n.
s

(We know there exists a solution.) It can be shown using techniques analogous to
those used in semi-infinite programming (see, for example, [1]) that we can restrict
attention to P for which + and - are supported on n + 1 points in $ (see [8, 5]).
Conditions (5.2)-(5.4) then form a semi-infinite linear problem for which standard
numerical techniques are available (see, for example, [23]).

The idea of a Tchebycheff system will be useful for our discussion of uniqueness.
Working on a fixed, finite interval S in R, for a continuous function f we denote by
,(f) the number of distinct zeros of f, counting twice the zeros in the interior of S
at which f does not change sign. The following result [30, Thm. 1.4.2] essentially
characterizes Tchebycheff systems.

THEOREM 5.5. If {al,..., an} is a Tchebycheff system on S then ,(Aara)_-< n-l,
provided that A is nonzero.

COROLLARY 5.6. Suppose {al,..., an} is a Tchebycheff system on S, al =- 1,p <-
A ra (s) <-_ qfor all s in S, and A ra is not identically p or q. Then we have I{s $1A 7a (s) p
or q}l-<- n.

Proof. Denote the number of endpoints of S at which A’a(s)=p or q by n and
and respectively. Theniqq, respectively, and the number of interior points by np
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npe+ n eq_._< 2, and by Theorem 5.5,

+ 2ni =,(A Ta --p) < n --1,np p

and

d- 2n iq , q A a < n --1Flq

+ ned_n <2n, from which the result follows. [3Adding gives 2(rip d_ np q q

THEOREM 5.7. Suppose the Primal and Dual Constraint Qualifications hold, ck is

essentially strictly convex, S is a finite, closed interval in R, {al,..., an} is a Tchebycheff
system on S, a 1, and Zo O. Then the extended primal problem (P) (or (Ply)) has a
unique optimal solution.

Proof. If A is a dual optimal solution then, from the above discussion, the absolutely
continuous part of any extended primal optimal solution (, ) is given uniquely by
g:= (ck*)’(ra), and since b* is essentially smooth, ra is not identically p or q. The
singular part must satisfy (5.2)-(5.4), and Corollary 5.6 shows that it is supported
on at most n points, determined by . The set of linear equations resulting from (5.4)
then has a unique solution for since {al,... an} is a Tchebychett system. [3

Analogous results could be proved when {al,..., an} is a periodic Tchebycheff
system, as in the trigonometric moment problem.

Examples. We begin by discussing two examples from [6]. The first is a simple
semi-infinite linear program, where b(u):= u if u =>0 and +oo otherwise (note this is
not an affine function)"

inf

(E 1 subject to sx(s ds 1,

0-_<x LI[0, 1].

The dual problem is

(El*) sup A- t(Al(-,1])ds AeR

where fi(’lC) is the indicator function of C. The Primal and Dual Constraint
Qualifications are both satisfied, the unique dual optimal solution is A 1, and both
problems have value 1, but the primal value is not attained. The extended primal
problem is

inf x(s) ds+ v[O, 1],

(E 1 subject to sx(s) ds + s dv 1,
o

O<xELI[0,1], O_-<vM[O, 1], dv+/-ds,

and our results show that the unique optimal solution is a unit point mass at 1, giving
the value 1.
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The second example uses the objective function $(u):= 1/u if u > 0 and
otherwise:

(E2)

inf (1/x(s)) ds,

subject to sin(s)x(s) ds 1,

0<- x LI[0, 2r].

The dual problem is

(E2*) sup )t- 4*()t sin(s)) ds )t

where d*(v)=-2(-v) 1/2 if v N0 and +eo otherwise. The only dual feasible solution
is . 0, which is therefore optimal, with value zero. Note that, although the Primal
Constraint Qualification is satisfied, the value of the primal problem is zero and is
unattained. Furthermore, the extended primal problem (not considered in [6]) is

inf (1Ix(s)) ds,

(E2e) subject to sin(s)x(s) ds + sin(s) dv 1,
o

0_-<XLl[0,27r], 0_-<vM[0,2"rr], dv+/-ds,

and this problem also does not attain its value of zero. The reason is, of course, that
the Dual Constraint Qualification is not satisfied.

The final two examples are particularly interesting since the objective function is
the Burg entropy, which is widely used in practice. The first problem is extremely
simple, and demonstrates the importance ofthe assumption that the constraint functions
are Lipschitz in Theorem 4.9. We consider the primal problem

inf

subject to

(E3)

-log (x(s)) ds,

o
X(S) ds 1,

S1/2x(s) ds ,
0_--<x LI[0, 1],

where a (0, 1). The dual problem is

sup )to+ a)tl+ [l+log(-)to-)tlsl/2)]ds,
o

(E3*) subject to -)to<_-0,

(where the extra constraint is implicit in the objective function).
It is straightforward to check that both the Primal and Dual Constraint

Qualifications hold. We would expect, from the form of the constraints in (E3), that
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the weight in the optimal density will shift from right to left in the interval [0, 1] as
we decrease a in (0, 1), and this is indeed what happens. We know from (4.2) that
the absolutely continuous part of any extended primal solution is given by g(s):=
(-o-.1sl/2) -1, where o and 1 are dual optimal, and it may be checked that for a
in (1/2, 1), Xo+ tlsl/2> 0 on [0, 1], so g is the unique primal solution. At a =] the optimal
solution g(s)-= 1, and as a decreases the weight shifts to the left until at a 1/2 the
unique optimal solution is g(s)= (1/2)s-1/2. For a in (0, 1/2] it can be checked that the
dual optimum is ,o= 0, ,1 =-a -1, and g is no longer feasible for (E3).

What has happened is that part of the optimal solution has condensed into a point
mass at the origin, as would be shown by discretization. The extended primal problem
is

inf -log (x(s)) ds,

subject to x(s) ds+ riO, 1]= 1,
o

(E3)

x(s)s 1/2 ds+ s 1/2 dr=
o

0_-<xLl[0,1], 0_-<vM[0,1], dv_t_ds,

and this has a unique optimal solution for t in [0, 1/2], g(s)= ts-1/2, and a point
mass of (1 2c) at the origin.

The last example was presented in [40] to demonstrate the problems associated
with the Burg entropy for three-dimensional density reconstruction, and it has also
been discussed in [52] and [14]. The underlying set S is the unit cube in R3, [0, 1]3,
with Lebesgue measure ds, and the problem has simple trigonometric moment con-
straints"

Is-lOg (x(s)) ds,inf

subject to [ x(s) ds 1,

(E4)

X(S) cos (27rsi) a, for 1, 2, 3,ds

OxLI(S),

where a [0, 1). The dual problem is

Is[(sup ho+a A+ l+log -ho-Acos(2rs) ds,

3

(E4*) subject to -;to --> Y, IA,I,

Ao, A1, A2, A3E

(where again the extra constraint is implicit in the objective function).
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Straightforward calculations will now verify the following assertions. The Primal
and Dual Constraint Qualifications both hold, and the unique dual optimal solution
has the form (o(a ), a ), a ), (a)) for each a. Thus the absolutely continuous part

of any extended primal solution (, ,) is given uniquely (see (4.2)) by

(5.8) (s) := -Xo()-X() E cos

The interesting phenomenon is to observe what happens as a increases. The
trigonometric polynomial in (5.8) is strictly positive for small a, and is feasible for
the primal problem (E4), as is the unique optimal solution. As a approaches a certain
critical value 6, the minimum value of the polynomial decreases to zero, until the point
when a 6, where the polynomial has a zero when si 0 or 1 for 1, 2, 3. The unique
optimal solution of the primal is still ga. However, as a increases past 6 the character
of the solution changes. For a (c, 1) the unique dual optimal solution is (1/[1- a]) x
(- 1, 1/2, 1/2, ]), so (5.8) becomes

(5.9) (s) (1-1/2E cos (2rs,))

which is no longer primal feasible.
The extended primal problem is

inf -lOg (x(s)) ds,

(E4)
subject to fs X(S) ds + (S) 1,

x(s) cos (2rsi) ds + f.s cos (27rsi) d, a

O<-xLI(S), O<-_vM(S), dv_l_ds.

for 1, 2, 3,

Our results show that the absolutely continuous part of the optimal solution is given
by (5.9), and the optimality conditions ensure that the singular part P is supported
on the zeros of the denominator of (5.9), namely, s 0 or 1 for 1, 2, 3. These points
are equivalent up to periodicity, so essentially the unique singular part is a point mass
at the origin with weight ((a 6 / 1 6 )).

The critical value of a is given by

(5.10) 6 1- 1-I ’. cos (2rs,) ds .34.

(This integral is actually Green’s integral for the cubic lattice, and has the closed form
F(1/24)F(5/24)F(7/24)F(ll/24)(6)I/2/32zr3; see [24].) In the case discussed in [52]
and [40] an optimal solution was proposed informally for the case a .5; our solution
agrees exactly.

As a final comment, numerous different measures of entropy b have appeared in
the literature. A survey of some of these, with their conjugates and associated p and
q, may be found in [6].
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REVERSE AUCTION AND THE SOLUTION OF INEQUALITY
CONSTRAINED ASSIGNMENT PROBLEMS*
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Abstract. In this paper auction algorithms for solving several types of assignment problems with
inequality constraints are proposed. Included are asymmetric problems with different numbers of persons
and objects, and multiassignment problems, where persons may be assigned to several objects and vice
versa. A central new idea in all these algorithms is to combine regular auction, where persons bid for objects
by raising their prices, with reverse auction, where objects compete for persons by essentially offering
discounts. Reverse auction can also be used to accelerate substantially (and sometimes dramatically) the
convergence of regular auction for symmetric assignment problems.

Key words, assignment problem, network optimization, auction, linear programming
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1. Introduction. Let us consider the classical symmetric assignment problem where
we want to match n persons and n objects on a one-to-one basis. The benefit for
matching a person with an object is given, and we want to assign all persons to distinct
objects so as to maximize the total benefit. The auction algorithm is a method for
solving this problem that was first proposed in [Ber79], and was subsequently developed
in [Ber85], [Bet88], and [BEE88]. It operates like a real-life auction. There is a price
for each object, and at each iteration, unassigned persons bid simultaneously for their
"best" objects (the ones offering maximum benefit minus price), thereby raising the
corresponding prices. Objects are then awarded to the highest bidder. The bidding
increments must be at least equal to a positive parameter e, and are chosen so as to
preserve an e-complementary slackness property. For good theoretical as well as
practical performance, it may be important to use e-scaling, which consists of applying
the algorithm several times, starting with a large value of e and successively reducing
e up to an ultimate value that is less than some threshold (1/n when aij are integer).
Each scaling phase provides good initial prices for the next. For tutorial presentations
of the auction algorithm, we refer to [Ber90], [Ber91], and [Ber92a].

We note that there are several extensions of the auction algorithm, e.g., to
transportation problems [BeC89a] and to minimum cost flow problems (the e-relaxa-
tion method of [Ber86a] and [Ber86b], and the network auction algorithm of [BeC89b]).
Computational studies on serial and parallel machines [BeC89b], [BeC89c], [CSW89],
[Cas92], [KKZ89], [PhZ88], [WeZ90], [WeZ91], [Zak90] have shown that the
algorithm is very effective, particularly for sparse symmetric assignment problems and
special types of transportation problems.

In this paper we consider several new extensions of the auction algorithm for
variations of the assignment problem described above. For some of these problems,
no effective adaptation of the auction algorithm has been known so far, while for other
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problems, including the symmetric assignment problem, the ideas of this paper have
resulted in auction algorithms with substantially improved performance over the ones
previously known.

Central to the present paper is an alternative form of the auction algorithm, called
reverse auction, where, roughly, the objects compete for persons by lowering their prices.
In particular, objects decrease their prices to a level that is sufficiently low to lure a
person away from his/her currently held object. We can show that forward and reverse
auctions are mathematically equivalent, but their combination results in algorithms
that can solve problems that forward or reverse auction by themselves either cannot
solve at all or can solve but much more slowly.

In the next section, we show how to combine forward and reverse auctions to
solve symmetric assignment problems. In particular we provide mechanisms for switch-
ing gracefully between the two types of auction, using a special type of e-complementary
slackness condition. As shown by computational results given in 5, the combined
forward/reverse method substantially outperforms the regular (forward) method. The
reason appears to be that the combined method suffers much less from "price wars,"
that is, protracted bid sequences involving a small number of persons competing for
a smaller number of objects using small bidding increments. In fact, it may not be
necessary to resort to e-scaling, involving the solution of several subproblems, to
improve the performance of the method.

In 3, we consider asymmetric assignment problems, where the number ofpersons
is less than the number of objects. As a result, in a feasible assignment, we require
that every person, but not necessarily every object, be assigned. The original paper on
the auction algorithm [Ber79] showed that this problem can be solved by the auction
algorithm provided the prices of all objects start at zero. This approach is often very
effective in practice, particularly when the number of persons is much less than the
number of objects, but unfortunately it precludes the use of e-scaling. As a result, it
is ineffective for problems where price wars are likely to arise. By suitably combining
forward and reverse auctions, we eliminate this drawback. In particular, we give a new
auction algorithm for solving the asymmetric assignment problem, where the starting
object prices can be arbitrary, so that e-scaling can be used in the same way as for
symmetric problems.

In 4, we consider an interesting class of assignment-like problems, called
mutiassignment problems, which arise in multitarget tracking applications (see the
comments of 4). There are no specialized network flow methods that can solve these
problems at present, although they can be solved by general purpose network methods
such as primal-simplex, primal-dual, or relaxation methods. We develop new classes
of auction algorithms for multiassignment problems by combining the ideas of forward
and reverse auctions.

Finally, in 5, we present computational results using various experimental codes
implementing the new algorithms of this paper. For each of the problems considered
(symmetric and asymmetric assignment, and two types of multiassignment problems),
we show that the new methods of this paper substantially (and often dramatically)
outperform current state-of-the-art codes.

2. Reverse auction for symmetric assignment problems. In the symmetric assignment
problem there are n persons and n objects. The benefit or value of assigning person
to object j is a. The set of objects to which person can be assigned is a nonempty

set denoted A(i). An assignment $ is a (possibly empty) set of person-object pairs
(i, j) such that j e A(i) for all (i, j) S; for each person there can be at most one pair
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(i,j)S; and for every object j there can be at most one pair (i,j)S. Given an
assignment S, we say that person is assigned if there exists a pair (i, j) $; otherwise
we say that is unassigned. We use similar terminology for objects. An assignment is
said to be feasible if it contains n pairs, so that every person and every object is
assigned; otherwise the assignment is called partial We want to find an assignment
{ 1, jl ), (n, j,)} with maximum total benefit i-- a,.

The auction algorithm for the symmetric assignment problem proceeds iteratively
and terminates when a feasible assignment is obtained. At the start of the generic
iteration we have a partial assignment S and a price vector p (p,..., p,) satisfying
e-complementary slackness (e-CS). This is the condition

(1) a-p>= max {ak--Pk}--e l(i,j)S.
keA(i)

As an initial choice, one can use an arbitrary set of prices together with the empty
assignment, which trivially satisfies e-CS. The iteration consists of two phases: the
bidding phase and the assignment phase, described in the following.

BIDDING PHASE. Let I be a nonempty subset of persons that are unassigned
under the assignment S. For each person e I"

(1) Find a "best" object j having maximum value, that is,

and the corresponding value

(2)

ji arg max {ai p},
jA(i)

vi max iaij pj t,
jA(i)

and find the best value offered by objects other than ji,

(3) w,= max {aj-pj}.
jA(i),j#ji

(Ifji is the only object in A(i), we define w to be - or, for computational purposes,
a number that is much smaller than v.)

(2) Compute the "bid" of person given by

(4) bij, pj, + v wi + e aiji Wi + e.

(We characterize this situation by saying that person bid for object ji, and that object
j received a bid from person i. The algorithm works if the bid has any value between
p, + e and pj, + vi- w + e, but it tends to work fastest for the maximal choice of (4).)

ASSIGNMENT PHASE. For each object j:
Let P(j) be the set of persons from which j received a bid in the bidding phase

of the iteration. If P(j) is nonempty, increase pg to the highest bid,

(5) pg := max big,
ieP(j)

remove from the assignment S any pair (i, j) (if j was assigned to some under $),
and add to $ the pair (ij, j), where i is a person in P(j) attaining the maximum above.

Note that there is some freedom in choosing the subset of persons I that bid
during an iteration. One possibility is to let I consist of a single unassigned person.
This version, known as the Gauss-Seidel version in view of its similarity with Gauss-
Seidel methods for solving systems of nonlinear equations, usually works best in a
serial computing environment. The version where I consists of all unassigned persons
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is the one best suited for parallel computation, and is known as the Jacobi version, in
view of its similarity with Jacobi methods for solving systems of nonlinear equations.

The choice of bidding increment v-w + e for a person [cf. (4)] is such that
e-CS is preserved, as stated in the following well-known proposition.

PROPOSITION 1. The auction algorithm preserves e-CS throughout its execution;
that is, if the assignment and price vector available at the start of an iteration satisfy
e-CS, the same is true for the assignment and price vector obtained at the end of the
iteration.

Proof. See [Ber79], [Ber88], [BT89], or [Ber91] for the proof.
Furthermore, the algorithm is valid in the sense stated below.
PROPOSITION 2. If at least one feasible assignment exists, the auction algorithm

terminates in a finite number of iterations with a feasible assignment that is within ne of
being optimal (and is optimal if the problem data is integer and e < 1/n).

Proof. See [Ber79], [Ber88], [BET89], or [Ber91] for the proof.
The auction algorithm can be shown to have an O(A(n+nC/e)) worst-case

running time, where A is the number of arcs of the assignment graph, and- max
(i,j),-

is the maximum absolute object value; see [Ber79], [BEE88], and [BET89]. Thus, the
amount of work needed to solve the problem can depend strongly on the value of e

as well as of C. In practice, the dependence of the running time on e and C is often
significant, particularly for sparse problems.

To obtain polynomial complexity, we can use e-scaling, which consists of applying
the algorithm several times, starting with a large value of e and successively reducing
e up to an ultimate value that is less than 1/n. Each application of the algorithm,
called a scaling phase, provides good initial prices for the next application. For integer
data, it can be shown that the worst-case running time of the auction algorithm using
scaling and appropriate data structures is O(nA log (nC)); see [BEE88] and [BET89].
We note that while e-scaling was suggested in the original proposal of the auction
algorithm [Ber79], it was first analyzed in [Go187] (see also [GOT90]) in the context
of the e-relaxation method. This minimum cost flow algorithm (also known as preflow-
push) was proposed in [Ber86a] and [Ber86b], and is essentially equivalent to the
auction algorithm [Ber92b]. Not much is known about the average complexity of the
auction algorithm. However, an interesting analysis of [Sch90] suggests that for
uniformly distributed arc costs its running time grows proportionally to something
like A log n or A log n log (nC); this is roughly consistent with computational results
using randomly generated problems.

2.1. Reverse auction. In the auction algorithm, persons compete for objects by
bidding and raising the price of their best object. It is possible to use an alternative
form ofthe auction algorithm, called reverse auction, where objects compete for persons.
In particular, objects decrease their prices to a level that is sufficiently low to either
attract an unassigned person or lure a person away from its currently held object.

In order to describe reverse auction, we introduce a profit variable r for each
person i. The role that profits play for persons is analogous to the role prices play for
objects. We can describe the reverse auction algorithm in two equivalent ways: one
where unassigned objects lower their prices as much as possible to attract a person
without violating e-CS, and another where unassigned objects select a best person and
raise his/her profit as much as possible without violating e-CS. For analytical con-
venience, we will adopt the second description rather than the first.
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Let us consider the following e-CS condition for a (partial) assignment S and a
profit vector r:

(6) aij 7r, ->_ max {ak.i "a’k } e V i, j) S,
kB(j)

where B(j) is the set of persons that can be assigned to object j,

B(j) { i[(i, j) }.

For feasibility, we assume that this set is nonempty for all j. Note the symmetry of
this condition with the corresponding one for prices; cf. (1). The reverse auction
algorithm starts with and maintains an assignment and a profit vector 7r satisfying the
above e-CS condition. It terminates when the assignment is feasible. At the beginning
of each iteration, we have an assignment S and a profit vector r satisfying the e-CS
condition (6).

TYPICAL ITERATION OF REVERSE AUCTION. Let J be a nonempty subset of
objects j that are unassigned under the assignment S. For each object j J:

(1) Find a "best" person i; such that

and the corresponding value

(7)

and find

(8)

i; arg max {ai; r,},
iB(j)

max
iB(j)

ai= max {aii-ri}.
iB(j),iij

(If/ is the only person in B(j), we define to to be -oo or, for computational purposes,
a number that is much smaller than/3.)

(2) Each object j J bids for person ij an amount

(9) bij rj + fl to + e ai toj + e.

(3) For each person that received at least one bid, increase r to the highest bid

(10) r := max bi,
jP(i)

where P(i) is the set of objects from which received a bid; remove from the assignment
S any pair (i,j) (if was assigned to some j under S), and add to S the pair (i,j),
where j is an object in P(i) attaining the maximum above.

Note that reverse auction is identical to (forward) auction with the roles of persons
and objects, as well as profits and prices, interchanged. Thus, by using the corresponding
(forward) auction result (cf. Proposition 2), we have the following.

PROPOSITION 3. If at least one feasible assignment exists, the reverse auction
algorithm terminates in a finite number of iterations. The feasible assignment obtained
upon termination is within ne of being optimal (and is optimal if the problem data are
integer and e < 1/ n ).

2.2. Combined forward and reverse auction. One of the reasons we are interested
in reverse auction is to construct algorithms that switch from forward to reverse auction
and back. Such algorithms must simultaneously maintain a price vector p satisfying
the e-CS condition (1) and a profit vector r satisfying the e-CS condition (6). To this
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end we introduce an e-CS condition for the pair (Tr, p), which, as we will see, implies
the other two. Maintaining this condition is essential for switching gracefully between
forward and reverse auction.

DEFINITION 1. An assignment S and a pair (r, p) are said to satisfy e-CS if

(lla) 7ri +pj >= aij e V(i,j) M,

(llb) r, +p a V(i,j)S.

We have the following proposition.
PROPOSITION 4. Suppose that an assignment S, together with a profit-price pair

r, p) satisfies e-CS. Then
(a) S and 7r satisfy the e-CS condition

(12) ao ri >- max {ak rrk} e V i, j) e S.
kB(j)

(13)

(b) S and p satisfy the e-CS condition

aj-p_-> max {aik--Pk}-- e V(i,j) S.
kA(i)

(c) If S is feasible, then S is within ne of being an optimal assignment.

Proof. (a) In view of (llb), for all (i,j)S, we have p=a-cri, so (11a) implies
that ao 7r >- ak rk e for all k B(j). This shows (12).

(b) The proof is the same as that of part (a) with the roles of ar and p interchanged.
(c) Since by part (b), the e-CS condition (13) is satisfied, by Proposition 2, S is

within ne of being optimal. ]

We now introduce a combined forward/reverse algorithm. The algorithm starts
with and maintains an assignment S and a profit-price pair (r, p) satisfying the e-CS
condition (11). It terminates when the assignment is feasible.

COMBINED FORWARD/REVERSE AUCTION ALGORITHM.
Stel 1 (run forward auction): Execute several iterations of the forward auction

algorithm (subject to the termination condition), and at the end of each iteration (after
increasing the prices of the objects that received a bid), set

(14) r aj, pj,,

for every person-object pair (i, ji) that entered the assignment during the iteration. Go
to Step 2.

Step 2 (run reverse auction): Execute several iterations of the reverse auction
algorithm (subject to the termination condition), and at the end of each iteration (after
increasing the profits of the persons that received a bid), set

(15) p aj

for every person-object pair (/,j) that entered the assignment during the iteration.
Go to Step 1.

Note that the additional overhead of the combined algorithm over the forward
or the reverse algorithm is minimal; just one update of the form (14) or (15) is required
per iteration for each object or person that received a bid during the iteration. An
alternative but probably less efficient possibility is to update the profits r of the
assigned persons via (14) (or the prices p of the assigned objects via (15)) just before
switching to reverse auction (or forward auction, respectively). An important property
is that the updates of (14) and (15) maintain the e-CS condition (11) for the pair
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(r, p), and therefore, by Proposition 4, maintain the required e-CS conditions (12)
and (13) for 7r and p, respectively. This is shown in the following proposition.

PROPOSITIOr 5. If the assignment and profit-price pair available at the start of an
iteration of either the forward or the reverse auction algorithm satisfy the e-CS condition
(11), the same is true for the assignment and profit-price pair obtained at the end of the
iteration, provided (14) is used to update r (in the case offorward auction), and (15)
is used to update p (in the case of reverse auction).

Proof. Assume for concreteness that forward auction is used, and let (r, p) and
(,/) be the profit-price pair before and after the iteration, respectively. Then,/j _-> pj
for all j (with strict inequality if and only if j received a bid during the iteration).
Therefore, we have i +/ => ai e for all (i, j) such that 7r "g’. Furthermore, we have
+/ 7r +p aij for all (i,j) that belong to the assignment before as well as after

the iteration. Also, in view of the update (14), we have i+/, ai, for all pairs (i,j)
that entered the assignment during the iteration. What remains is to verify that the
condition

(16) ", + ff >- a e lj A

holds for all persons that submitted a bid and were assigned to an object, say j,
during the iteration. Indeed, for such a person i, we have by (4),

ffj, aij,- max {a-pj}+ e,
jA(i),jji

which implies that

ri ai, ff, >- ai -p e >= aij ff e lj A ).

This shows the desired relation (16). ]

Note that during forward auction, the object prices p increase, while the profits
r decrease, but exactly the opposite happens in reverse auction. For this reason, the
termination proof used for forward auction (see, e.g., [BET89, p. 371]) does not apply
to the combined method. Indeed, it is possible to construct examples of feasible
problems where the combined method never terminates if the switch between forward
and reverse auctions is done arbitrarily. However, it is easy to guarantee that the
combined algorithm terminates finitely for a feasible problem; it is sufficient to ensure
that some "irreversible progress" is made before switching between forward and reverse
auction. One easily implementable possibility is to refrain from switching until at least
one more person-object pair has been added to the assignment. In this way there can
be a switch at most (n 1) times between the forward and reverse steps ofthe algorithm.
Since for a feasible problem, forward and reverse auction by themselves have guaran-
teed finite termination, the final step will terminate with a feasible assignment satisfying
e-CS.

The combined forward/reverse auction algorithm often works substantially faster
than the forward version. It seems to be affected less by "price wars," that is, protracted
sequences of small price rises by a number of persons bidding for a smaller number
of objects. Price wars can still occur in the combined algorithm, but they arise through
more complex and unlikely problem structures than in the forward algorithm. For this
reason the combined forward/reverse auction algorithm depends less on e-scaling for
good performance than its forward counterpart. One consequence of this is that starting
with e 1/n and bypassing e-scaling is often the best choice. Another consequence
is that a larger e-reduction factor can typically be used with no price war effects in
e-scaled forward/reverse auction than in e-scaled forward auction. As a result, fewer
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e-scaling phases are typically needed in forward/reverse auction to deal effectively
with price wars.

3. Auction algorithms for asymmetric assignment problems. Reverse auction can
be used in conjunction with forward auction to provide algorithms for solving the
asymmetric assignment problem, where the number of objects n is larger than the
number of persons m. Here we still require that each person be assigned to some
object, but we allow objects to remain unassigned. As before, an assignment S is a
(possibly empty) set of person-object pairs (i, j) such that j A(i) for all (i, j) S; for
each person there can be at most one pair (i, j) S; and for every object j there can
be at most one pair (i, j) S. The assignment S is said to be feasible if all persons are
assigned under S.

The corresponding linear programming problem is

maximize Y aoxo
i, .s

subject to

(17) xo=l /i=l,...,m,
jA(i)

xo_-<l ’q’j=l,...,n,
iB(j)

O<=xij /(i,j)e .
We can convert this program to the minimum cost flow problem

minimize (-ao)xo
i,j ..

subject to

xo=1 ti=l,...,m,
jA(i)

(18) Y x +x= l j= l,..., n,
laB(j)

O<--xo V(i,j) 6M,

O=<xs ’j= 1,..., n,

by replacing maximization by minimization, by reversing the sign of a0, and by
introducing a supersource node s, which is connected to each object node j by an arc
(s,j) of zero cost and feasible flow range [0, o).

Using the duality theory for minimum cost network flow problems (see, e.g.,
[BET89, p. 335] or [Ber91, p. 35]), it can be verified that the corresponding dual problem
is

minimize 7r + pj (n m)A
i=1 j=l

(19) subject to 7r + pj >- ao V i, j) M,

A-<pj j= 1,..., n,
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where we have converted maximization to minimization, we have used -ri in place
ofthe price of each person node i, and we have denoted by A the price ofthe supersource
node s.

We now introduce an e-CS condition for an assignment S and a pair (r, p).
DEFINITION 2. An assignment S and a pair (zr, p) are said to satisfy e-CS if

(20a) zr, + pj >-_ ao e V(i, j) M,

(20b) 7r, +pj a, V(i,j)S,

(20c) p -<_ min Pk tj unassigned under S.
k: assigned underS

The following proposition clarifies the significance of the preceding e-CS con-
dition.

PROPOSITION 6. Ifafeasible assignment S satisfies the e-CS conditions (20) together
with a pair (Tr, p), then S is within me of being optimal for the asymmetric assignment
problem. The triplet (.?r, , h ), where

(21a) h min Pk,
k: assigned under S

(21b) =Tr+e Vi=l,...,m,

(21c) ,={PA ifj is assigned under s’
ifj is unassigned under S

j 1,..., n,

is within me of being an optimal solution of the dual problem (19).
Proof. For any feasible assignment {(i, k)li 1,..., m} and for any triplet (-,

satisfying the dual feasibility constraints - +/Sj _-> a for all (i, j) and A =</ for all
j, we have

, a,k, <-- E "?r, + , pk, <--_ E Or,+ E /5--(n-m)A.
i=1 i=1 i=1 i=1 j=l

By maximizing over all feasible assignments {(i, k)li 1,..., m} and by minimizing
over all dual-feasible triplets (,/5, A), we see that

A.<- D.,

where A, is the optimal assignment value and D. is the minimal dual cost.
Let now S {(i,j)li 1,..., m} be the given assignment satisfying e-CS together

with (m P), and consider the triplet (,,/, A) defined by (21). Since for all i, we have, +, ao + e, we obtain

A*>= ao,= E zr+ p,-me= , 7r" + -(n-m)h-me>D.-me,=
=1 i-- = = j:

where the last inequality holds because the triplet (,/, A) is feasible for the dual
problem. Since we showed earlier that A _-< D., the desired conclusion follows.

Consider now trying to solve the asymmetric assignment problem by means of
auction. We can start with any assignment S and pair (r, p) satisfying the first two
e-CS conditions (20a) and (20b), and perform a forward auction (as defined earlier
for the symmetric assignment problem) up to the point where each person is assigned
to a distinct object. For a feasible problem, it can be seen that this will yield, in a
finite number of iterations, a feasible assignment S satisfying the first two conditions
(20a) and (20b). If we select initially all object prices to be zero, then upon termination
of the algorithm, the prices of the unassigned objects will still be at zero, while the
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prices of the assigned objects will be nonnegative. Therefore, the e-CS condition (20c)
will also be satisfied, and by Proposition 6 the assignment S obtained will be optimal.
Unfortunately, the use of zero initial prices precludes the use of e-scaling, and leaves
the method susceptible to price wars. To be able to use e-scaling we must be able to
use arbitrary initial prices, but then the assignment S obtained by forward auction
may not be optimal because the prices of the unassigned objects may not be minimal,
that is, they may not satisfy the third e-CS condition (20c). Roughly, what is happening
here is that forward auction cannot resolve whether the objects that were left unassigned
upon termination are intrinsically "undesirable" because they offer relatively low
benefit to the persons, or whether they were left unassigned because their initial prices
were high relative to the initial prices of the assigned objects.

To resolve this dilemma, we use a modified form of reverse auction to lower the
prices of the objects that were left unassigned upon termination of the forward auction.
After several reverse auction iterations in which persons may be reassigned to other
objects, the third condition (20c) will be satisfied. We will show that the assignment
thus obtained satisfies all the e-CS conditions (20a)-(20c) and by Proposition 6 is
optimal within me (and thus optimal if the problem data are integer and e < 1/m).

The modified reverse auction starts with a feasible assignment S and with a pair
(,r, p) satisfying the first two e-CS conditions (20a) and (20b). (For a feasible problem,
such an S and (,r, p) can be obtained by regular forward or reverse auction, as discussed
earlier.) Let us denote by A the minimal assigned object price under the initial
assignment,

(22) A min pj.
j: assigned underthe initial assignment S

The typical iteration of modified reverse auction is the same as the one of reverse
auction, except that only unassigned objects j with pj > A participate in the auction.
In particular, the algorithm maintains a feasible assignment S and a pair ,r, p) satisfying
(20a) and (20b), and terminates when all unassigned objects j satisfy p _-< A, in which
case it will be seen that the third e-CS condition (20c) will be satisfied as well. The
scalar A will be kept fixed throughout the algorithm.

TYPICAL ITERATION OF MODIFIED REVERSE AUCTION FOR ASYMMETRIC
ASSIGNMENT. Select an objectj that is unassigned under the assignment S, and satisfies
p > A (if no such object can be found, the algorithm terminates). Find a "best" person

i such that

i arg max {
iB(j)

and the corresponding value

(23) max {aij-i}
iB(j)

and find

(24) to= max {ao-i}.
iB(j),iij

(If i is the only person in B(j), we define toj to be -o.) If h >-fl- e, set p := h and
go to the next iteration. Otherwise, let

(25) min {fl h, fl toj + e}.
Set

(26) p := fl 6,

(27) := "rr + 8,



278 D.P. BERTSEKAS, D. A. CASTAON, AND H. TSAKNAKIS

add to the assignment S the pair (it,j), and remove from S the pair (it,J’), where j’
is the object that was assigned to under S at the start of the iteration.

Note that the formula (25) for the bidding increment is such that the object j
enters the assignment at a price which is no less than it (and is equal to it if and only
if the minimum in (25) is attained by the first term). Furthermore, we have 8 => e (when
8 is calculated, that is, when it > fit-e), so it can be seen from (26) and (27) that
throughout the algorithm, prices are monotonically decreasing and profits are
monotonically increasing. The following proposition establishes the validity of the
method.

PROPOSITION 7. The modified reverse auction algorithm for the asymmetric assign-
ment problem terminates in a finite number of iterations and the assignment obtained is
within me of being optimal.

Proof In view of Proposition 6, the result will follow once we prove the following:
(a) The modified reverse auction iteration preserves the first two e-CS conditions

(20a) and (20b), as well as the condition

(28) it <_- min
j: assigned underthe current assignment S

so upon termination of the algorithm (necessarily with the prices of all unassigned
objects less or equal to it), the third e-CS condition (20c) is satisfied.

(b) The algorithm terminates finitely.
We will prove these facts in sequence.
We assume that the conditions (20a), (20b), and (28) are satisfied at the start of

an iteration, and we will show that they are also satisfied at the end of the iteration.
First, consider the case where there is no change in the assignment, which happens
when it _->/3 -e. Then (20b) and (28) are automatically satisfied at the end of the
iteration; only Pt changes in the iteration according to

pj := it _->/3 e max {aij "rri}-
iB(j)

so the condition (20a) is also satisfied at the end of the iteration.
Next consider the case where there is a change in the assignment during the

iteration. Let (Tr, p) and (,/) be the profit-price pair before and after the iteration,
respectively, and let j and be the object and person involved in the iteration. By
construction [cf. (26) and (27)], we have ’[’ij +ffj=aij, and since ’’i 77"i and Pk--Pk
for all i#/ and k#j, we see that the condition (20b) (+ffk =ak) is satified for all
assigned pairs (i, k) at the end of the iteration.

To show that the condition (20a) is satisfied at the end of the iteration, that is,

(29) ’l’i + Pk aik E

consider first objects k j. Then, Pk Pk and since 77 => 7r for all i, the above condition
holds, since at the start of the iteration, we have r /Pk >= aik e for all (i, k). Consider
next the case k =j. Then, condition (29) holds for it, since , +/t a/. Also using
(23)-(26) and the fact 8 _-> e, we have for all

i +p ri +p _-> i + -(
’rr + to e >- w + (a0 w) e ao e,

so condition (29) holds for i/ and k =j, completing the proof.
To see that condition (28) is maintained by the iteration, note that by (23), (24),

and (26), we have
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Finally, to show that the algorithm terminates finitely, we note that in the typical
iteration involving object j and person ij, there are two possibilities:

(1) The price of object j is set to A without the object entering the assignment;
this occurs if A ->_ flj- e.

(2) The profit of person i increases by at least e (this is seen from the definition
(25) of 3; we have h < fl- e and fl >- to, so >- e).

Since only objects j with pj > h can participate in the auction, possibility (1) can
occur only a finite number of times. Thus, if the algorithm does not terminate, the
profits of some persons will increase to oo. This is impossible, since when person is
assigned to object j, we must have by (20b) and (28)

’7"f a/ p <= a0 A,

so the profits are bounded from above by max(ij)a ao -h. Thus the algorithm must
terminate finitely. E]

As mentioned earlier, forward auction followed by modified reverse auction can
start with arbitrary initial prices. As a result, one can use e-scaling, performing a
sequence of auctions with decreasing values of e. This can be shown to improve the
theoretical worst-case complexity of the method, and is often beneficial in practice,
particularly for sparse problems. Out of several possible variations of the method, the
one we have tested most uses the modified reverse auction only in the last e-scaling
phase. In all other e-scaling phases just forward auction is used.

Reverse auction also can be used to solve the variation of the two-sided inequality
constrained assignment problem, where persons (as well as objects) need not be
assigned if this degrades the assignment’s value. This problem can be converted to an
asymmetric assignment problem where all persons must be assigned by introducing
for each person an artificial object i’ and a zero cost arc (i, i’). One can then use the
algorithm given earlier to solve this problem. The algorithm can be streamlined so that
the calculations involving the artificial objects and arcs are handled efficiently.

4. Auction algorithms for multiassignment problems. An interesting type of assign-
ment problem is described by the linear program

maximize aix

subject to

(30) Y xo>-_1 /i l, m,
j(i)

xi=l j=l,...,n,
iB(j)

O<=xij /(i,j) e ,
where m < n. For feasibility, we assume that the sets A(i) and B(j) are nonempty for
all and all j, respectively. This is known as the multiassignment problem, and is
characterized by the possibility of assignment of more than one object to a single
person; such a person is said to be multiassigned. Problems of this type arise in military
applications, such as multitarget tracking with sensors of limited resolution [Bla86],
where objects correspond to tracked vehicles and persons correspond to data points,
each representing at least one vehicle (but possibly more than one, because of the
sensor’s limited resolution). The multiassignment problem results when we try to
associate data points with vehicles so as to match as closely as possible these data
points with our prior knowledge of the vehicles’ positions.



280 D.P. BERTSEKAS, D. A. CASTA17qON, AND H. TSAKNAKIS

We can convert the multiassignment problem to the minimum cost flow problem

minimize (- aij xij
(i,j)

subject to

xij-xs=l Vi=l,...,m,
jA(i)

(31) , x,=l Vj=l,...,n,
iB(j)

, Xsi n m,
i=1

O<--_x (i,j) M,

O <-- xs V l, n,

by replacing maximization by minimization, by reversing the sign of a0, and by
introducing a supersource node s, which is connected to each person node by an
arc (s, i) of zero cost and feasible flow range [0, ) (see Fig. 1).

PERSONS OBJECTS

SUPERSOURCE

FIG. 1. Converting a multiassignment problem into a minimum cost flow problem involving a supersource
node s and a zero cost artificial arc (s, i) with feasible flow range [0, ) for each person i.

Using duality theory again and appropriately redefining the price variables corres-
ponding to the nodes, it can be verified that the corresponding dual problem is

minimize r + p + (n m)t
i=1 j=l

(32) subject to zri + pj >-_ aij V i, j) ,
A_->ri Vi=I,..., m.

We now introduce an e-CS condition for an assignment S and a pair (r, p).
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DEFINITION 3. A multiassignment S and a pair (Tr, p) are said to satisfy e-CS if

(33a) ri + pj ->- aij e V(i, j) M,
(33b) 7r, +p a V(i, j) S,
(33c) ri- max qJ’k if is multiassigned under S.

k=l,...,m

We have the following result.
PROPOSITION 8. Assume that the benefits ai are integer. If a feasible assignment S

satisfies the e-CS conditions (33) together with a pair (Tr, p) for e < 1/m, then S is optimal
for the multiassignment problem.

Proof. If S is not optimal, there must exist a cycle Y in the equivalent network
of Fig. 1 with no repeated nodes along which the assignment S can be modified to
result in a new feasible assignment S’ with improved primal cost. Assume for the
moment that the supersource s is in the cycle; thus, let Y be

Y- (s, l, j2, i2,..., ik-1, jk, ik, S).
In the above cycle, the nodes iq represent distinct persons, the nodes jq represent
distinct objects and

iq, jq S, jq A iq_ ), iq_ jq : S, q 2, k.

Augmentation along Y results in replacing the pairs (iq,jq) S, q- 2,..., k, by the
pairs (iq_ 1,jq), q 2,..., k, in the assignment. It can be seen that ik must be multi-
assigned prior to the augmentation; the reason is that with the augmentation along Y,
the arc (ik, jk) will exit the assignment, so person k will be left unassigned and feasibility
will be violated after the augmentation. Because Y has no repeated nodes, we have
k _-< m, which, based on the hypothesis, implies ke < 1.

Since the augmentation results in strict cost improvement and the benefits are
integer, we must have

k k

’, aiqjq dr 1 < a_,
q=2 q =2

or equivalently,
k k

E (aiqjq -pjq)+ 1 _<-- E (ai_,a -p).
q=2 q =2

Using the above relation and the e-CS condition (33a), it follows that
k k k k-1

E 7r,+l= (a,q-pj)+l_-< (aiq_,jq--pjq)<= ro+(k-1)e.
q=2 q=2 q=2 q=l

From this relation, we obtain

1 (k 1)e _-< 7ri- rik.

This is a contradiction because we argued earlier that ke < 1, and that ik is multiassigned,
which implies that rk >_- r, (cf. (33c)).

If Y does not contain s, a similar argument establishes the result. 1
Consider now trying to solve the multiassignment problem by means of auction.

We can start with any assignment S and profit-price pair (r, p) satisfying the first two
e-CS conditions (33a) and (33b), and perform a forward auction up to the point where
each person is assigned to a (single) distinct object, while satisfying the conditions
(33a) and (33b). However, this assignment will not be feasible, because some objects
will still be unassigned.
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To make further progress, we use a modified reverse auction, which starts with
the final results of the forward auction, that is, with an assignment S, where each
person is assigned to a single distinct object, and with a pair (Tr, p) satisfying the first
two e-CS conditions (33a) and (33b). Let us denote by A the maximal initial person
profit,

(34) A max ri.

The typical iteration, given below, is the same as the one of reverse auction, except
that unassigned objects j that bid for a person may not necessarily displace the object
assigned to the person but may instead share the person with its already assigned
object(s). In particular, the algorithm maintains an assignment S, for which each person
is assigned to at least one object, and a pair (raP) satisfying (33a) and (33b); it
terminates when all unassigned objects j have been assigned. It will be seen that upon
termination, the third e-CS condition (33c) will be satisfied as well. The scalar A is
kept fixed throughout the algorithm.

TYPICAL ITERATION OF MODIFIED REVERSE AUCTION FOR MULTIASSIGN-
MENT. Select an object j that is unassigned under the assignment S (if all objects are
assigned, the algorithm terminates). Find a "best" person/ such that

(35) ij arg max {ao ri},
iEB(j)

and the corresponding value

(36) /3j= max (ai-Tri},
iEB(j)

and find

(37) to= max {ai--
iaB(j),i#ij

(If i is the only person in B(j), we define toj to be -c.) Let

(38) rain {h- 7rj,/3-to + e}.

Add (i,j) to the assignment S, set

(39) p := flj- ,
(40) 7rj := 7r +

and if > 0, remove from the assignment S the pair (i,j’), where j’ was assigned to

/ under S.

Note that in an iteration, the number of assigned objects increases by one if and
only if =0 (which is equivalent to 7ri A, since the second term/3-to + e in (38)
is always greater than or equal to e). The following proposition establishes the validity
of the method.

PROPOSITION 9. The modified reverse auction algorithm for the multiassignment
problem with integer benefits terminates in a finite number of iterations with an optimal
assignment when e < 1/m.

Proof In view of Proposition 8, the result will follow once we prove the following:
(a) The modified reverse auction iteration preserves the e-CS conditions (33), as
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well as the condition

(41) A max 7ri.
i= 1,...,m

(b) The algorithm terminates finitely (necessarily with a feasible assignment).
To show (a) above, we use induction. In particular, we show that if the conditions

(33) and (41) are satisfied at the start of an iteration, they are also satisfied at the end
of the iteration. Indeed, this is easily seen to be true for (33a) and (33b). Equations
(33c) and (41) are preserved since we have A maxi= 7r at the start of the iteration
and the only profit that changes is 7rj, which by (38) and (40) is set to something that
is less than or equal to A, and is set to A if and only if ij is multiassigned at the end
of the iteration.

To show finite termination, we observe that a person can receive a bid only a
finite number of times after the profit r is set to A, since at each of these times the
corresponding object will get assigned to without any object already assigned to
becoming unassigned. On the other hand, by (38) and (40), at an iteration where a
person receives a bid, the profit r is either set equal to A or else increases by at least
e. Since profits are bounded above by A throughout the algorithm, it follows that each
person can receive only a finite number of bids, proving finite termination. [3

4.1. Two-sided multiassignment problem. There are several variations of the multi-
assignment problem and the preceding algorithm. For example, the problem where
there is an upper bound ti on the number of objects person can be assigned to, that
is,

maximize ., a.ixo
i,j .d

subject to

(42) 1 < xo<-a Vi=l,...,m,
jA(i)

x0=l Vj=l,...,n,
iB(j)

O<--xo V(i,j)e

where ci are given integers. This multiassignment problem admits solution by a similar
auction algorithm as the preceding one; we will not give the details.

Another interesting variation of the multiassignment problem arises when objects,
as well as persons, can be multiassigned, up to a certain limit. This problem, referred
to as two-sided multiassignment, can be written as

maximize aix.i
i,j)

subject to

(43) ’. xo>--_l Vi=l,...,m,
jA(i)

1<-_ ., xo<=a.i Vj=l,...,n,
iB(j)

O<--_xo<-_l V(i,j),

where cj are given integers less. Note that if a 1, this problem is identical to the
earlier problem (30).
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Again, the above problem can be converted to a minimum cost network flow
problem

minimize (-aoxo)
i,j)..

subject to

Y xij-x= l Vi=l,...,m,
jA(i)

xo-x=l Vj=l,...,n,
iB(j)

(44) . Xsi-- x=n-m,
i=1 j=l

O<--xi <-1 V(i,j)
O<-- xsi Vi-1, m,

O<-_xjs<-aj-1 Vj= l,.. n,
by replacing maximization by minimization, by reversing the sign of ao, by introducing
a supersource node s with supply n- m, an arc (s, i) for each person of zero cost
and feasible flow range [0, o), and an arc (j, s) for each object node j of zero cost and
feasible flow range [0, a- 1] (see Fig. 2).

Using duality theory and appropriately redefining the price variables correspond-
ing to the nodes, it can be seen that the corresponding dual problem is

minimize Y ri+ , (p+max{O,(p+h)(%-l)})
i:1 j=l

(45) + max {0, aj-pj-r}+(n-rn)A
(i,j)

subject to h_-> r i- 1,..., m,
where h is the dual price of the supersource node s. The above dual problem is similar
to the earlier dual problem (32), with the exception of the cost terms introduced by
the upper bounds on the arcs.

PERSONS OBJECTS

SUPERSOURCE

FIG. 2. Converting a two-sided multiassignment problem into a minimum cost flow problem involving a

supersource node s, zero cost artificial arcs s, i) with feasible flow range [0, ) for each person i, and zero cost

artificial arcs (j, s) with feasible flow range [0, o9 for each object j.
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For the two-sided multiassignment problem, we introduce the following e-CS
condition for an assignment S and a pair (Tr, p).

DEFINITION 4. A multiassignment S and a pair (r, p) are said to satisfy e-CS for
the two-sided multiassignment problem if

(46a) 7ri -1- pj aij e V(i, j) ,
(46b) 7riq-pj<=ai V(i,j)S,

(46c) ri- max 71"k --, if is multiassigned under S,
k= 1,...,m

(46d) pj + A -> 0 if j is multiassigned under S,
(46e) if pj + A > 0 j must be assigned to aj persons under S.

Using an argument similar to the proof of Proposition 8, we can establish the
following result.

PROPOSITION 10. Assume that the benefits ao are integers. If a feasible assignment
S satisfies the e-CS conditions (46) together wih a pair (zr, p) for e <l/m, then S is
optimal for the multiassignment problem.

Proof. If S is not optimal, there must exist a cycle Y in the equivalent network
of Fig. 2 with no repeated nodes along which the assignment S can be modified to
result in a new feasible assignment S’ with improved primal cost. There are five possible
cases: (1) the cycle Y does not include node s; (2) the cycle Y includes s followed
by a person and preceded by another person; (3) the cycle Y includes s followed by
a person and preceded by an object; (4) the cycle Y includes s followed by an object
and preceded by a person; and (5) the cycle Y includes s followed by an object and
preceded by another object.

Assume for the moment that the node s is in the cycle and that it is followed and
preceded by persons (case (2)); thus, let Y be

Y= (s, il,j2, i2,..., ik-l,A, ik, S).
In order for augmentation along Y to result in a feasible assignment, we must have
(i,,j,)S, q=2,...,k,jo+A(io) q=l,...,k-1; furthermore, i must be multi-
assigned. Because Y has no repeated nodes, we have k_-< m, which, based on the
hypothesis, implies ke < 1.

Augmentation along Y results in replacing the pairs (iq,jq), q 2,..., k, by the
pairs (iq_ ,jq), q 2,..., k, in the assignment. Since following augmentation along Y,
the primal cost is strictly improved, we must have

k k

_
aiqjq d- 1 <-- , aiq_,jq

q =2 q =2

or equivalently,
k k

E (a,j,-p,)+ 1 --< E (a,._,.-p).
q =2 q =2

Using this relation, and the e-CS conditions (46a) and (46b), we obtain
k k k

E 7r,q-er,l+ 1--< E (a,-p)+ 1 E (a,_,-p)
q=l q=2 q=2

k

io--ik +(k-1)e.
q=l

This yields

1-(k- 1)e _-< ’71"il--"l]’ik
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which is a contradiction because ke < 1, and zril<_-zrik, since ik is multiassigned (cf.
(46c)).

Similarly, assume that node s is preceded and followed by an object in Y (case
(5)); thus,

Y= (s, jl, il,j2, i2,..., ik-l,jk, ik,jk+l, S).

In order for augmentation along Y to produce a feasible assignment, we must have
(iq,jq) S, q 1,..., k, jq+l A(iq), q 1,..., k- 1; furthermore, we must have
(iq_l,jq)eS, q=2,..., k/ 1, jl must be multiassigned, and jk/l must be assigned to
less than ajk/l persons. Because Y has no repeated nodes, we have k _-< m, which, based
on the hypothesis, implies ke < 1.

Augmentation along Y results in replacing the pairs (iq,jq), q- 1,..., k, by the
pairs (iq,jq+l), q 1,..., k, in the assignment; note that since jl is multiassigned and
jk+ can be assigned to at least one more person, the resulting modified assignment is
feasible. Thus, we must have

or equivalently,

k k

aiqjq+l<-- aiqjo/,
q=l q=l

k k, (aij 7r,) + 1 <-_ , (a,q+, zri).
q=l q=l

Using the above relation and the e-CS conditions (46a) and (46b), we obtain

k k k k

Y. p + 1 <_-- (aq- 7r,q)+ 1 <-- a,j+ 7ri) <= p+ + ke.
q=l q=l q=l q=l

This yields 1 ke <=p/-p, which is a contradiction because ke < 1, while by the CS
conditions (46d) and (46e), we have P/I =-A <_-pl since jk/ is assigned to less than
a+ persons.

The proof for cases (1), (3), and (4) is similar.
Consider now trying to solve the two-sided multiassignment problem using an

auction algorithm. We start from any assignment S that has at most one person assigned
to each object and at most one object assigned to each person, and a profit-price pair
(Tr, p) satisfying the first two e-CS conditions associated with regular auction (cf. (20a)
and (20b)). We then use a forward auction algorithm up to the point where each person
is assigned to a single (distinct) object, while satisfying the first two e-CS conditions
(46a) and (46b) (condition (46b) will actually be satisfied with equality). Note that
this assignment will not be feasible since m < n.

At this point, we switch to using a modified reverse auction; denote by A the
maximal initial person profit

(47) h max
i= 1,...,m

Using this value of A, we can determine which objects have prices pj indicating that
they can be multiassigned; in particular, the e-CS condition (46e) suggests that any
object with price p greater than -h should be assigned to as many persons as possible.
In order to determine these persons, we use a reverse auction where each unassigned
object, and each assigned object with price p greater than -h and assigned to less
than aj persons will bid to be assigned to an additional person. This reverse auction
is modified in order to satisfy the e-CS conditions at termination, as follows.
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TYPICAL ITERATION OF MODIFIED REVERSE AUCTION FOR Two-SIDED MULTI-
ASSIGNMENT. Select an object j that is unassigned, or is assigned to at least one and
less than aj persons, and has pj greater than -A (if no such object can be found, the
algorithm terminates). If the set {i B(j) (i,j) S} is empty, set p -A and go to the
next iteration. Otherwise, find a "best" person i such that

(48) i arg max {ao 7ri },
iB(j),(i,j)S

and the corresponding value

(49)

and find

max {aij ri},
iB(j),(i,j):S

(50) to max {ai ri}.
i B(j),i ij,( i,j). S

(If the set B(j), i, (i, j)
_
S is empty, we define to to be --o.)

If j is unassigned, let

(51a) 8 min {h wj,/3 toj + e}.

Add (/,j) to the assignment S, set

(51b) p := to- e,

(51c) 7rij := w + 8,

and if 8 > 0, remove from the assignment S the pair (i,j’), where j’ was assigned to

i under S.
If j is assigned to at least one and less than aj persons, and pj + A > 0, let

(52a) 8 min {A r,/3 toj + e,/3 + A},

and distinguish two cases:
(a) 8 </3 + A" In this case, add (i,j) to the assignment S, set

(52b) p := max {to e, -A},

(52c) r := wi + 8,

(52d) r,:= min {a-max {toj-e,-A}, A} Vi such that (i,j) S,

and if 8 > 0, remove from S the pair (i, j’), where j’ was assigned to ij under
S.

(b) 8 =/3 + A: In this case, set

(53a) p := -h,

(53b) 7% := 7r + max {0,

(53c) ri:=min{a+h,h} Vi such that (i,j)S,

and, if 8 > 0, add (/, j) to the assignment S and remove from S the pair (i, j’),
where j’ was assigned to / under S.

Note that the above algorithm uses two types of iterations. The first type occurs
when the bidding object is unassigned; then the number ofunassigned objects decreases
by one when 8 is zero, which is equivalent to 7r- A, so that person can be multi-
assigned. The second type of iteration occurs when the bidding object is already
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assigned, but has price pj >-h; then either j is assigned to an additional person, or
else pj is reduced to the threshold price -h.

The following proposition establishes the validity of the method.
PROPOSITION 11. The modified reverse auction algorithm for the two-sided multi-

assignment problem with integer benefits terminates in a finite number of iterations with
an optimal assignment when e < 1/m.

Proofi In view of Proposition 10, the result will follow once we prove the following:
(a) The modified reverse auction iteration preserves the e-CS conditions (46a)-

(46d).
(b) The algorithm terminates finitely (necessarily with a feasible assignment).
(c) Upon termination, the e-CS condition (46e) must be satisfied.
To show (a) above, we use induction. Let (Tr, p) and (,/) be the profit-price

pair before and after an iteration ofthe modified reverse auction algorithm, respectively,
and let j and i be the object and person involved in the iteration. At the beginning
of the first iteration, S and (Tr, p) satisfy

By construction, we also have

7r,+p>=ao-e V(i,j),

r, +p ai V(i,j)aS.

7ri_--<h /i=l,...,m;

furthermore, every person is assigned to exactly one object, and every object is assigned
to at most one person. Thus, the e-CS conditions (46a)-(46d) are satisfied.

Assume that the e-CS conditions (46a)-(46d) are satisfied at the beginning of an
iteration. We consider three cases: (a) object j is currently unassigned, (b) object j is
assigned and the bid increment satisfies </3j + h, and (c) object j is assigned and
the bid increment 8 satisfies 8 =/3 + h.

In case (a), by construction we have

+/3 --< zr +/3 to + e +p <_- aj.

Furthermore, since zr does not decrease, the e-CS condition (46a) will be satisfied
for all k A(i), k j. In addition, for any i’ s i, i’ B(j), we have by (50)

r i’ +P cry, + to- e _-> a,j- e,

establishing that the e-CS conditions (46a) and (46b) are satisfied at the end of the
iteration. In addition, the e-CS condition (46c) is guaranteed to be satisfied by (51a)
and (51c), and the e-CS condition (46d) continues to be satisfied, since the prices of
multiassigned objects were not affected.

In case (b), the price p, and the profits ri and zr, (i, j) S are modified. Conditions
(46c) and (46d) will be satisfied by the modified profits and prices at the end of the
iteration by construction (cf. (52a)-(52d)). Assume 8 =/3 to + e; then -h <- to e, so

pj max {to- e,-h} to- e -<p,

j+ff ao 8 fl + to e ao,

establishing that the e-CS condition (46b) holds for the new pair (i,j) entering the
assignment. Similarly, the e-CS condition (46b) is satisfied for all (i,j) S by construc-
tion (cf. (52d)). Since/ _-<p, equation (52d) implies that 7ri <- - for all i, which in
turn implies that the e-CS condition (46a) is satisfied for all k A(i), with (i, k) S
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and (i, j) S. Also, the e-CS condition (46a) is satisfied for all (i, j) S, ij because
(50) implies

pj toj e >: aij Tri e V i, j : S, i.
If, on the other hand, A- ri, then aijj >= 0 and to-e _<-aij- A. Thus, (46b) is

satisfied for (i,j) at the end of the iteration, since

"i +P h +max {-

Similarly, the e-CS condition (46b) is satisfied for all (i,j) S by (52d). Since p + h > 0,
p is not increased during the iteration. Thus, (52d) implies that 7r<_-- for all i, so
that the e-CS condition (46a) is satisfied for all kA(i), with (i, k) S, and (i,j) S.
Furthermore, since p >_-toj-e, the e-CS condition (46a) is satisfied for all k B(j),
with (k,j) : S.

In case (c), assume 8 =/3 + h > 0. Then, the e-CS condition (46b) is satisfied for
the pair (i, j) because

’fijj + Pj aij flj -b max {0, 8} h aij.

By assumption, the iteration decreases the price p and increases the profit 7rj. Further-
more, (53c) implies that the profits ri <= 77 for all i, so that the e-CS condition (46a)
is satisfied for all (i, k) , (i, k)= S, (i,j) S. Equation (53c) also guarantees that the
e-CS condition (46b) will be satisfied at the end ofthe iteration. If 8 <= 0, the assignment
S is not modified; only the price p is decreased and the profits 7ri, (i, j) S are modified.
The e-CS condition (46b) is satisfied because of (53c); in addition, the e-CS condition
(46a) is satisfied because

O>--flj+A>--aq-ri+A=aj-ri-pj V(i,j) S,

and the profits ri, e B(j), are nondecreasing.
The above arguments establish that the e-CS conditions (46a)-(46d) are preserved

by each modified reverse auction iteration. To complete the proof, we must show that
the algorithm terminates finitely, and that at termination, the e-CS condition (46e) is
satisfied. It is easy to verify that the number of assigned pairs is nondecreasing, and,
as shown above, the profits r are nondecreasing, while the prices p are nonincreasing.
Furthermore, each iteration is guaranteed to produce one (or more) of the following
three outcomes: (a) at least one profit r increases, (b) one additional pair is assigned,
and (c) S remains unchanged, but the price p is set to the minimum value -A. By
construction, the profits r cannot rise above A; furthermore, the prices p can only
be reduced to -A once per object, and there is a finite maximum number of assigned
pairs, which establishes finite termination. To show that the e-CS condition (46e) is
satisfied at termination, note that iterations occur until this condition is satisfied. This
completes the proof.

5. Numerical results. In this section we present some numerical results on the
computational performance of the new auction algorithms described in the previous
sections. The algorithms have been implemented in FORTRAN and have been com-
pared with state-of-the-art algorithms for every class of problems considered in this
paper.

5.1. Symmetric assignment problems. We first tested the two versions of for-
ward/reverse auction (a scaled and an unscaled version) applied to symmetric assign-
ment problems versus two other state-of-the-art codes: a forward auction code and
the code of Jonker and Volgenant [JoV87]. The latter, abbreviated as JV code, consists
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of two phases: an initialization phase, which is based on the naive auction algorithm
(the forward auction algorithm with e =0), and a sequential shortest path method
phase, which assigns the persons that are left unassigned by the initialization phase.
It is widely believed that through the combination of the auction and the sequential
shortest path algorithms, the JV code is substantially faster than the best pure sequential
shortest path and Hungarian assignment codes (for some comparative evidence, see
[aer90]).

Our results for symmetric assignment problems are summarized in Figs. 3-6, where
each data point represents an average over ten to thirty random problems with identical
characteristics. In Figs. 3-6, a different characteristic (number of nodes, average node
degree, and benefit range) of the problem was allowed to vary: the number of nodes
in Fig. 3, the average node degree in Fig. 4, and the benefit range in Figs. 5 and 6.
Experiments with problems of constant density and varying numbers of nodes and
arcs have produced results that are qualitatively intermediate between the results of
Figs. 3 and 4. Figures 5 and 6 are similar but they correspond to sparse and fully dense
problems, respectively. It can be seen that the unscaled forward/reverse auction is
running considerably faster than the other codes. The auction algorithms (remarkably,
including the unscaled forward/reverse algorithm) are also quite insensitive to the
benefit range; a similar conclusion regarding scaled forward auction was reached in
[WeZ91 ]. Furthermore, all the auction codes run much faster than the JV code except
when the problem is quite dense (cf. Fig. 4 when the number of arcs is large). Still,
even for fully dense problems the unscaled forward/reverse algorithm is faster than
the J code, except when the benefit range is relatively small ([0, 100] in Fig. 6). There
is an explanation for the excellent performance of the JV code for a fully dense problem
with a small benefit range. What happens here is that the problem is solved essentially
in the naive auction initialization phase of the code and the sequential shortest path
phase plays no role. Thus, in this case, the JV code behaves like a very efficient auction
algorithm.

In the test problems of Figs. 3-6 the arc benefits are uniformly distributed over
the benefit range. In Fig. 7 we tested the effect of a two-level arc benefit distribution

300

"270 -- forward-reverse auction (without scaling) /,240
i;i forward auction (with scaling)

forward-reverse auction (with scaling) fE
210 e JV algorithm

180

150

120

symmetric assignment problems
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nole30 ,.......:!:i:i......!i!i!..i!iiii.’-’.’ii!!""i!!ii’’’ii!!i’’’

0 ":".’"’--*; ’" S
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FG. 3. Run times for symmetric assignment problems on a MAC II. The degree of each person node is

10. Each data point represents an average of ten randomly generated problems. The arc benefits are drawnfrom
the range [0, 1000] according to a uniform distribution.
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FI(. 4. Run times for symmetric assignment problems on a NeXT 68040. The number ofperson nodes is

1024 and the average node degree varies. Each data point represents an average of 30 randomly generated
problems. The arc benefits are drawn from the range [0, 100000] according to a uniform distribution.
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FIG. 5. Run times for symmetric assignment problems on a NeXT 68040. The number ofperson nodes is

4000 and the degree of each is 8. Each data point represents an average of 30 randomly generated problems.
The arc benefits are drawn from the range indicated according to a uniform distribution.
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FIG. 6. Run times for fully dense symmetric assignment problems with 1024 persons on a NeXT 68040.
Each data point represents an average of 30 randomly generated problems. The arc benefits are drawn from
the range indicated according to a uniform distribution.

Fit Fit SFR10 SFR10 SF3 SF3 SF5 SF5 SF10 SF10

Mean St. Dev. Mean Std. Mean Std. Mean Std. Mean Std.

Easy 0.27 0.14 0.46 0.08 0.51 0.04 0.45 0.04 0.46 0.12

Difficult 0.25 0.05 1.15 0.09 1.77 0.11 1.91 0.32 2.99 0.40

FIG. 7. Mean and standard deviation ofrun timesfor 30 experiments with symmetric assignment problems
on a NeXT 68040. The number ofperson nodes is 2000 and the degree of each is 8. For the easy problems,
the arc benefits are drawn from the range [0, 100]. For the difficult problems, 80% of the arc benefits are drawn
from the range [0, 100] and 20% of the arcs have benefit 100000. The codes are as follows: FR: Unsealed

forward/ reverse auction. SFRk: Scaledforward/ reverse auction with e-reduction factor k. SFk: Scaledforward
auction with e-reduction factor k.

on the performance of the auction algorithms. Here 80% of the arcs are drawn from
the benefit range [0, 100] and 20% of the arcs have benefit 100000. Such arc benefit
distributions are generally considered "difficult" for auction algorithms since they tend
to stimulate price wars. As mentioned earlier, forward/reverse auction tends to resolve
price wars faster than forward auction, and this advantage is manifested dramatically
in the results of Fig. 7 for the difficult problems. It should be noted that, in the difficult
problem experiments in Fig. 7, the scaling parameters of forward auction were optim-
ized. This optimization resulted in an improvement of roughly a factor of 6 in run
time over the codes with the default scaling parameters given in [Ber91].

Except on artificially constructed examples, we have found the performance of
unsealed forward/reverse auction remarkably robust. Indeed, it is only in very special
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classes of problems that the performance of this algorithm is significantly hampered
by the occurrence of price wars. The paper [Cas92] provides a comprehensive computa-
tional study of the performance and the robustness of the forward/reverse algorithms
for a variety of problem structures.

5.2. Asymmetric assignment problems. The new forward/reverse auction algorithm
for asymmetric one-on-one assignment problems was tested versus the asymmetric
version of the JV algorithm. We performed tests with two types of randomly generated
problems. For both classes of problems, each person node has 10 incident arcs.
However, in the first class of problems, the end nodes of the arcs and the arc benefits
were generated in a completely random fashion. Figure 8 gives the running times of
the scaled forward reverse auction algorithm, the unscaled auction algorithm, and the
JV code for this class of problems. A comparison of this figure with Fig. 3 indicates
that this class of problems is relatively "easy" for all methods. In particular, price
wars were very infrequent, and the unscaled auction algorithm outperformed its scaled
version as well as the JV code by a large margin.

The second class of asymmetric assignment problems was specially designed to
create price wars by making some nodes difficult to assign. In particular, we introduced
two levels of arc benefits that are different by approximately three orders of magnitude.
This kind of bipartite problems is quite typical in many applications where nearly
infeasible problems frequently arise, e.g., in target tracking applications where poten-
tially false measurements or tracks cannot be matched to confirmed targets. Figure 9
gives the run times of the various codes versus the number of arcs. It can be seen that
the run times of both (scaled and unscaled) auction algorithms again grow almost
linearly with the number of arcs, but the scaled auction algorithm outperforms the
unscaled one by an almost constant factor of 25. The run time of the JV algorithm
grows almost quadratically, as it did for symmetric problems. The performance of
scaled auction is significantly better than that of the JV algorithm, but unscaled auction
is worse than JV in these experiments. Note, however, that our unsealed auction for
asymmetric assignment problems does not involve a reverse portion. The initial object
prices in all runs were zero, and as mentioned in 3, upon termination of the forward

30
asymmetric forward reverse auction (scaled)

# asymmetric JV algorithm

asymmetric forward auction (unscaled)

ta 20- ...:...,.:i.(
"/:’!i

l::::

m
asymmetric one-on-one

L assignment problems ..:_:-...’:’
>m 10 randomly generated

10 arcs per node -.,’--.
_,..,.,:::.......&:

0
0 10000 20000 3:0000 40000 50000 60000

number of arcs

FIG. 8. Run times for "easy" asymmetric assignment problems on a MAC II. The degree of each person
node is 10 and the arc benefit range is [0, 1000]. Each data point represents an average of ten randomly
generated problems. The arc benefits are drawn from the benefit range according to a uniform distribution.
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FIG. 9. Run timesfor "difficult" asymmetric assignment problems on a MAC II. The degree ofeach person
node is 10. Each data point represents an average of ten randomly generated problems. The standard deviation

for each point was typically less than 5% of the corresponding run time. There are two levels ofarc benefits that
are different by approximately three orders of magnitude.

auction part of the code, all the e-CS conditions are satisfied, and the reverse auction
part is never used. Thus the mechanism that helped the forward/reverse unscaled
auction algorithm to avoid price wars in the difficult problems of Fig. 7 was not
employed in the unscaled asymmetric auction algorithm for the difficult problems of
Fig. 9.

5.3. Multiassignment problems. Next, we tested the multiassignment auction
algorithm (abbreviated multiauction) for one-sided asymmetric problems versus the
state-of-the-art relaxation code RELAX [BeT88], which solves the equivalent minimum
cost network flow problems, and versus the state-of-the-art primal-simplex code
NETFLO due to Kennington and Helgason [KeH80], which solves the same equivalent
network flow problems. We do not know of any specialized assignment code (including
the Hungarian or mixed auction/Hungarian code such as JV) that can be easily modified
to handle multiassignment problems, It was found that the NETFLO run times were
approximately 40 times higher than those of RELAX for about 5000 arcs and that
factor was growing for higher numbers of arcs. In Fig. 10 we show the solution times
versus the number of arcs for RELAX and the new multiassignment algorithm for a
sequence of randomly generated asymmetric problems with a fixed number of arcs per
node. The run times for multiauction grow almost linearly as the number of arcs
increases, and this behavior is very consistent across all runs. Furthermore, multiauction
is approximately four times faster than RELAX, whose run times also grow roughly
linearly but with quite a bit more fluctuation.

Scaling is important for multiassignment problems as it is for one-on-one assign-
ment problems. Although this may not be apparent for randomly generated problems,
it is frequently needed in applications, particularly for nearly infeasible problems. In
Fig. 11 we show run time results of scaled and unscaled one-sided multiauction
algorithms applied to a practical dynamic multi-target tracking and correlation problem
over a fixed period of time. At each point in time a sensor’s scan produces a set of
measurements of target positions that are to be matched with another set of existing
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FIG. 10. Run times for one-sided asymmetric multiassignment problems on a MAC II. Each data point
represents an average of ten randomly generated problems. The degree of each person node is 10 and the arc

benefit range is [0, 1000]. The standard deviation for each point in the multiauction curve was typically around
5% of the corresponding run time, while for the RELAX curve it was between 10 and 30%.
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FIG. 11. Run times for practical one-sided asymmetric multiassignment problems arising in multitarget
tracking on a Solbourne 5/501 computer, rated at 22 MIPS. Each point on the horizontal axis corresponds to
a different problem. The number of object nodes ranges from 10 to 125, and the number of arcs ranges from
100 to 10,000.

tracks by making use of the multiauction algorithms. It can be seen from Fig. 11 that
the unscaled multiauction performs worse and far less consistently than the scaled
version for this class of practical problems.

Finally, the new two-sided multiassignment algorithm was tested versus RELAX
for randomly generated problems. The results, shown in Fig. 12, indicate a substantial
speed advantage for the new multiauction algorithm.
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A GLOBALLYAND SUPERLINEARLY CONVERGENT ALGORITHM FOR
CONVEX QUADRATIC PROGRAMS WITH SIMPLE BOUNDS*

THOMAS F. COLEMANt ArCD LAURIE A. HULBERTt

Abstract. A globally and superlinearly convergent algorithm for solving convex quadratic programs with
simple bounds is presented. The algorithm is developed using a new formulation of the problem: the min-
imization of an unconstrained piecewise quadratic function that has the same optimality conditions as the
original problem. The major work at each iteration is the Cholesky factorization of a positive definite matrix
with the size and structure of the Hessian of the quadratic. Hence, the algorithm is suitable for solving large
sparse problems and for implementation on parallel computers. The numerical results indicate that the new
approach has promise.

Key words, quadratic programming, interior point methods, simple bounds, box constraints, large sparse
minimization
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1. Introduction. In this paper, we present a new algorithm for solving the problem

(1)
min 1/2XTAx + bTx

where A is an n x n symmetric positive definite matrix. In theory our approach can be
applied to problems with general upper and lower bounds after a simple transformation
to yield form (1). In practice this works without difficulty provided the ranges are not
extreme. When there are large ranges, numerical difficulties may prevent an accurate
solution. However, we believe that in many practical instances it is often the case that
reasonable feasibility ranges are known in advance.

Many algorithms, both finite and infinite, have been proposed for (1). Finite algo-
rithms (assuming exact arithmetic), usually involving pivoting and determination of an
"active-set," are the most common. Recent contributions include: BjSrck [1], Coleman
and Hulbert [3], Dembo and Tulowitzki [5], Jtidice and Pires [9], L6tstedt [11], Mor6
and Toraldo [12], Oreborn [14], O’Leary [13], and Yang and Tolle [17].

Following Karmarkar’s [10] development of an (infinite) "interior-point" algorithm
for linear programming, there has been increased interest in infinite interior-point al-
gorithms for quadratic programs. Interior-point algorithms for quadratic programs are
typically based on affine scaling, path following or barrier functions, potential reduction,
or projection techniques and are in general simpler to implement than active-set meth-
ods because they require less data structure manipulation. For a discussion of recent
interior-point algorithms for this and other quadratic programs, see the survey paper
by Ye [19]. Some of these interior-point algorithms have polynomial time bounds, but

*Received by the editors February 10, 1990; accepted for publication (in revised form) January 22, 1992.
This research was partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of
the Office ofEnergy Research ofthe U.S. Department ofEnergy under grant DE-FG02-86ER25013.A000 and
by the Computational Mathematics Program of the National Science Foundation under grant DMS-8706133.

Computer Science Department, Cornell University, Ithaca, New York 14853.
SDepartment of Mathematics and Computer Science, James Madison University, Harrisonburg, Virginia

22807.
1One can also take a finite view of such algorithms, assuming integer data, exact arithmetic, and a formal

final "rounding" to the exact solution. This view leads to a complexity analysis; e.g., is the number of steps
bounded by a polynomial in the size of the problem? This is not our concern in this paper.
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their asymptotic rates of convergence have not been studied. The affine scaling method
proposed by Ye [18] which is similar to but simpler than the polynomial algorithm of
Ye and Tse [20] and has no proven polynomial time bound, displays linear convergence
in practice. While few numerical results are available for the recent polynomial algo-
rithms, those presented by Han, Pardalos, and Ye [8] show that the performance of their
polynomial algorithm is more consistent than that of active-set algorithms.

We present a new infinite algorithm here that is not an interior-point method. In
general, infeasible iterates are generated. Our algorithm is globally and supedinearly
convergent; however, we do not claim that it has a polynomial time bound. We de-
velop our algorithm using a new formulation of the problem: the minimization of an
unconstrained piecewise quadratic function that has the same optimality conditions as
the original problem. Our algorithm has similarities to an It penalty function method,
and is quite similar in development to the quadratically convergent affine scaling method
for the linear l problems of Coleman and Li [4]. The major work at each iteration of
our algorithm is the Cholesky factorization of a positive definite matrix with the size
and structure of the matrix A. Hence our algorithm is suitable for solving large sparse
problems and for implementation on parallel computers.

There are three basic ideas underlying our new approach. The major purpose of this
paper is to expose these ideas and to begin to explore their potential in constrained opti-
mization. The first idea is the observation, detailed below, that a simple transformation
changes (1) into an unconstrained minimization problem involving a piecewise quad-
ratic function f(y). This allows for the possibility of using unconstrained minimization
strategies. The second idea, discussed in 2, is that there is a well-defined unconstrained
Newton process in a neighborhood of the solution. This Newton process is defined with
respect to the optimality conditions. The third idea is the definition of a descent direc-
tion, and a piecewise line search procedure that ultimately leads to full Newton steps,
thereby ensuring superlinear convergence.

The paper is organized as follows. In the rest of this section, we present our new
formulation of the problem and introduce some notation and definitions. In 2, we de-
scribe and motivate our algorithm. We prove global convergence in 3 and superlinear
convergence in 4. Section 5 contains numerical results and a discussion of the behav-
ior of the algorithm. Finally, in 6, we discuss possible improvements and make some
concluding remarks.

1.1. A related problem. Consider the quadratic program (1). Let q:(x) 1/2xTAx+
bTx, and hence Vqx(x) Ax + b. Ifwe assume that x* satisfies Vqx(x*)i 0 for all i
such that IxTI 1, then the following conditions are sufficient to guarantee that x* is a
local minimum of (1):

feasibility: -1 <_ x* < 1,

first order:

Vq(x*)i 0 if 1 < x < 1,

Vq(x*)i < 0 if x 1,

Vq(x*)i > 0 if x -1.

Now for a vector v, define the vector-valued function sign(v), where

sign(v)i= 1 ifvi>0,

-1 ifv < 0.



300 THOMAS E COLEMANAND LAURIE A. HULBERT

Then letting di z + sign(Vqx(z*))i, and D diag(di), we can express the first-order
condition as

(2) DVqx(z*) =0.

Now consider the following piecewise quadratic minimization problem:

(3)
minf(y) 1. T ,t-1. 1

5y .,-x y - yTA- b + Ilylll

q(y) + Ilyllx,

where qu(y) 1 T --ly-y A +yTA-Ib. The following conditions are sufficient to guarantee
that y* is a minimum of (3) [2]: there exists a vector A* such that

A-y*+A-xb+ sign(y)e,=- Z Ae,, -1<A*<1.

We can reformulate these conditions into the following equivalent conditions: there ex-
ists a vector A* such that

(4)
Y*(-A* + sign(y*)) O,

A* -(A-y + A-Xb),

where Y* diag(y*). Thus if we equate A* with x* and hence y* with -Vq(x*), then
it is apparent that (4) is equivalent to (2) plus feasibility.

This new formulation gives us a new perspective from which to approach solving (1)
and this is the view we take in this paper.

For convenience in what follows, we sometimes switch between the original variables
x and -Vq(x) and the new variables and y:

(5) x , y -Vqz(x).

In general, we develop our algorithm and prove things about it in the and y variables
and describe the characteristics of the quadratic programs in the x and Vq(x) variables.

1.2. Some notation and definitions. In what follows, subscripts denote vector and
matrix components and superscripts denote iteration number. We omit superscripts
whenever the iteration number is clear or irrelevant. For any vector v, the matrix diag(v)
is a diagonal matrix whose diagonal elements are the components of v. If V is a matrix,
let IVI be the matrix whose ijth element is Iv, I.

For any point y with y # 0 for all i, Vf(y) is defined and Vf(y) A-Xy + A-b +
sign(y). Given y and s, define a breakpoint of f along s to be any c where f(y + as) is
nondifferentiable, i.e., (y + cs)i 0 for some i. For a > 0 define S(a, y, s) to be the set
of indices to breakpoints along s that occur at or before a, i.e.,

(6) S(, y, s) {i10 < -y,/s, <_ }.

Define a(a, y, s) sign(y + as). For any direction s, define

g(a, y, s) lim Vf(y + rls).
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Notice that if (y + as) 0 for all i, then g(c, y, s) Vf( + cs). For conciseness,
we write g(a), S(a), and a(a) when y and s are dear from context, and, in particular,
gk(a), Sk(a), and ak(c0 when y yk and s sk. Also, since we use it so frequently,
we let a denote a(0), i.e., a sign(y).

A point satisfying Izil 1 and Vq(z)i 0 for some i is called a degenerate point.
We call a quadratic program of the form in (1) nondegenerate on a closed bounded set C
if at every point x E C either Iz l # 1 or Vqx(x)i # O.

The nondegeneracy assumption. Given a closed bounded set C, the nondegeneracy
assumption, with respect to C, is that at every point x C either Izl # 1 or Vq(x)i # O.

2. The algorithm. Problem (3) is an unconstrained optimization problem; there-
fore, a descent direction algorithm can be developed without regard to maintaining fea-
sibility. On the other hand, f(y) is not everywhere differentiable due to the/1-term
I[Yl[1. The challenge is to deal with this piecewise nature of f. In response, our algo-
rithm restricts iterates to ditferentiable points; i.e., yk # 0 for all iterations k and compo-
nents i.

2.1. The search direction. From (4), we see that a solution2 to (3) is also a zero of

(7) F(y) Y(A-ly / A-Ib / sign(y)) O.

Although F is not differentiable whenever y 0 for some i, at all other points F(y)
YVf(y) and is twice continuously differentiable. This naturally suggests using Newton’s
method, at least in a neighborhood of y*. Where it is defined, the Jacobian of F(y) is

d(y) YA- + diag(Vf(y)),

and thus the Newton step for F at y is

(8) SN -(YA-1 + diag(Vf(y)))-lYVf(y).

The following lemma shows that in a neighborhood of the solution of (3), the Newton
step for F is a descent direction for f(y). This is not an obvious result since the Newton
process does not come directly from f but from the nonlinear system of equations (7).
The idea behind the proof is that Vf(y)/y either converges to zero or to (positive)
infinity as y y*. Specifically, if y # 0, then Vf(y)i/yi converges to 0; if 0,
then Vf(y)/y converges to +o. Consequently, the matrix (A- + diag(Vf(z))/Y) is
positive definite in a neighborhood ofy*; therefore, by (8), sN will be a descent direction.

LEMMA 2.1. Assume nondegeneracy of (1) at the solution. Then, there exists e > 0
such that whenever yi Ofor all i and Ily y*ll < we have -sVf(y) > O.

Proof. Rewriting (8) as

(9) SN -(A- + Y-diag(Vf(y)))-IVf(y),

we can see that if Vf(y)i/yi > -(1/llAIIz) for all i, where (1/llAllz) is the smallest
eigenvalue of A-, then --sTsVf(y) > 0. Set

l ( zdg ydg )e min [IA_IlI2 IIA[121[A_llI2

2Recall: We have assumed A is symmetric positive definite, so A- exists.
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where

Assume I1 * II < and gi # 0 for all i.
If y[ 0 then sign(g*)i sign(g)/by our choice of e, so

-< IIA-IIII* 11
< Ilm-Xll.,
<_ @/(211AII).

Since

lYI >- ydg- e > ydg/2,

we have

Vf(y)i
Yi

Hence Vf(y)i/yi > -(1/llAll2)ify # 0.
If y 0 then

1

Ix, I- IxTI Ix,- TI < IIA-Xll2 xdg/2,

SO

I1 < I1 + xdgl2 < 1- xdg + xdgl2 < 1.

And since Vf(y)i (ai xi), we conclude that ai sign(Vf(y))i and hence
Vf(y)i/yi > 0. Thus Vf(y)i/yi > -(1/IIAIIu) for all i, so we are done. U

Of course, the Newton step may not be a descent direction far from the solution.
Therefore, we consider a "modified" Newton step. Specifically, we choose a step of the
form

(10) - _(iYiA-X + R)-xlYIVf(y),

where R is a diagonal matrix satisfying rii > 0 for all i. Thus we have the following
lemma.

LEMMA 2.2. For any diagonal matrix R with positive diagonal entries, the search direc-
tion s, defined by (10), is a descent direction, i.e., --sTVf(y) > O.

In order for s to approach the Newton step, we choose R diag(r), where

(11) ri 0 + (1

0 > 0, and 0 0 only at the optimal solution y*. We define r/to quantify the nonopti-
mality of the current point,

pllYVf(y)llx + ax((IA, I- 1), 0),
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where p 1/llYVf(y)lll, evaluated at a "typical" value of y. Our choice of a "typical"
value of y is -(A. sign(-b) + b). Then we choose 0 to be between 0 and some small
constant c (0, 1) by setting

0 Clr//(0.99 + r/).

Notice that either V/(V*)i 0 or sign(V/(V*))i ai, so R, as defined by (11), ap-
proaches E diag(Vf(v)), where 3 =diag(ai), thus ensuring that the Newton step is
approached. We can prove the following useful lemma about R.

LEMMA 2.3. Ifr is defined by (11), then forall i, ri 0 == 0 O and Vf(y)i O.
Proof. By definition, r 0 + (1 0)lVf(y)l. Since 0 < 0 < 1, each term is greater

than or equal to zero. Thus ri 0 if and only if 0 0 and Vf(y)i O.

2.2. The line search. The basic iteration in our overall procedure has the form

(12) yk+l yk
__

akSk,

where ck is the step length, determined after computing the search direction sk. Be-
fore describing this line search procedure, we introduce some notation and describe the
geometry of the line search (we drop the superscript k in this discussion since we are
referring to a single iteration of the overall procedure).

Define the function fu,8 (v) to be the restriction of the function f to the line through
y along s, i.e.,

fv,8(v) f(y + tys).

Thus fv,8(v) is continuous, convex, and piecewise quadratic. Define fl to be the vector
of positive values of v where fv,, (v) is nondifferentiable, i.e.,

t’

i
-yi/si if sign(yi) -sign(si),

otherwise.

On the interval between any two adjacent breakpoints, say i and , fu,(v) is a quad-
ratic. (The breakpoints i and are adjacent, with/3i </3, if there does not exist an
index k such that i < 3k < 3j.) Label this quadratic f(i,j)(v). Hence the minimum of
fu,, (v) occurs either at a breakpoint or at the minimum of one of the quadratic segments
f(i,j) (v). Furthermore, fi,j)(v) 8Tg(v, y, S) and f(,j)(v) sTA-18. Thus on each in-
terval, the function f,, (u) is a line with slope sTA- s, i.e., the curvature of f is the same
for all intervals. For any u, let fl and be the two adjacent breakpoints surrounding
u (i.e.,/3 is the largest breakpoint equal to or to the left of v, 3 is the smallest break-
point strictly to the right of u), and define 7(u) to be the step from v to the minimum of
f(i,j) (V), i.e.,

--8Tg(v, y, s)
sTA-ls

For notational convenience, define g/0 0 and 7i 7(3i). Figures 1 and 2 illustrate
these quantities where we assume 0 </31 </32.

In the next lemma, we show that 7 is monotonically decreasing. This implies that as
we move along the direction s during the line search, the distance to the optimal point
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0 /2+’ 1 / /l/’h ’o

FIG. 1. The quadraticfunctions that comprise thepiecewise quadratic fu,s ().

f,o(.)

FIG. 2. Thefunction f,s (’)"

of the current quadratic is less than the distance to the optimal points of the previously
encountered quadratics.

LEMMA 2.4. Let s be a descent directionfor f at the currentpoint. Then, thefunctions
-sTg(u, y, s) and .y(u) are monotonically decreasingfunctions of u.

Proof. We have

(13) --sTg(, y, S) --sTg(o) sTA-s sT(a(,) a(O)).

But

f if </i,

otherwise.
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So

(14)
ies(v) ies(v)

is greater than zero and is monotonically increasing as u increases. Thus, since A-1

is positive definite, --sTg(v) is a monotonically decreasing function of u. Furthermore,
since

sTA-ls

7(u) is also monotonically decreasing.
An algorithm to determine the optimal point along the descent direction s can now

be described. That is, we can determine the global minimizer of the piecewise quad-
ratic function as follows. First compute the vector/3, and sort it so that the sequence
,(),..., 3,(,,) is increasing, where p is the appropriate permutation vector, i.e.,

(15)

Ties can be broken arbitrarily. Examine each successive interval (/,(i), ,(i+t)) to de-
termine if the minimum of fu,, occurs within it or at the end point ,(+t) as follows. If
7(i) < ,(i+t) ,(0 then the minimum of fu,, occurs at the minimum of f0,(0,,(+t)),
so set a (i) + 7,(i). Otherwise, if-srg([3(i+)) < 0 the minimum of fu,, occurs at
the breakpoint (i+t), so set c =/(i+t).

Our line search procedure follows this description with one important modification:
in order to avoid stopping at a point of nonditferentiability, a near-optimal point is com-
puted. Specifically, if the minimum of fu, occurs at the breakpoint ,(+t), instead of
setting a ,(+x), set a v(i) + T(v(+I) v(i)), where - min(c2, 1 O/ct), and
0 < c2 < 1. This guarantees that f(y) is ditferentiable at the new point; moreover, the
distance to the optimal point along the line goes to zero with 0.

y=yO
p 1/]lYVf(y)llt evaluated at a "typical" value of y
while not optimal do

A =-(A-y+A-b)
Vf(y) -A + sign(y)
v pllYVf(y)ll /  ax((IA, 1), 0)

0 c0/(0.99 +
R (0I + (1 O)diagtlVf(y)l))
s -(IYIA- + R)-(lYlVf(y))
determine a by the line search described above
y=y+as

enddo

Fro. 3. Theproposed algorithm.

3By (10) the search direction s is not defined if any component of y is zero. Therefore, we avoid such
points.
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2.3. Implementation details. In this section, we describe an efficient and numeri-
cally stable way to implement our algorithm (see Fig. 3). At each iteration, our algorithm
requires the computation of a step

s -(IYIA- + R)-(IYIVf(y))

and this computation is the dominant work. However, for reasons of numerical stability,
efficiency, and space we do not want to form A-. (If A is sparse, generally A- will
not be sparse.) Since, by Lemma 2.3, R is nonsingular if y is not optimal, we have the
following equivalent linear system of equations:

(IYIA-x / R)s -IYIVf(y),
(IYI / RA)A-ls -IYIVf(y),

R-1/2 (IYI + RA)R1/2 R-1/2 (A-Is) -R-1/2 (IYIVf(y)),
(IYI + R1/2 AR1/2)R-1/2 (A-s) -R-1/2 (IYIVf(y)).

Thus if we solve the symmetric positive definite system

(16) (IYI + R1/2 AR1/2)v -R-1/2 (IYIVf(y)),

then we can easily compute s AR/2v. Furthermore, this approach is well suited to
sparse problems, since the structure of the matrix in (16) is always the same as that of
A, and hence one data structure can be used to store all necessary Cholesky factors.
(Note that a similar type of scaling can be used to improve the conditioning of the linear
systems to be solved in many other interior-point quadratic programs. See Ye [19] for
the general form of these systems.)

When performing the line search, we must compute (sk Tgk (/31) at each breakpoint

/] that we cross. From (13) and (14), we have

(17) --(sk)Tgk( --(sk)Tgk(O) (sk)TA-(sk) + E

(Recall that S(c) {i 0 </k <_ a}.) Hence we can efficiently obtain (sk)Tgk(/3])
from (sk)Tgk(/3_) without computing a matrix-vector product. (Note that
(8k)TA-18k (sk)TR1/2Vk, where vk is given by (16).) The work ofperforming the line
search is therefore dominated by the sorting of the breakpoints,4 which costs n. log n.

3. Global convergence. In this section, we prove that our algorithm converges to
the optimal point. We begin by proving some useful bounds.

A notational note: In all subsequent discussion in this section, vector s or sk refers
to the definition given by (10) and (11), unless otherwise noted.

LEMMA 3.1. There exists M > 0 such thatfor all k, [lyk II <-- M.
Proof. Since s is a descent direction, the line search insures that f(yk) > f(yk+).

Thus {f(yk)} is monotonically decreasing. So we have

f(u0) q(0) + ily0llx f(yk) qu(yk) + ilYll
_

qu(_b) + ilylll.

4Even this cost could be reduced, on average, by avoiding the full sort and recursively choosing the mini-
mum breakpoint, i.e., employing a heapsort mechanism.
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Thus IIllx M, where M IIllx + qu(y0) qu(-b).
COROLLARY 3.2. IlVf(m)ll, IIRkll, and I111 are bounded above.
We use this lemma to define the domain of the problem for our nondegeneracy

assumption. Let the domain (7 used in the nondegeneracy assumption be induced by

(Y IlYllx M + e},

where e is an arbitrarily small positive constant. We need e because the proof of super-
linear convergence requires nondegeneracy on an open set.

LEMMA 3.3. Ilakll2/s bounded above.
Proof. We have

Thus IIsll= is bounded above.
Next we show that the function values of the sequence of iterates converge, and the

distance between iterates converges to zero.
LEMMA 3.4. The sequence {f(yk)} bounded above and below and converges.
Proof. Since {f(k)} is monotonically decreasing,

f(yO) f(yk) q(yk) + ilYklll qu(yk) > qu(_b)"

Thus f is bounded above and below, and hence {f(yk)} converges.
LEMMA 3.5. The sequence (llsl12} 0.

Proof. By definition,

yk+ yk .+. Ok8k.

Recalling our notation ak(a) sign(yk + ask) and Sk(a) {i 0 < < a}, we have

f(yk)_ f(yk+l) f(yk)_ f(yk -t-

--(aksk)T(A-lyk q- A-lb)W 1/2(tksk)TA-I(tkSk)

+llYkll- IlYk +
But for all i e S (a),

lYkl lY + kSl 21Ykl k k, , ("),

and for i S (a),
lykl lyk + k k I=
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Therefore, recalling that Vf(y) A-Xy + A-lb+ sign(y),

1 (Otksk)TA_l(kak) + 2f(yk) f(yk+l) _(Otksk)Tf(yk + kak .+. -Since eS,()lyk is nonnegative, and our choice of ak insures that

--(sk)Tvf(yk -t- OtkSk) > 0,

we have

f(yk) f(yk+l) > 1/2(otksk)TA-l(okSk).
Since A-x is positive definite, and {f(yk)} converges, then we must have
{llkskll} --, 0. t]

Up to this point, none of our results depend on the nondegeneracy assumption;
beginningwith the next lemma, we will require this assumption. Nowwe show that under
the nondegeneracy assumption, the step s converges to zero. Using this, we can then
show that in the limit, complementary slackness is satisfied.

LEMMA 3.6. Under the nondegeneracy assumption, (llsk I1} --’ 0.
Proof. Suppose that {llsll} 7 0. Then Lemma 3.5 implies that a subsequence of

{ck} converges to zero. Let &k rain(70, cz(1)) where p is the permutation vector

defined in (15). Note that p depends on the iteration k. Then ck > &k > 0 and so zero
is a limit point of {&}. However, since gk(O) Vf(yk) -(A- + IYl-XRk)(s), we
have

--(s)Tg(O) (s)T(A- + IYk[-n)(s) > 1."o (s)TA_X(sk) (sk)TA_(S)

Thus zero must be a limit point of {fl() }. From the definition of sk, we havelg (Vf(g)i
+ (A-lsk)i) rk.s SO for each k,

k8 Vf(yk)i + (A-sk)i

for some i. Since there are only a finite number of choices of index i, there must be a
subsequence of {k()} with p(1) j for some fixed j. Thus zero must be a limit point
of {]}. Then since Ilskll2 is bounded above, a subsequence of {y] } must converge to
zero. If we assume that the nondegeneracy assumption holds, then the corresponding
subsequence of {r} does not have zero as a limit point. Hence a subsequence of it is
bounded away from zero. Since {Vf(yk)j} is bounded above, the corresponding subse-
quence of (A-sk)j must diverge to infinity. However, Ilskll2 is bounded above, so this
is a contradiction. Therefore we must have {llskll2) - 0,

THEOREM 3.7. Underthe nondegeneracy assumption, the sequence {YkVf(yk } __. O.
Proof. We have

II(IYI A- +R)ll.llskll
<_ (llYkll2 IIA-II2 + IIRkll2)Ilskl12.
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Since I[Ykll and are bounded above, if IIs ll --. 0, we conclude that
{YkVf(yk)} --. O. 0

The next major result is that the sequence {yk} actually converges. Before we can
prove this, we need the following two lemmas.

LEMMA 3.8. Let t, E IRn be such that for all i, vi 1 or vi -1. Then the set

Z {y Y(A-1y + A- b + t,) 0} contains a finite number ofdistinctpoints.
Proof. Let y Z and let J be the set ofindices ofthe zero components ofy, i.e., J

{J Y 0}. Then since A- is positive definite, the equation Y(A-ly + A-b+ u) 0
uniquely defines the remaining components of y. Hence, Z contains no more points
than there are unique subsets of the first n integers, so Z is a finite set.

The next lemma is standard. See, for example, [15, Note 14.1.2, p. 478], in which
Ostrowski [16] is credited.

LEMMA 3.9. Let (yk be any bounded sequence ofpoints with thefollowing twoprop-
erties. The sequence (yk ) has a finite number oflimitpoints and Ilyk+ ykll2 -. O. Then
the sequence (yk) converges.

Finally we can show that the sequence of iterates produced by our algorithm con-
verges.

THEOREM 3.10. Under the nondegeneracy assumption, the sequence (yk converges.
Proof. Since Lemma 3.1 implies that the sequence {y} is bounded, it must have at

least one limit point. Let be a limit point of (yk). Thus there is a subsequence of
that converges to . Since there are only a finite number of distinct vectors sign(y),
there must be an infinite subsequence of this subsequence with sign(yk) t, for some
fixed ,. Hence the corresponding subsequence of (Y(A-y + A-lb + t,)) converges
to zero, so r(A-l+ A-b+ ,) 0. Since there are only finitely many choices of , and
Lemma 3.8 shows that for each the set Z (y Y(A-IY + A-b + t,) 0) is finite,
the sequence (yk) can have only finitely many limit points. Hence Lemmas 3.5 and 3.9
imply that the sequence {y} converges.

The next major result is that {A } converges to a feasible point. We prove this by
assuming the contrary and showing that the line search forbids this. First we show that if

IAI > 1, then for large enough k, the jth breakpoint will not be crossed during the line
search.

LEMMA 3.11. If < 1, then forlarge enough k,

sign(y]) -sign(s) sign(Vf(yk)i).

/f > 1, then ]’or large enough k,

sign(y) -sign(s) sign(V/(yk)j) --sign()) --sign(A;),

and during the line search, the jth breakpoint will not be crossed.
Proof. If IA$1 # 1, then since Vf(yk) =--A + a], we have {Vf(y)} 0. From

the definition of sk,

8j k
rj
(Vf(yk)j -I-(A-lsk)j).

So since {(A-lsk)j} 0, for large enough k, sign(s) --sign(Vf(yk)).
Now suppose IA I < 1, Then for large enough k, IA I < 1, and so sign(Vf(yk))

a], and henee sign(y]) sign s sign(Vf(yk)).
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Next suppose IAI > 1. Then for large enough k, we must have IAI > 1. Since
Vf(yk)j -A + a and la[ 1, we see that for large enough k, sign(Vf(yk)j)
-sign(A) -sign(A ). Hence, -sign(s) sign(Vf()) -sign(A) -sign(A ).
This says that after some iteration, the sign ofs will remain constant. Since by definition

V+I yk + ask, {V} is a monotonic sequence. Since {Tf(yk)j} 7 O, Theorem 3.7
k must be opposite thatimplies that {)} ---, O. In order for this to occur, the sign of s

of , otherwise {} would converge to a nonzero number with the same sign as .
Thus we must have sign()) -sign() -sign(A) and so the jth breakpoint cannot
be crossed in the line search.

The next two lemmas will be used to show that if I1 > 1, and [AI > IAI # 1, then
< 3. From this we conclude that if 171 > 1 and 3 < k,then for large enough k,

LEMMA 3.12. gO < A < A:, then

<I+A

LEMMA 3.13. Assume that the nondegeneracy assumption holds, ff IA’I I then any
limitpoints ofthe sequence {k } are in the set {-o, }. If ]A’I < 1 then any limitpoints
ofthe sequence {k } are in the set

1 + 1 -[A’[’ 1 + IAI
/f A’[ > 1 then the limitpoint ofthe sequence {k } is

1 -I-

Proof. Suppose lTI 1, and so using the nondegeneracy assumption, {y} 7A 0. Since

k8

and {sk } 0, the sequence {/3k } can have only -o or +o as limit points.
If 171 < 1, then Lemma 3.11 shows that for large enough k, sign(Vf(yk)i) a.

k k kLetting #k aksign(Ak), we can write Vf(yk), or, (1 #, IA, I). We can express k as

_yk k kcr r
k8 Vf(yk)i q- (A-lsk)i

ak(lXZf(uk)l / Ok(1- IXZf()l))
Vf(yk)i + (A-lsk)i

l,Xl)o-(1 l,Xl / o ,,
or/k( 1 l.Xl + crki(A-lsk)i)

k ko ,, I.Xl-=1+
k(A-18k)i1 1;1k +
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Since {(A-s)i} O, {Ok} 0", and {lkl} - ITI < 1, the sequence (f) can have
as limit points only

1 + and 1-
1- I;I 1 + Iraqi"

If I1 > 1, then mma 3.11 shows that for large enough k, sign() -a. us
p -1. So the limit point of the sequence {} is

0"111- U
1 + I1"

Nowwe show that if I1 > 1, then for large enough k, the line search will cause the
jth breakpoint to be crossed.
LEM 3.14. Assume that the nondegenera assumption hoMs and that I1 > 1.

enfor lae enough k,

(18) --(sk)Tgk() > O.

Proof. From (17), we have

k

(19) --(s)Tg(f] --(s)Tg(0)- (s)TA-(s) + Z (2aS,).
eS()

Using the fact that --(s)Tgk(O) --(sk)TVf(yk) (sk)T(A- + IYkl-tRk)(sk), we
can rewrite the right-hand side of (19) as

(20) (1 ])(sk)TA-(Sk) + (sk)T(lYkl-lRk)(sk) +

For large enough k, Lemma 3.13 shows that f] < 1, so the first term in (20) is greater
than zero. We can express the second and third terms as

(21)

The second sum in (21) is obviously greater than zero. Thus the only thing remaining to
show is that the first sum in (21) is greater than zero. We can simplify the summand in
the first sum as follows:

(22)
/rIsl 2)

\
Is/l (IVf(yk), + (A-sk),

For large enough k, Lemmas 3.12 and 3.13 show that if i $ Sk(3) then > 1.

Hence mma 3.11 implies that lVf(yk)l (1 +) > 2. Since {(A-lsk)} 0, for
large enough k,

(IV/(y) + (A-Xs) 2) > 0.

Therefore, for large enough k, each term in the first sum in (21) is greater than zero, and
the proof is complete. [:l
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Now we can prove that A is feasible and derive some corollaries that we will use to
prove superlinear convergence and to show that the step length converges to unity.

THEOREM 3.15. Under the nondegeneracy assumption, ]AI <_ l for all i.

Proof. Suppose ]AI > 1 for some i. Lemma 3.11 shows that for large enough k, the
ith breakpoint cannot be crossed in the line search. Lemma 3.14 shows that for large
enough k,

> 0,

and so our line search would cause the ith breakpoint to be crossed. These are contra-
dictory statements and hence for all i, I1 <_ 1.

COROLLARY 3.16. Under the nondegeneracy assumption, {0k } - 0.
COROLLARY 3.17. Under the nondegeneracy assumption, ify 0 then fl 1, and

ifV 0 then
Proof. The first statement follows immediately from Lemma 3.13, the definition

of 0, and Theorems 3.7 and 3.15. The second statement follows from Theorem 3.7 and
Lemma 3.13.

4. Superlinear convergence. In this section we establish that under the nondegen-
eracy assumption, the sequence {yk} produced by our algorithm converges to y* super-
linearly. Consider the following finite set " of functions

F(y) r(A-iy / A-ib + r,),

where t, ]Rn is defined as

+1or -1 ify*=0,
t,i

sign(y) otherwise.

Each function F is twice continuously differentiable and, furthermore, F(y*) O.
The Jacobian of F(y) is J(y) YA- + G(y), where G(y) diag(A-Xy +

A-xb + r,). Note that the nondegeneracy assumption implies that J(y) is nonsingular.
The Newton step at yk for finding a zero ofF is

(ykA-I + G(y))skN --Ft,(yk).

Lcmma 3.11 shows that for large enough k, F ’, and hence our search direction sk

satisfies

(YkA-i + ,kRk)sk -F (yk),

where E diag(ak). Thus sk is very similar to a Newton step at yk and, in fact, we
will show that sk converges to a Newton step. But first we state a more general result
about superlinear convergence of a family of functions. This result follows easily from
Theorem 3.4 in Dennis and Mot6 [6].

THEOREM 4.1. Let {F IRn IRn} be a finite set offunctions satisfying the
following assumptions:

Each F is continuously differentiable in an open convex set C.
There is a y* in C such that F(y*) 0 and VF(y*)/s nonsingular.
There is a constant such thatfor all F

IIVF (y) VF (y*)II  IlY Y*II
fory C.
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Let {Wk} in L(IR’) be a sequence ofnonsingular maces. Suppose thatfor some yO
in C the sequence

yk+l yk (Wk)-lF(yk), k O, 1,...,

remains in C and converges to y*, and that yk y, for k > O. Then, if

(23)

{yk } converges superlinear!y to y*.
Nowwe show that our set of functions and the sequence generated by our algorithm

satisfy the hypotheses of Theorem 4.1. For the convex open set, we take the region

C {YIIlY[I1 < M + e},

where M is as in Lemma 3.1 and e is an arbitrarily small positive constant. We have seen
that the first two assumptions hold. The next lemma shows that the third one holds.

LEMMA 4.2. There is a constant such thatfor all F E ,
fory e C.

Proof. Set 6 max(M / e, IIbll). We have

IIVF(y) VF(y*)II IIr(A-y + A-b + ) r*(A-y* + A-b + )11
_< [[Y-Y*[[1 [[A-ly[[1 + [[Y*A-I[[1 [[Y-y*[[1

where 3 IIA-1]]I 6 + n. Thus we have the desired result, v1

Before we can prove that (23) holds, we must show that the step length converges to
one. The next lemma shows that for any fixed a > 1, for large enough k, a step of length
c takes us beyond the minimum of fu,,.

LEMMA 4.3. Assume that the nondegeneracy assumption holds and that a > 1. Then
]’or large enough k,

() -()(,,)
()rA-() < 0.

Proof. From (13) and (14), we have
(24)

1 ("3/k(a) (sk)TA_I(sk) --(sk)Tgk(O) a(s)TA-(S)

Using the fact that --(sk)Tgk(O) --(s)TVf(y) (sk)T(A-1 + IYkI-1R)(s), we
can rewrite (24) as

(sk)T (iyk i-1R)(sk) _2aki skiVk(a) (1 a) + (8k)TA_l(sk)
-}- Z (sk)TA-I(Sk)
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Reorganizing, we get

-() ( ) + X,yklkl )()TI-Ix()
ies()

r

I1 (sk)TA-(sk)

(i- ) +
k

(IVf(yk), + (A-lak), 2) Is,
(sk)TA-I(8k)

k (Sk)2
,s()

lyl (sk)rA-:(sk)"

If i Sk(a), Theorem 3.15 and our nondegeneracy assumption show that for large
enough k, IAk[ < 1, and hence IVf(yk)i[ [(ak Ak)[ < 2. Furthermore, since
{(A- sk)} _., 0, for large enough k,

(IVf(y), + (A-s)I- 2) < 0.

Thus, we can bound 7k (ct) as follows:

7k(a) _< (1-)+ ri
ly21 (sk)TA-:(sk)

(min
k

ri

es()

_< (I-- c) -t-IIAII

1
eigenvalue of A-: I1 Il /

--+ o. Thus (r/lul)For large enough k, if i . Sk(a), then yk 7A 0 and hence ri iCs()
converges to zero as k --+ c. So, since a > 1, for large enough k,

THEOREM 4.4. Under the nondegeneracy assumption, {ctk } --+ 1.

Proof. Corollary 3.17 implies that k k{,(X)} --* 1 or {3V(x) } -, oo and Corollary 3.16

implies that {Ok} 0. By definition, ak > (1 Ok k--+ /c)3v(1), hence {a} cannot have a
limit point that is less than 1. Furthermore, the properties of the line search, combined
with Lemma 4.3, show that for any e there exists k(e), such that for k > k(e), ak cannot
be greater than 1 + e. Thus {el } --+ 1.

The last thing necessary to prove superlinear convergence is to show that (23) holds
and we show this in the next lemma.

LEMMA 4.5. Let

Wk 1 (ykA_ q- kRk).=
Then, under the nondegeneracy assumption, Ilw VF (y*)ll --+ 0.

Proof. Notice thatG(y) diag(Vf(yk)). From the definitions ofW VF<, (y*),
and Rk we have

1 Ek +G=(y*))-(YkA-: + Rk) -(y*A-
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where Fk diag(sign(Vf(y))). Theorem 4.4 shows that {ak } -, 1, and Corollary 3.16
shows that {Ok} O. Furthermore, since {yk}

_
{y,} and [IVf(yk)ll2 is bounded

above, the first and third terms on the right-hand side of the above inequality converge
to zero. Hence it suffices to show that

(25) c. (u*)
1 (rrc()

to obtain the desired result. But (25) follows immediately from Lemmas 3.7 and
3.11. U

Thus the conditions of Theorem 4.1 hold and we have the following theorem.
THEOREM 4.6. Under the nondegeneracy assumption, the sequence {y} generated by

our algorithm converges superlinear!y to y*.
Our numerical experiments suggest that our algorithm may indeed be quadratically

convergent in the nondegenerate case; however, we have not been able to establish this
yet. It is easy to see what needs to be proved. Under the assumptions of Theorem 4.1, if

(26) IIwk VF (y*)ll- O(llYk -Y*II),

then {yk } converges quadratically to y*. It is straightforward to show that IIYk Y* l[
O(llyk y*ll), IIrkrkC(Yk) G(Y*)II O(IlYk Y*II), and Ok O(llyk y*ll).
Hence from the proof ofLemma 4.5 it suffices to show that 1 ak O(llyk y* II). The
rate at which ak --+ i depends on the rates at which 7k decreases and k ___, 1.

5. Numerical results.

5.1. The test problems. We generate test problems of the form (1) in the manner
suggested by Mor6 and Toraldo [12]. They describe how to generate problems, varying
four parameters: n, the number ofvariables; lcnd, the logarithm base 10 of the condition
number of A; rib, the number of variables at their bound at the solution z*; and ymag,
the magnitude of the nonzero components of y*.

To generate a test problem whose solution has certain properties, choose A to have
the desired properties, generate z* and y* Vq(z*) such that either z’ is at a bound
(i.e., IxTI 1) or y7 0, but not both, and then set b -Ax* + y*. In particular, set

A QDQ whereQ=I-

D is a diagonal matrix with

dii 10k’lcnd ki
i- 1
n-l’ i=l,...,n,

and the components of y are randomly generated in the interval (-1,1). Thus A is a
positive definite matrix with condition number 10t’a.

Given rib, the number of variables at bounds at the solution, generate z* as follows.
Let B be the index set identifying the components of y that are zero at the solution:
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i E B y 0. Let Bc be the complementary set. First choose B and Bc by
generating a random number #i in (0,1) for each i 1,..., n and include i in B if
#i < nb/n. Then choose z* by setting those components in B randomly to + 1 or -1,
and selecting the remaining components by randomly generating zi in (-1,1).

Generate y* as follows. If i B, set y 0. Otherwise randomly generate # in
(-1, 1) and ui in (0, 1) and set

(27) y* sign(p/) 10-m’ymag.

Then, by setting b y* Ax*, we have a problem with the desired characteristics.

5.2. Numerical results. In this section, we examine the numerical behavior of our
algorithm. Our implementation is in Pro-Matlab and all experiments were performed
using a collection of Sun Sparcstations.

Our implemention follows the algorithm described in 2. We use a single stopping
criterion based on the change in objective function value: the algorithm is terminated at
yk+l if

(28) If(yk+) f(yk)l <_ to1 (1 + If(yk)l).

We set tol 10-15 for all the experiments except for the "low-precision" results where
weuse tol 10-8.

As our starting point, we choose the origin, i.e., x 0. Empirically, we determine
that c 10-3 and cz 0.90 are reasonable choices of these parameters and we use
them in our tests.

To capture the behavior of the algorithm, we vary each of the problem parameters,
in turn, while keeping the others fixed. For the results quoted in the first six tables, we
fix n 100, restrict lend to the values 0, 3, 6, 9, and 12, and assign to nb the values 10,
50, and 90. We restrict ymag to be 1, 3, 6, 9, or 12, where the magnitude of the nonzero
components of y is about 10-ymag. Therefore, the test problems become increasingly
near-degenerate as ymag increases.

First, in order to compare the results of [8] we consider problems run to low-
accuracy; i.e., tol 10-a. We consider 10 problems for each set of problem param-
eters; therefore, Tables 1-3 represent a total of 750 test problems. We report the aver-
age, maximum, and minimum number of iterations required to achieve the convergence
criterion in (28).

The iteration averages in Tables 1-3 can be compared to the results given in [8] in
which problems with identical characteristics (though not identical problems) were gen-
erated to test the feasible-point algorithm proposed in [8]. The stopping criteria used in
both cases are comparable, as is the cost of an iteration, since in both algorithms the cost
of an iteration is dominated by the solution of linear systems with identical structures.
Inspection reveals that our proposed algorithm requires fewer average iterations in 71
out of 75 cases with an average differential of about 3; therefore, we feel confident in
concluding that our method is at least competitive with [8] in the low-accuracy setting.
(This comes with the caveat that while the method proposed in [8] maintains feasibility,
our new method is only near-feasible on termination. However, the simple strategy of
setting all infeasible variables to their nearest bounds upon termination is possible: on
our test set this technique did not significantly increase the function value in any case.)

5Our results involving sparse matrices were obtained using an experimental version of Matlab [7] in which
sparse matrices can be easily manipulated.
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TABLE 1
Iterations.for nb= 10 (low accuracy, tol 10-a).

1

lend avg min max

0 10 9 11
3 10.6 9 12
6 9.9 9 11
9 9.7 9 10
12 9.3 8 11

vmag

avg min max

11.5 11 12
10.7 10 12
11.2 10 13
10.3 9 12
9.9 9 13

6

avg min

11.5 11
11.7 11
11.8 11
10.9 10
10.6 9

max

12
13
13
12
14

9

avg min max

12 11 13
11.6 11 12
11.4 10 12
11.2 11 12
11.6 9 12

12

avg min max

11.9 11 13
11.9 10 13
11.8 11 13
1i.6 10 12
11 10 12

TABLE 2
Iterationsfor nb= 50 (low accuracy, tol 10-a).

vmag
1

lend avg min max

0 9.6 9 11
3 9.4 8 10
6 8.8 8 9
9 8.3 7 9
12 8.1 7 9

3

avg min max

10.7 10 11
10.6 10 13
10.1 9 11
9.7 9 11
9.4 9 10

6

avg min max

10.8 10 12
10.8 10 12
10.9 10 12
11.4 10 15
10.2 9 11

9

avg min max

10.8 10 12
11.4 11 12
11.1 10 12
11.1 10 13
10.2 9 11

TABLE 3
Iterationsfor nb= 90 (low accuracy, tol 10-8).

12

avg min max

10.8 10 12
11.5 10 15
11.5 10 16
10.4 10 11
10.1 9 12

ymag
1

lend avg min max

0 8.3 7 9
3 8.0 7 9
6 8.1 7 9
9 7.2 6 8
12 7 6 8

3

avg min max

9.2 8 10
9.8 9 11

1’2.3 8 23
10.2 8 15
9.9 8 18

6

avg min max

8.8 8 10
10.5 8 16
10.2 9 13
10.6 9 16
9.8 8 14

9

avg min max

8.8 8 9
9.7 8 11
9.7 9 11
9.3 8 10
9.7 9 10

12

avg min max

8.4 8 9
9.5 9 10
9.7 9 11
9.8 8 15
9.2 8 11

Due to the second-order nature of our algorithm it is usually possible to obtain sig-
nificantly greater accuracy at reasonable cost. Our next experiments, reported in Tables
4-6, involve exactly the same test problems as above, except that now tol 10-;
again, condition (28) is our sole stopping criterion.

In most cases the step from low accuracy (tol 10-a) to high accuracy (tol
10-15) involves only a modest increase in effort. The better-conditioned problems re-
quire one to two extra iterations. As lend and vmag increase, the number of extra it-
erations increases to about four or five, typically. The maximum number of iterations
required by any problem, out of 750, is 41; the worst average is 20.4. Most of the prob-
lems require 17 or fewer iterations.

In our test set the accuracy achieved in the objective function value, q(), where
indicates the computed solution, is always acceptable. Specifically, out of 750 test

problems the following bound is achieved:

(29) max
q(.) -opt

opt
< 10-lo
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TABLE 4
Iterationsfor rib--- 10 (high accuracy, tol 10-15).

1

lcnd avg min max

0 11.4 11 12
3 12.6 11 15
6 12.9 11 15
9 13.5 13 15
12 12.4 11 15

ymag
3

avg min max

13.5 13 15
12.5 12 14
13.7 12 16
13.6 11 16
13.2 11 15

6

avg min max

15.7 14 18
15.2 13 18
15.5 13’ 19
14.3 11 16
13.7 11 17

9

avg min max

17.2 16 18
16 14 18

16.6 15 21
15.8 14 20
17.3 14 28

TABLE 5
Iterationsfor nb= 50 (high accuracy, tol 10-115).

12

avg min max

16.1 15 17
16.4 14 18
16.8 14 18
16.5 14 17
15.4 12 18

ymag
1

lend avg min max

0 10.8 10 12
3 11.1 10 12
6 11.9 10 14
9 12.5 10 15
12 12.3 11 13

3

avg min max

13.7 13 15
13 12 15

12.5 11 15
13.1 12 15
12.1 11 14

6

avg min max

15.9 15 17
15.6 14 17
15.2 14 16
15.7 14 19
14.3 13 17

9

avg min max

16.3 15 17
16.5 15 18
16 15 18

17.0 14 21
15.6 14 17

TABLE 6
Iterationsfor nb= 90 (high accuracy, tol 10-15).

12

avg min max

16.1 15 17
16.7 15 19
16.5 14 22
15.8 14 17
16.2 13 20

ymag
1

lend avg min max

0 10.1 9 13
3 9.2 9 10
6 10.4 9 12
9 10.3 9 11
12 11.2 10 13

3

avg min max

12.2 11 14
12.9 11 17
14.8 11 25
13.6 11 19
13 10 20

6

avg min max

14.1 13 15
20.4 14 41
17.5 13 31
15.6 13 22
15.6 13 23

9

avg min max

14 13 15
16.6 14 22
16.8 15 21
16.7 14 22
19.3 15 32

12

avg min max

13.9 13 15
15.9 15 22
16.2 14 21
16 13 21

16.3 12 24

where opt is the true optimal value, opt 0. Moreover, in the vast majority of cases
we achieve

(30) max
-opt

opt
_< 10-5,

which is essentially full accuracy in the objective function value. Of course, the accuracy
achieved in z varies depending on the conditioning of the problem. The worst feasibility
result, over all 750 test cases, is

max{max (I5:il- 1, 0)} 10-5.

In all cases, setting infeasible variables to their nearest bound upon termination changed
the objective function value only mildly; our worst-case bound (29) is maintained after
this correction as well as the observation that (30) holds in the vast majority of the cases.

In order to test the sensitivity of our algorithm to problem size, we consider larger
test cases, involving sparse matrices, and present our results in Tables 7-11. Thanks to
Cleve Moler of The Mathworks, Inc., we were able to perform our experiments using
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an experimental version of Matlab, in which sparse matrices are easily generated and
manipulated [7].

In our sparse experiments we strive for high accuracy, i.e., tol 10-15, and we
hold the percentage of bound constraints, nb, fixed at 50 %. The matrices are generated
using a Matlab subroutine SPRAND supplied to us by Rob Schreiber. Given the density
of the matrix (dens) as well as lcnd and the base-10 exponent of the condition number of
the matrix, SPRAND produces a sparse symmetric positive definite matrixwith the given
condition number and a random sparsity patternwith number ofnonzeros approximately

5 and lcnd 4, 8. Our test suite consists of 5equal to dens xn. In our tests dens
test problems for each setting of the problem parameters, yielding a total of 100 test
problems.

TABLE 7
Sparseproblems, iterationsfor n 100.

ymag
1

lend avg min max

4 11.6 10 13
8 12.4 12 13

5

avg min max

15.4 13 18
15 13 20

TABLE 8
Sparseproblems, iterationsfor n 200.

ymag
1

lend avg min max

4 12.4 11 14
8 12.4 12 13

5

avg min max

21.4 17 31
21.2 14 30

TABLE 9
Sparseproblems, iterationsfor n 500.

ymag

1 5

lcnd avg min max avg min max

4 14.4 13 17 21.4 16 29
8 14 13 16 29.6 18 45

TABLE 10
Sparseproblems, iterations]’or n 1000.

ymag
1 5

lcnd avg min max avg min max

4 14.8 14 16 21.8 19 24
8 15.2 17 13 25.4 22 31
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TABLE 11
Sparseproblems, iterationsfor n 2000.

ymag
1

lcnd avg min max

4 15.2 14 16
8 16.2 14 18

5

avg min max

28.6 23 33
33.4 23 47

The average number of iterations grows rather mildly with n. For example, in the
moderately ill conditioned setting lcnd 4, vmag 5, the average number of iterations
goes from 15.4(n 100) to 21.4(n 500) to 28.6(n 2000).

The accuracy achieved on this set of large sparse problems is quite good. In partic-
ular, essentially full accuracy in the objective function value is achieved in every case:

(31) max
qx (:) -opt

opt
< I0-15

where is the computed solution and opt is the true optimal value; feasibility was also
respectable:

max {max 1, 0)} 10-9.

6. Conclusions. This paper presents a new algorithm for solving box-constrained
convex quadratic programs. The method shows promise: beyond global and superlinear
convergence results, the numerical experiments indicate practical potential. Specifically,
high accuracy can usually be achieved with a modest number of iterations.

The real promise of this approach is in the large-scale setting where questions of
exploiting sparsity or parallelism can be centered on the Cholesky factorization alone.
Work outside of the factorization/solve is bounded by nnz(A) + n. log n, where nnz(A)
is the number of nonzeros of A. This work is usually negligible compared to the factor-
ization.The Cholesky factorization is a standard linear algebra task in both the sparse
and parallel settings; therefore, we need only "plug into" a standard routine to achieve
efficiency.

Further research needs to be done. For example, we believe the degeneracy assump-
tion can be greatly relaxed without weakening the theoretical properties; the question
of quadratic convergence should be resolved (probably in the affirmative); more work is
needed on the handling of different bounds, including one-sided bounds.

Despite the promising results of this paper with respect to our new algorithm, the
most important contribution may lie elsewhere. Specifically, the ideas underpinning this
algorithm are new (or are used in a novel way) and their full domain of applicability is
unknown. To summarize, the basic underlying ideas are: the transformation of a con-
strained problem to a piecewise differentiable problem,6 the notion of a Newton process
for this nondifferentiable function, the definition of a descent direction in combination
with an efficient line search procedure. We expect that many more problems can be ap-
proached in this way. For example, the successful 11 algorithm in [7] also follows these
lines.

6The lack of penalty parameter (or, equivalently, penalty parameter equal to unity) is due to two things.
First, it is not hard to see that minimization of a quadratic function subject to finite box-constraints on every
variable is equivalent to minimization of an unconstrained piecewise quadratic function with an easily com-
puted penalty parameter. Second, the homogeneous unit bounds in (1) yield a unit penalty parameter.
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A NEWMETHOD FOR OPTIMAL TRUSS TOPOLOGY DESIGN*
AHARON BEN-TALt Ar4D MARTIN P. BENDSCE

Abstract. Truss topology optimization formulated in terms of displacements and bar volumes results in
a large, nonconvex optimization problem. For the case of maximization of stiffness for a prescribed volume,
this paper presents a new equivalent, an unconstrained and convex minimization problem in displacements
only, where the function to be minimized is the sum of terms, each of which is the maximum of two convex,
quadratic functions. Existence of solutions is proved, as is the convergence of a nonsmooth steepest descent-
type algorithm for solving the topology optimization problem. The algorithm is computationally attractive and
has been tested on a large number of examples, some of which are presented.

Key words, truss topology design, nonsmooth optimization

AMS subject classifications. 90C31, 90C50, 73K40

1. Introduction. Recent years have seen a revived interest in methods for finding
optimal topologies of structures [9]. Most work in optimal design of structures is related
to optimization of sizes or boundary curves even though it is recognized that optimiza-
tion of a structural layout (geometry and topology) has an immense impact on the per-
formance of a structure. Analytical methods have been established for the study of fun-
damental properties of gridlike continua and this field goes back to the work of Michell
[12], and is described in monographs by Hemp [8] and Rozvany [17]. Applications of
numerical methods to discrete models, especially truss problems, are more recent, with
initial studies by Dorn, Grornory, and Greenberg [5]; Fleron [6]; and Pedersen [13]. The
last couple ofyears have seen the development of the so-called homogenization method
for generating optimal topologies of structural elements (cf. Bendsce and Kikuchi [3]
and Suzuki and Kikuchi [19]), again emphasizing the great importance of topology de-
sign for the performance of a structure.

In this paper, we will consider the problem of finding the stiffest truss which is car-
tying a given load and which consists of perfect, slender bars of a given total volume.
The bars of the truss are a subset of bars connecting all of a number of a priori chosen
nodal points, this basic set of bars being the ground structure (cf. Fig. 1), and the topol-
ogy of the truss is generated by varying the cross-sectional areas of the truss, allowing
for zero cross-sectional areas. The truss is subject to an external nodal force vector f
and the deformation of the truss is described by the vector z of nodal displacements.
Figure 2 shows a simple three-bar truss with four nodes, of which three are fixed in all
directions. The deformation is thus described by the displacement at the node Z and
this displacement is controlled via the equation of equilibrium at this node.

Let ai, i denote the cross-sectional area and length of bar number i, respectively,
and assume that all bars are made of the same linear elastic material with Young’s mod-
ulus E. In order to define equilibrium and to compute bar elongations, construct the
compatibility matrix B, which is a projection matrix that relates nodal forces f and bar
forces q by

BTq f,
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i
F

FIG. l(a). A ground structure with allpossible node connections.

>

FIG. l(b). A ground structure with only neighboring nodes connected.
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1 3

Fit. 2. A three-bar truss.

and which relates nodal displacements x and bar elongations A by

Bz= A.

For the truss in Fig. 2,

cosa sinaiB= 0 1

cos/ sin/

as we have three bars and two degrees of freedom. Generally B is an m x nb matrix,
being the number of bars and nb the degrees of freedom; nb= (n no. of nodes)
(dim dimension of space 2 or 3) /(b no. of support conditions).

With a member elongation A the member force q is

Ea---A A,(1.1) qi= t
so with D diag (Ea/.), equilibrium is expressed as

f BTq BTDA BTDBx Kx,

where K BTDB is called the stiffness matrix. The volume of the truss is given as
m

Vol a,
i=1

andwe thus introduce the volume ofeach bar, t a, as a more natural variable. Now
setting (with 6k denoting the Kronecker index)

E
(D) ,

Ki BTDB,
the stiffness matrix is written as

m

K tiKi,
i=1
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where tK is the element stiffness matrix for element i. For the structure in Fig. 2, the
matrices K are

E ( cos2a cosasina)Kx=e\cosasina sin2a

E( cos / cos/sin/)K3 /- COS/ sin/ sin2

Clearly the matrices K are all positive semidefinite. Moreover, it is standard to
assume that B has full rank (this depends on the geometry only), so as to exclude rigid
body motion or mechanisms. This assumption implies that K is positive definite if all t
satisfy t > 0.

The number fTz, called the compliance of the structure, is a measure of the work
done by the external forces and is thus inversely related to the stiffness of the truss. Find-
ing the stiffest truss for a given total material volume v is thus covered by the formulation

(P1) min 1/2fTz

subject to

m

EtAx f,
i=1

m

Eti :v,
i=1

0 < L < t < U < ,
where the design variables t and the deformation variables x appear as independent
variables, and whereA are positive semidefinite matrices satisfying the assumption that
tA is positive definite if t > 0 for all i 1,..., m.
If the truss is supposed to carry a set of different loads, fx,..., fk, a so-called multi-

loadproblem can be formulated for the minimization of a weighted average of the com-
pliances for these loads:

k

(Pro) minE 1/2Wvfl’xv
p--1

subject to

m

EtiKixV fv, p 1,..., k,
i=1

m

Eti =v,
i=1

0 < L < t < U < ,
where Wv, p 1,..., k, denote suitable weights on the individual compliance val-
ues, and xv are the displacements corresponding to load case fl’. This problem is of
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a form similar to problem (P1); by introducing an extended displacement vector z
(zx,..., zk), an extended, weighted force vector f ((Wt)/:F,..., (W)t/2f), and
extended unit element stiffness matrices A as the block-diagonal matrices with k copies
of Ki in the diagonal, problem (Pro) takes the form of problem (P1). In typical appli-
cations, the number of loads k is not great, in the order of 2 to 10.

In this paper our main interest is topology design, so we will typically allow for zero
cross-sectional areas, i.e., 0 for all i. Also, we are primarily seeking to solve prob-
lems with a large number of nodal points (e.g., 100) and truss bars, typically taking all
connecting bars in the ground structure. With n nodes, we can have up to m 1/2n(n- 1)
connecting bars, with the total number of variables being (rib + m) (or k.nb + m for
multiload problems). Thus, for example, a successive quadratic programming (SQP).
method typically will not be a suitable method for solving problem (P1) and one should
seek to exploit the special structure of the problem, as done in this paper.

The standard approach in structural optimization for a solution procedure for (P1)
(see Haftka, Kamat, and Giirdal [7]; and Rozvany and Zhou [18]) is to assume that
Li > 0, for all i, so that the state variable z can be eliminated by solving Az f. The
derivatives of frz are obtained through an adjoint equation, as in optimal control, or
through implicit differentiation of the equilibrium equation, and we have

cg
(fTx) --zTAiz.

The problem is then a problem in the design variables t only, but with topology design
in mind this is only a very modest reduction in problem size. For many other structural
design problems, the number of state variables is much larger than the number of design
variables. This is the case in boundary shape optimization with a finite element state
model and a boundary defined through a rather small set of spline control points. For
such problems, the matrix A is also typically sparse and banded. Again, for topology
design, the situation is different because A will typically be neither banded nor sparse,
as all nodes are connected.

Note that the topology optimization problem could also be formulated as a discrete
optimization problem, but this has mostly been attempted in connection with material
selection and cross-section-type selection problems (cf. Kitsch [9]). In addition, the ho-
mogenization method developed for topology design ofcontinuum structures has turned
out to be capable of generating truss-like thin structures; cf. Suzuki and Kikuchi [19].
This latter method automatically generates the nodal points of the truss and has a dis-
cretized formulation analogous to problem (P1), but with A and volume depending
nonlincarly on the design parameters. Finally, a natural extension of problem (P1) is
to consider the geometric location of the nodal points as design variables as well. These
variables would enter the problem through the stiffness matrix A or, rather, through the
compatibility matrix B. Such a combination has attracted a great deal of attention (see
Kirsh [9], Topping [20], and Vanderplaats [21]), but the resulting problem is extremely
difficult to solve. With efficient methods for solving high-dimensional problems of type
(P1) in its present form, it may be more attractive to introduce a high number of nodal
points in the ground structure, and in this way allow for the prediction of the optimal
geometric location of nodes.

2. Summary of results. In this paper, we show that the nonconvex optimization
problem (P1) can be formulated in terms of an equivalent convex problem in the vari-
ables z only, thus achieving a considerable reduction in problem size. The new prob-
lem is an unconstrained problem and consists of the minimization of a nondiffercntiablc
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function F(x), where F(x) itself is the sum of terms, each of which is the maximum of
two convex quadratic functions. For the special case of a problem (Pl) with only a zero
lower bound on the ti’s (denoted (P1),), the new formulation is

(P2) v xTAix_ fTx}min max {
xER i=l,...,m

where each term xTAix is the energy of the bar number i. Note that the optimality
conditions for problem (P1), are

xTAix= A if ti > O,

(2.1)
xTAix _< A if t O,

tAix f,

where/x is the constant (positive) Lagrange multiplier for the volume constraint. We thus
see that for the optimal truss topology, no more than n + 1 active bars (i.e., bars with
ti > 0) are needed. (This follows from the optimality conditions (2.1) and Caratheodory
Theorem; see, e.g., [14].) Moreover, the active bars all have the same specific energy
XTAx, and that energy level A is the maximum of the energies in all of the bars. This is
reflected in problem (P2),, as is the fact that the conditions

(2.2) tAaix fly, tA 1
v v

imply that a convex combination of the gradients of the energies of active bars equals
the load fly; equation (2.2) thus expresses the fact that the subgradient of the objective
function in problem (P2), contains zero. As problem (P1), is not convex, this equiva-
lence of necessary conditions does not in itself imply equivalence of (P1)8 and (P2)8,
but this stronger result is proven in 3, where existence of solutions is also proved. In 4
we present a nonsmooth "steepest descent" algorithm for problem (P2), which simul-
taneously solves the original truss topologyproblem (P1). Section 5 contains the proof of
the convergence of this algorithm. In 6 the algorithm is specialized to problems (P2).
For this special case, the algorithm is very similar to minmax algorithms, as in Demyanov
and Malozemov [4] and Pshenichny and Danilin [14].

Each step of the algorithm consists of a computation of a subset J of bars which for
the current estimate of z have a certain fixed energy level. The descent direction can
then be computed from a quadratic programming problem with nb variables and with
the number of constraints controlled by J. This QP problem is thus of the same size as
the equilibrium equation Az f, but the data of the problem only involves the bars
of the set J, which typically contains many fewer than the total number of bars. Al-
ternatively, the dual to this QP can be solved. This dual is also a QP problem, being a
least-squares problem in the design variables t, i E J, that will generate equilibrium in a
least-squares sense for the current estimate of deformation z. It is advantageous to solve
the dual problem, as the cardinality of J is usually considerably smaller than rib. With the
descent direction in hand, the steplength of the descent can be computed by an inexact
linesearch of the Armijo-Goldstein type. For problem (P2), we, in fact, derive an an-
alyticalformula for the stepsize. Alternatively an exact linesearch (e.g., golden section)
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can be performed, taking advantage of the fact that in most cases only "almost active"
bars will influence the search. In 7 we present a number of computational examples
and discuss implementation.

The algorithm is computationally very attractive because the values zrAz require
only a few additions and multiplications, and because we avoid assembly of the entire
stiffness matrix A tiA at any stage. The algorithm thus never requires a solution
of Az f, and equilibrium is actually first achieved when the algorithm has converged.

For the case of a single load, the matrices Ai of problem (P1) are the element stiff-
ness matrices K, which can be written as

E T(2.3) K, 7b,bi,

where bT is the ith row of the compatibility matrix B. In this case, it can be shown (see
1]) that (P2), is equivalent to a linearprogramming problem:

rain fx

(LPx) subject to

i= 1,...,m,

and this equivalence follows from the nontrivial equivalence between problems (P1)8
and (P2). Problem (LPx) has a rather low number ofvariables, but a very high number
of constraints. It should be noted that for multiple load cases and/or upper (and/or
lower) bounds on the bar volumes, a similar equivalence to linear programs does not
hold.

Traditionally, truss topology optimization problems have been formulated in terms
of member forces (el. (1.1)) as a linear programming problem:

(LPq)

m

min ti
q,t

i=1

subject to

STq f,

-tia < iqi < tia,

t>O

i= 1,...,m,

for minimizing the weight, subject to equilibrium and stress constraints, a being the limit
stress value (see Dorn, Gromory, and Greenberg [5]; Fleron [6]; Kirsch [9], [10]; Peder-
sen [13]; Ringertz [15]; Topping [20]; and Vanderplaats [21]). Problem (LPq) is the dual
ofproblem (LPx), written in terms of the variables
where q/+, q- are the dual variables of (LPx).

The equivalence mentioned above (and in other studies [1]) shows that for any so-
lution (t, q) to (LPq) there exists a displacement field x so that (t, x) is a minimum com-
pliance design, i.e., a solution to problem (P1), as it is readily seen that for the member
forces t corresponding to x, (t, t) is a solution to problem (LPq). From a design point
of view, the variables of primary interest are the bar volumes t, so (LPq) is a suitable
formulation for plastic as well as elastic design.
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3. A displacement-based formulation for truss topology design. The mixed formu-
lation (simultaneous analysis and design) of the truss topology design problem is the
following)

PROBLEM (P1).

rain

subject to
_
tiA f,

i=1

m

(3.2) -ti v,
i=1

(3.3) L < t < U, i 1, 2,..., m.

The assumptions on the problem data are
(A1) 0<L<U<v, i=l,2,...,m;
(A2) Eim__lLi<v<Eim__l
(A3) for every i, the matrix Ai is n x n symmetric positive semidefinite;
(A4) if ti > 0, i 1,..., m, then the matrix ’]im=l tiAi is positive definite;
(A5) fen, f#0.
Problem (P1) has a large number of variables (m / n), and is nonconvex in the

variables (, ) due to the constraint (3.1). The main result of this section (Theorem 4)
shows that Problem (P1) can be solved by considering an equivalent convex program-
ming problem (Problem (P2) below), which has only n + 1 variables. Since typically m
is much larger than n, Problem (P2) offers an attractive way to solve the truss topology
design problem. The formulation of Problem (P2) is as follows.

PROBLEM (P2).

The objective function F(z, A) is a nonsmooth convex function; in fact, it is a piece-
wise quadratic function, thus of"mild" nonsmoothness. The relation between Problems
(P1) and (P2) is given in the following theorem and in Theorem 4 below.

THEOREM 1.

min(P1 min(P2).

Proof. Problem (P1) can be written as

(3.4)

where

(3.5)

min(P1) =mtin {g(t) ’.t, v, L <_t _< U},

g(t) "= min{1/2fx -tiAix f}.
TO simplify notation, we omit in the sequel the transpose symbol in inner products, matrix multiplications,
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We first derive an equivalent expression for (t). Let (t) be a solution of (3.5), so
that

Consider the convex problem

g(t) 1/2f(t).

(3.6) h(t) "= max{fx- 1/2xA(t)x}, A(t) "= t,A,.

The set of optimal solutions of (3.6), X(t), is

and since (t) E X(t),

X(t) (t) + N(A(t))

where N denotes "null space." Now h(t) can be computed as

h(t) max
zeN(A(t))

f- 1/2A(t), + max {x(f A(t)) 1/2xA(t)x}
eg(A(t))

-f since A(t) f, A(t)x 0 (x e N(A(t)))2

Thus

g(t) h(t) max{fx- z1/2xA(t)x};

and substituting this into (3.4),

min(P1) min max fx- 1/2 ti(xA,x)
E ti=v En i=1
L<t<U

This is a minmax problem, which is convex (in fact, linear) in t and concave (quadratic)
in x. Moreover, the constraint set of t is compact; hence a minmax theorem (Rockafellar
[16, Cor. 37.3.2]) implies

(3.7) min(P1) max min fx- 1/2 ti(xAix) ti v
xE L<t<U

i=1 i--1

By Lagrange duality, the inner minimization is equal to

fx + max rain -1/2 t,(xA,x) + t, v
AR L<t<U

i=1

Ix + max max {t,(1/2xA,x- A)} Av
AR Li<ti<Ui

A
i=1
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Substituting the latter into (3.7),

rain(P1) max fx Av Emax { (1/2xA,x ) Ui, (1/2xA,x ) L,}
x,)

i=1

m,a,{-F(x, A)} min(P2).

The next result shows that for Problem (P2) an optimal solution always exists.
THEOREM 2. There exist ’, and A R such that

(3.8) F(., A) min F(x,

Proof. Let to E ’ be a vector such that

t>0, L<t<U,

and let x E ’ be the unique solution of

(3.9) tA,x f,

m

i=1

(E,,a,)
(Recall that by assumption (A4), tAi is positive definite and hence nonsingular.)

Let A R be fixed but arbitrary. Consider the set

(3.10)

Then

So {(, A) e " R F(, A) < F(, Ao)}.

min F(x,A) min F(x,A).
’,,R (,,X)So

The function F(x, A) is continuous, and so to prove the existence of a solution (, A), it
remains to show that So is bounded. Now

So,

(3.11)

F(x’A) Av- fx +Emax{(1/2xAix A)Ui’ (1/2xoAixo Ao)Li}
i--1

> Av- fx + t(1/2xA,x A) (since L, < t < Ui)

O- O- 1/2fx.
ao := F(x, A) > -1/2fx.
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Let (z, A) So; then

ao >_ F(x, A) >_ Av .fx +E ti 1/2xA’x

_> -Ilfll I111 / 1/2o I111,
where 0 < ro is the minimum eigenvalue of the (positive definite) matrix Y tAi. The
above showed that if (x, A) So then

1/2o1111- Ilfll IIll- o _< oo(3.12)

Consider the polynomial

Its discriminant A is

by (3.11),

p() TO" CE
2 --Ilfll ao.

A :-- [Ifl[ + 2roao >_ Ilfl[ 2 rofx

Ilfll(llfll- ollll)
by Cauchy-Sehwartz inequality, but

o > rolloll,

hence Ilfll -> ollzll, and so, from the above,

A>0.

Therefore, p(a) has real roots, the larger of which, p, is

1 (11$11 + AX/) > 0.P=o
Now, since p(.) is a convex (quadratic) function (To > 0), the inequality p(a) < 0 implies
that

a<_p<oo.

This shows that (3.12) implies that

To derive a bound for A, whenever (z, A) So, we use the two inequalities

ao >_ Av- fx + E L,(1/2xAix- A),

o > ,- + u,(]A,- ).

By assumption (), these inequalities imply

-ao fx + UixA,x ao + fx- n,xA,x
U -v v- Li
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which further imply

0 + Ilfllp <_ <_ 0 + Ilfllp

Next we derive the necessary and sufficient conditions for (,)) to be a solution of
Problem (P2).

THEOREM 3. A pair (, )), E n, R is an optimal solution ofProblem (P2) if
and only ifthere exist multipliers { i 1,..., m} such that

(3.13)

(3.14)

(3.15)

t-=Li ifieJ-:={j’1/2Aj<},

t-/=Ui /fieJ+:={j’1/2A>},

L,_<t-/<_Ui ifieJ’={j’1/2Aj=},

m

(3.16) A, f,
i=1

m

(3.17) Z t- v,
i=1

Proof. Since F(x, )) is a convex function, (, ) solves (P2) if and only if

(3.18) 0 e OF(, ),

where OF is the subgradient set of F. From well-known results on the subgradient of a
sum and of max-functions (see, e.g., Rockafellar [16]), condition (3.18) becomes here

j_ LA,I EUA

+ conv
-L -U

The latter inclusion holds if and only if numbers {Ti i E d) exist such that

0_< <_ 1,

d- d+ d

d- d+ d

is system is equivalent to (3.13)-(3.17) th

t rL + (1 r)u, i d.

The main result follows.
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THEOREM 4. Let (, A) be an optimal solution ofproblem (P2), with a corresponding
multiplier vector m (see Theorem 3). Then (, t-) is a (global) optimal solution of
Problem P1).

Proof. Clearly, by (3.13)-(3.17), the pair (, t-) is a feasible solution of (P1). More-
over, by Theorem 1,

rain(P1) rain(P2) -F(, A)

-v + f: max{(1/2:A,: )U,, (1/2A,:
/=1

+
j- j+

(1/2A# ).
J

(The last summation is equal to zero by the definition of J.)

j- j+ J

-2-!f: v + 1/2: f A: (by (3.13), (3.14))
i=1 i=1

--if (by (3.16), (3.17))

So, (, t-) is feasible for (P1) and attains the minimal value: min(P1) 1/2f; hence it is
globally optimal. I]

The optimality condition for (, A) to solve (P2) (Theorem 3) reveals that A is a
threshold energy level. All truss members i with ener_gy level 1/2Ai below have the
minimal volume Li; all those with energy level above A have the maximal volume U; all
the rest have the same energy level A. We now show how to obtain the threshold value
A A(z) for a given displacement vector z, i.e.,

A(x) arg In}n F(x, A).

The derivation is based on the following lemma.
LEMMA 1. Let > 0, T _> 0, a R (i 1, 2,..., m) be numbers such that

ai <_a2 <".

m

T > e.
i--1

Let K be the largest integer such that

e<T
i--K

(K <_ m).



TRUSS TOPOLOGY DESIGN 335

Then, the optimal solution A of

(3.19) min A + (czi A)+Ti
AER

i=1

/$ A OK

Proof. Since

m m

i=K+I i=K

we may write

m m

9=OETi+(1-O) E Ti
i=K i=K+I

for some 0 < 0 < 1.

Now,

rnn(9 + E(ci )+Ti} tn}n OET/+ (I 0) E Ti
1 K K+I

+(,-
1

k 0min A Ti + (oi- A)+Ti
)t

K

{ m m }+(I --O)mn A E Ti + E(c,- A)+Ti
K+I

}> 0min A Ti + (ozi- A)Ti
A

K K

{ m m }+(i --/9) mn E Ti + E (ozi
K+I K+I

m m

0E ciTi + (i 0) E ciTi
K K+I

m

O0KTK -’F- E oT "= 7"
K+I
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Substituting A A ar in the objective function of (3.19) we get

CK 0ETi+(1-0) ETi +E(oi--CeK)+Ti
K K+I /=1

m m

K+I K+I
m

OOKTK "t- E tiTi "3[,
K+I

so A ar achieves the lower bound 7. Hence, it is optimal.
THEOREM 5. Let ’ be given, and let

A argmnF(, A).

Let {ix, i2,..., ira} be a permutation of {1, 2,..., m} such that

and let K be the largest integer such that

m K--1

j--K j=l

(K < m);

then

Proof. F(x, A) can be written as

Hence

Define

j= l,...,m,

V’=v-ELi,

j l,...,m;

thus the conclusion in the theorem follows immediately from Lemma 1.
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4. An algorithm for solving Problems (P2) and (P1). We describe an algorithm for
solving the nonsmooth problem (P2)

min F(x, ,k) "= )v- fx + F(x ))
(P2) -,,x

"=

F(x,)) "= max{(1/2xAx ))U, (1/2xAx )L}.

The algorithm will find the optimal solution (., A) and will simultaneously generate an
optimal solution pair (, t-) for Problem (P1). The basic iteration step is

+a g 0,1,2,...,

where (d, h) is a direction ofdescent of F at (x, A), and ae 0 is the stepsize. e
direction vector (d, 6) is generated by solving a quadratic programming problem.

At a given point (x, A), the directionaldevative ofF in the direction (d, 6), denoted
by F’ (xe, A, d, 6), is given (using well-o results on the directional derivative of a
m-nction) by

(4.1)

F’(x,);d, 5) v5- fd /EL(dAix -) /EU(dAx )

+Emax{Ui(dAix )’ Li(dAix 6)},
J

where the index sets e-, -, and fit are defined by

[ "= {i" 1/2xAix < A},
.= {i. >

Asteepest descent direction of F at (x, Ae) is a vector (, t), which solves the minima-
tion problem

(4.2) min (xt, Ae 62de.,{F’ d, 6) + (ldl2 + )}.

e second term in the objective nction is added to bound the length of the direction
vector (d, ). t

Then, by (4.1),

F’(x, ), d, 6) fd +E #’’
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where

i max{U(dAix ), L,(dA,x )}.

Then, problem (4.2) can be written as a quadratic program in the variables d E ’, 6 E
R,{#i "i e Je}"

subject to

# >_ UidAix U8,

#i > LidAixe- Li6,

One can obtain the optimal solution of (P), (de), by solving the dual problem of (P),
which is as follows (we omit the details):

(De) II )
L < ti < Ui, i

From the primal-dual relations between (Pt,)-(Dt,), if -t, is the optimal solution of (De,),
then the optimal solution of (Pc) is

J

It is easy to verify, from the optimality conditions in Theorem 3, and the result of Theo-
rem 4, that the following result holds.

THEOREM 6. dt 0, t 0 ifand only if (xt, At) solves Problem (P2) and (x
solves Problem P1).

The last result is of theoretical value since an algorithm based on the iteration step

xt’+ xt’ d- at,J1t’,

does not necessarily converge. Indeed, unlike the smooth case, for which the steepest
descent algorithm is convergent, this is not the case for nonsmooth problems such as
(P2) (see, e.g., Lemarechal 11]).

The cure is to introduce a perturbation of the "active constraint set" Je. This will
prevent the solution ofproblem (Pc) or (De) to change discontinuouslywhen a constraint
becomes inactive. The specific way this perturbation is chosen here is described next. In
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what follows, e > 0 is a fixed parameter controlling the "activity" index sets defined
below:

& {i 11/2zeA,ze Ael < e/(U L,)},

Je+ {i 1/2xAx- > e/(U L,)},

J[ {i 1/2x*Aize Ae < -e/(U L,)}.

Also let

An -steepest descent direction (d,) for (P2) at (x, A) is the solution of the quadratic
program (P):

( 1 1}min ve6- ge + .i + Ildll 2 + N

() subject to

u dAx a + pf m O, i &
L(dAx + Pf) m O,

where

pf 1/2xeAixe Ae.
Note that problem (Pc) is a perturbation of problem (Pc). Indeed IPfl e/(U L) for
i E Je, and J, . de for e small; the problems coincide for e 0.

A dual problem of (Pe) is the following quadratic program:

IItiAixe femax tipz- II 2 )Eti
Je

Li < ti < Ui, i Je.

If te is the solution of (/)e), then the solution (de, 5e) of (/Se) is given by

(4.3)

de ( E tfAixe- fe )
iJe

We now demonstrate that a result similar to Theorem 6 holds for problems (/se)
and(/).
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THEOREM 7. de 0, 6t 0 ifand only if (xt, At) solves Problem (P2) and (xt, tt)
solves Problem (P1).

Proof. The optimality conditions for (de, 6t) to solve problem (Pt) are

(4.4) Etf-6t =vt,

(4.5) E tiA’xt + de ft,

(4.6) (t L,) (U(h + Pi) #) O, i Jr,

(4.7) (Ui tel) (L,(hei + p) #) O, i Jr,

(4.8) Li < t < Ui,

(4.9) # max {U(h + p),

where

pe "= 1/2xtAxt At, h := dtAixt 6t.

Define

t= Li, # Li(h + p), iJ-,

Then, using the definition of vt and ft, the system (4.4)-(4.9) can be written as follows:

m

(4.10) E te 6t v,
i=1

m

(4.11) E teA’xt + de f
i-1

(4.12) (t L,) (Ui(h + p) #) O, i 1,..., m,

(4.13) (Ui te) (L,(h + p) #i) O, i 1,..., m,

(4.14)
Li < ti <_ Ui i 1,..., m

with

tel=L,, i e J[,
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# max{Ui(h + p), L,(h + p)},

(4.15)

The optimality condition at (, A) for Problem (P2) can be written as the system

m

(4.16) E t-i v,
i=l

m

(4.17) iAi: f,
i=1

(4.18) ( L,)[Uo,- 2] 0, i 1,..., m,

(4.19) (Ui -i)[Li/3i 2i] 0, i 1,..., m,

(4.20) L < t- < U, i 1,..., m,

(4.21) z- max{U05i, Lii}, i 1,..., m,

where

:= 1/2A#- X.

Let de 0, 8e 0. Then h 0. Also i e Je- = P$ < 0 and i e Je+ = p$ > 0 and
therefore (4.15) reduces to

#$ max{Uip$, L,pei }, i 1,..., m.

It is easily seen, by comparing the systems (4.10)-(4.15) with (4.16)-(4.21), that

" xe, Ae, lzei, i l,...,m

is an optimal solution of (P2).
Conversely, let 5c xe, Ae be a solution of (P2). Then p =/i and it follows

from (4.21) that

z-i Uipei ifp > 0, in particular, if i Je+;
z Lipei ifp < 0, in particular, if i Je-.

Hence, de O, 8e 0 (which makesh 0) with corresponding multipliers t , #
z-/satisfy the optimality condition (4.10)-(4.15) for (Pc).

Once an e-steepest descent direction (de, 6e) has been computed, the stepsize ce can
be computed by

at arg min F(xe + cde At + a6e).
o>0
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Here, we employ an inexact linesearch of the Armijo-Goldstein type. The stopping rule
for the algorithm is based on Theorem 7.

ALGORITHM A [For solving Problems (P2) and (P1)]
Parameters: e > 0 ("activity" parameter), 6 > 0 (for the stopping rule), 0 < 0 < 1/2 (for
the stepsize rule).
Initialization

(0.1) Choose an initial design vector to

t>0, L<t<U,

(0.2) Solve the linear system

m

i=1

m

i=I

to obtain its (unique) solution z.
(0.3) Compute A as follows (see Theorem 5). Compute a permutation (i, i2,..., i,)

of {1, 2,..., m} such that

xAix0 <_ xAi.x0 <_... <_ xAixO.
Let K be the largest integer such that

m K-1

j--K j=l

Then

/0 1/2xAir xO.
Step (xe, Ae given)

(L1) Generate the index sets Je, J+, Je-, compute ve and ft.
(L2) Solve (/Se) to obtain (de, 6e) [OR: solve (be) to obtain te and then compute

by the formula (4.3)].
(L3) If max(lldell, ISel) < 5 stop, else go to (/?.4).
(e.4) Compute the stepsize ae as the largest a > 0 such that

(4.22) F(xe + tde, Ae + c6) < F(xe, Ae) -0(lldell + ).
Note: An approximation of ce can be computed as follows. Let K(g) smallest
integer K such that a (1/2)K satisfies (4.22), then

(1/2

(e.6) e - e + 1, go to (L1).

ATM Ae +
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5. Convergence of Algorithm A. In this section we show that convergent subse-
quences generated by Algorithm A produce an optimal solution of (P2) and simultane-
ously (by Theorem 3), an optimal solution of the original truss topology design Problem
(P1).

THEOREM 8. The sequence {xe, Ae}, generated by Algorithm A, has a convergent
subsequence. The limit point of any such subsequence is an optimal solution ofproblem
(P2).

Proof. In the proof of Theorem it was shown that the set

So {(x, A) F(x, A) _< F(x, A)}

is compact. Since, by (4.22),

F(xe+ Ae+1) <_ F(xe, Ae)
it follows that

for all 0, 1, 2,...,

{x, A*} c So,

and by the compactness of S0, this implies the existence of a convergent subsequence.
For simplicity of notation, we denote this subsequence also by {me, Ae}. Let (, ) be
its limit point. Consider an index i de; then

where

M1-- max {ViAmax(Ai)},
i=l,...,m

/max(Ai) "= maximal eigenvalue of Ai,

and with p, #$, h defined as in the proof of Theorem 7 (see (4.9)).
From the above inequality

(5.1)

where

A := Z F(xe + de’ Ae + a6e)
EJe

_< ( cO F,(xe. ae) + c.+ 1/2c?Mlldellma.
Je J

ma := card (Je).

Note that d O, 6 O, #i Fi(xe Ae)(= max{Uipe eLip }) is a feasible solution of
(/Se). Hence

(5.2) ve6e- defe + y# + 1/211dell + 1/26 <_ Fi(xe, Ae),
J J
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so (5.1) and (5.2) imply

A _< Fi(xt, ,if’) ozvt + ozdtf + 1/2oz(ozMlmA l)lldl12 I2

We now evaluate

B := (t +dt, t + 5)
+

and

First, we obtain a bound on h I. Recall

hi deAixe 6e.

Then, by the Cauchy-Schwartz inequality,

(5.4) Ihl _< IIA,ztll Ildell + 18el;

since

(xt, At) c So

we conclude that (see the proof of Theorem 2)

Ilxtll <_ p < co,

and hence

M2 := m.ax {IIA:tlI} < pm.ax IIA, < .
By (5.4), then,

(5.5) Ihl _< Mlldtll + I6el.
Consider the following implications, valid for all r/ R.

0<a<
(g L)IoI

[

= -aLir/- e _< -aUir/,

-aUirl e <_ -aLirl.

Choose r/= h dtAixe 6t and use the bound (5.5) to obtain, for all i 1,..., m

(5.6)

o<,<,[’=
max (U L)[M2IIdtll + I*tl]

i=l,...,m

=v I -aLihe e <_ -aUhe (a),

-,v,h’, < -,L,h’, (b).

Let i Je+, i.e.,

(5.7) U t L t
iPi > iPi + e,
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and let 0 < a < aex Then

F(xe + ade,,k + a6) max l Up, + aUh, + 1/2aUdAd

+ aLh, + al Ld Ad

a2M1 [Idt[] 2 + m{U,pf + aUih, Uip e + aLih}

by definition of M, (5.7), and the Cauchy-Schwaz inequali,

by (.6b).
Since for i e J, Uipf (x, A) and using the definition of hf, the last inequali

yields

Fi(xe" + ad,Ae" + aS) < 21-a2Mllldll 2 + Fi(xt, A)

+aUidAix aUi5 for all E J.
Summing for all i E Je+ we get

+ 1/22Mllldell2m,

where mB card +(Je). Similarly we can obtain

i6J-

/ 1/2Mlldellem,

where mc card (J[-). Combining the above inequalities for A, B, C, we get

F(xe + ade, Ae + a6e) A + B + C + Aev fxe + a6ev afde

/1/2a(Mxm- 1)l[dell e 50.12

By the definitions of if, v the last inequality is

(5,8) F(x + d, + c) < F(x ,V) + 1/2c(Mlm- 1)lldll 2 l c2--5 ’
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which holds for all 0 < a _< 1, a <_
Let a := ((1 20)/(Mxm)) where 0 < 0 < 1/2. Then for a <

t--oz(MlmOZ- 1) <

1Therefore, by (5.8), for all 0 < c < te, 0 < 0 < ,
(5.9) F(xe + ozde, A + o.6e) < F(x, Ae) Olldell Oa,
where

&e min(1, c{, ce2).

The stepsize ce in the algorithm is chosen to be the largest c > 0 satisfying (5.9). Hence

(5.10)

and

(5.11) F(xe+l,ATM) F(xe +cede,,ke +ae6e) <_ F(xe, Ae) -Ooze (lldell z +6).
As g + o, it follows from (5.11) that

(5.12) ae (lldell = + a) 0.

Now, by (4.3) and the facts

Li <_t <_Ui,

IIAxell <_ M2,

it follows that Ildell and Iel are bounded above. Hence (see definition of c in (5.6)) c1
is bounded away from zero, and hence also &e. It follows from (5.10) and (5.11) that,
when e , 6e 0 and de O.

As , we also have

Also, by (4.15), with #i := lime_+oo #

#i max{Uiffi, Liffi }

fzi LiPi

#i UiPi

Hence

fzi max{Uii, Lii} for all i 1,..., m.

Letting e 0 in (4.10)-(4.15), we see that :, A, i p, [ satisfy the optimality condition
(4.16)-(4.21) for Problem (P2). Hence (:, A) is its optimal solution. [3
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6. Truss topology with free design variables. An important special case of the truss
topology problem is where the design variable {t} is free of the upper and lower bounds
constraints Li <_ t <_ Ui, i.e., is only required to be nonnegative. Problem (P1)
reduces then to

(P1)8 min 1/2fx tAx f, t v, t >_ O
"= i=1

Note that the volume constraint indirectly imposes an upper bound t _< v. Hence prob-
lem (P1)8 is a special case of (P1) with

Li=0, Ui=v, i=l,2,...,m.

The equivalent displacement-based problem (P2) is then

,A
i=1

From Theorem 5, it follows easily that for any given , tile minimizing A in (6.1) is

i=l...m

Substituting this value in (6.1), we see that Problem (P2) reduces to a simple convex
minmax problem invoMng only displacement variables:

(P2) min {F(x)’= =,...,,,max {xAx-fx}}.
For this problem, an e-steepest descent direction d e ’ of F(.) at x is the solution of
the quadratic program.

(6.2)

where

min{# + 1/2lldll}

subject to

dT vAixt. f) + qe I 0,

q ,*A* f

r, := { q*, > F(*)- }.

The dual problem of (/Se) is here

subject to’ti v, ti > O, i i,.
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ALGORITHM B [For solving (P2),]
Parameters: e > 0 (activity), 6 > 0 (stopping rule), 0 < 0 < 1/2 (stepsize rule),

m toInitialization: Choose to > O, ,= v, compute z, the unique solution of

-tAx f

Step e (xe given)
(L1) Compute qe, F(xt) maxi=l ,{qe} and the index set It.
(/?.2) Compute the search direction de by solving the quadratic program (Pe),,

or by solving the dual (/), to obtain the solution te, and then set

If Ildell < 6 stop, xt is the solution of (P2)8 tt is the solution of (P1)8 e/se,
go to (e.4).
Compute the stepsize ct by the formula

(6.3) ct= min {c},
i=l,...,m

where

t =0 b >0,-/bi if a

t -bei + v/(bi)2-4aei tci=
2a

ifai>O,

ifa=O, bi<_O;

here the numbers ai, bi, c are given by

t deAide > O,o,

be dt(vAxt f) + OIIdell 2,
t t F(zt) < O;ci qi

(L5) xt+l xt +
(g.6) g +-- g + 1, go to (g.1).

To explain the analytic formula (4.3) for the stepsize ct, we first note that the stepsize
rule (4.22) in Algorithm A reduces in our special case to

(6.4) ct is the largest a > 0 such that F(xt + cdt) < F(xt) 011dell 2.

We now prove the following theorem.
THEOREM 9. The stepsize given by (6.3) is the solution of (6.4).
Proof. Inequality (6.4) is specifically

(xt + cdt)A,(xt + cdt) f(xe + cdt) < F(xt) Olidell 2, i 1,..., m,
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which further reduces to

(6.5) 0"d(vAix f) + 0"2dAid + q < F(x) 011d*ll 2, i 1,..., m.

Define, for i 1,..., m,

qoi(0") "= 0.
2 (deAide) + 0" [de(vA,xe f) + Olld*ll] + q F(xe).

Then (6.5) is just

(6.6) qoi(0") < O, i 1,..., m.

Now,

and

oi(O) q F(x) I 0

<0

I(x) := {i" qf F()},

if i e I (x),

other,vise;

qo (0) d" (vAx f) + Olld 112.
Recall that de (together with m) is an optimal solution of (/Se); since d 0,

A max{q} F(x) is a feasible solution of (Pt)8, we have

(6.7) #e / 1/211dell 2 _< F(x).
Therefore, for i E I(xe), it follows from (6.2), (6.7) that

de(vAixe y)+ 1/211dell 2 _< 0,

and since

d(vAixe f)+ 01IdYll 2 < o,

(6.8) (0) < 0 for/e I(xe).
From the above discussion, the stepsize 0"e solving (6.4) is given by

ae argmax{a i(a) < 0, a > 0}.

Each function qoi is convex, and

(6.9)
v,(o) o, v(o) < o, i e z(x),

oi(O) < O, i

_
I(xe).

Thus (see Fig. 3), each i has at most one root a in (0, oo) and

(6.10)
i=l,...,m
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Fo. 3. Computation ofthe stepsize.

Denote the coefficients of the quadratic function qoi(.) by

deAid > 0,tt--
bti de(vAixe f) + OIIde 2

4 qei F(x) < O.

Then af is given by

t t a 0, 0,-ci/b if b >

-b4-%//(b)2-4ac,( 2 if a O,

if ai O, bi <_ O,

and so (6.10) agrees with (6.3). [3

7. Computational results. In this section, we will present a number of results ob-
tained by using Algorithm B. For clarity, we concentrate on (P1), with free design vari-
ables (ti > 0). Thus, this section will deal with the implementation of Algorithm B.

First, we note that the algorithm only requires computation ofvectors A: and num-
bers /a-Az. Thuswe need not assemble nor store the matrices A, nor mustwe assemble
the entire matrix A at any iteration step. The compatibility matrix should also not be
stored (each column contains at most 2 x dim nonzero elements), but instead one works
with the 2 x m matrix of connectivities, giving the numbers of the nodal points to which
a given bar is connected, as well as a matrix of bar cosines. This means that even though
our primal variables are connected to the nodal points, all computations and storage are
based on bar numbers. In our implementation, the search vector d was always computed
by solving the dual problem (De) (or (De)) in the active bar volumes ti (i.e., J or Ie),
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as it is our experience that the number of (almost) active bars is considerably less than
the number of degrees of freedom for the full truss. Finally, for the linesearch, both
the (analytic) Armijo-Goldstein search and an exact linesearch have been tried. It turns
out that the inexact search is typically very conservative and that the exact linesearch,
especially for larger problems, gives a better performance. In the implementation of the
linesearch (golden section method), in order to save costly function-calls, we do not use
all bars, but only a subset of the -active one ( is larger than e, typically 100. The
full set of bars is used only if such a search does not improve the value of the objective
function.

For the truss topology optimization (with L 0), we are interested in the ultimate
set of active bars

{i: t; > 0).
It is true, however (see similar claims in, e.g., [4]), that for all sufficiently small e > 0,
there exists a neighborhood N* of z* such that

I,(x) Io(z*) for all z N*.

It is thus natural to work with a decreasing sequence of e-values. It was found that it is
important not to choose e too small for the first iterations, and that it is a good strategy
to work with a sequence of alternatingly decreasing values of the e-parameter as well as
the stopping parameter 6. We note here that the final 6 should be at least small enough
that we can accept 6 as an error in the satisfaction of the equilibrium equations.

The special problem (P1), is made up of expressions which are elementwise linear
in all variables, except geometric data. Thus, for a specific choice of ground structure
geometry and load vector direction, the optimal topology only needs to be computed for
one set of assigned values of Young’s modulus E, volume v, load size f, and geometric
scale; for any other values of these variables, the optimal values of the design variables
t, the deformation x, and the compliance fz can be derived by a simple scaling. Thus,
(P1), lends itself to the creation of a "catalogue of optimal topologies" for both single
and multiple loads. The optimal compliance may then conveniently be given in terms of
the nondimensional compliance ,

r (fTc)V E/(llflle),
where is a typical length dimension (horizontal length of truss in the examples that
follow). For Problem (P1), the optimal compliance should also be given in terms of b
and the bounds, L, U, in terms of ratios of the volume v.

Examples of optimal topologies are shown in Figs. 4-7. In these examples, where
all connections between nodal points are used as the ground structure, overlapping con-
necting bars between two nodal points have been removed so as to avoid a redundancy
in the model and a trivial possibility of subspaces of optimal solutions. In the optimal
topologies, some straight bars appear with intermediate nodal points with no other con-
necting bars. Such bars should be thought of as straight bars without these intermediate
nodal points, as a truss model under the given load will not be able to distinguish between
the two configurations.

The final topology and the performance of the optimal structure depend intimately
on the choice of ground structure, as does the performance of the algorithm. If the opti-
mal topology consists of only a very low number of bars, the algorithm predicts this very
quickly, even though the potential number of bars is large. However, it is also required
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FIG. 4(a). The optimal tressfor a ground struc-

ture with 2852potentials bars.
FI6. 4(b). The optimal truss for the same

ground structure as in Fig. 4(a) but with upperbounds
on bar volumes.

that "nature’s optimal topology" is indeed a subset of the bars in the ground structure;
if not, the algorithm will find approximations (however, the topologies are optimal for
each choice of ground structure), usually involving many bars. It is well known that the
best structure for carrying a single load which is parallel to a line of possible support
is a two-bar truss with trusses at 45 to the line of support (cf. Rosvany [17]). Such a
situation is mimicked in all the examples shown, but only the structure in Fig. 4 allows
for this optimum as part of its ground structure. The ground structure of Fig. 4 consists
of all 2852 nonoverlapping connections between the equally spaced 6 x 16 nodes in a
10 x 30 rectangle. All left-hand nodes are possible supports and the single vertical force
is at the mid right-hand node. Figure 4(a) shows the optimal, two-bar truss obtained
when no constraints on the bar volumes t are imposed and the optimal nondimensional
compliance is 4.0. In Fig. 4(b), upper bounds on the bar volumes are imposed, as Ui
0.01.e.v, and the compliance b increases to 4.1092. The result in Fig. 4(a) was computed
using Algorithm B and the result in Fig. 4(b) is the result of using Algorithm A; for the
latter example, the deformation field z of Fig. 4(a) was used as the starting point of the
algorithm. Notice that introducing upper bounds on the design variables, as expected,



TRUSS TOPOLOGY DESIGN 353

FIG. 5(a). The optimal trussfor the ground structure ofFig. l(a).

FIG. 5(b). The optimal mulaload design ofa mss corresponding to the ground structure ofFig. l(a).
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FIG. 6(a). The optimal trussfor the ground structure ofFig. l(b)---single-load case.

FIG. 6(b). The optimal trussfor the ground structure ofFig. 1(b)three-load cases.
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FIt. 6(c). The optimal trussfor the structure ofFig. 6(b) but with upper bounds on bar volumes.

increases the number of bars in the structure as well as increasing the number of bars in
the active set Je.

In Fig. 5(a) we show the optimal, unconstrained truss topology for the ground struc-
ture and loading condition of Fig. l(a). The compliance is 6.0134, i.e., 1.5 times greater
than for the two-bar truss of Fig. 4(a). In Fig. 5(b), an extra, horizontal load has been
added at the loaded node and the figure shows the multiload design obtained for un-
constrained design variables. The horizontal and vertical loads are equal in size and the
weights on the compliances are 1.0 and 2.0, respectively. The average nondimensional
compliance is 4.6943 and the compliances for each of the loads are 6.2541 and 1.5747,
respectively. The multiload problem results in what is in practice a two-bar truss (trusses
at + 30 with horizontal direction), thus giving a simpler geometric layout. This feature
is even more apparent in the example of Fig. 6, wherewe use the ground structure of Fig.
l(b). In Figure 6(a), we have the one-load case corresponding to the ground structure
in Fig. l(b), while in Fig. 6(b), we have three load cases: a horizontal and a vertical load
at the mid, a right-hand node and a vertical load at the mid node, all of equal size and
weighted 1.0, 2.0 and 1.0, respectively. Finally, in Fig. 6(c), we have a design-constrained
(Ui 0.01 .v. i) topology for the same ground structure and set of loads. For the un-
constrained problem, the average compliance is 6.3737 and the individual compliances
are 3.752, 9.4577, and 2.8273; with constraints the values are 7.2108 and 4.1401, 10.5957,
and 3.5117.

In Fig. 7 we illustrate the effect of increasing the number of nodal points (and po-
tential bars) for a ground structure geometry for which "nature’s optimal topology" is
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FIG. 7(a). The optimal trussfor the structure with the same geometry and load as in Fig. l(a), with 11 x 11
nodes (4492potential bars).

a so-called Michell truss [12], [9], i.e., a curve-linear layout of a continuum of unidirec-
tional load-bearing members. In Fig. 7, we have the same geometry and load as in Fig.
l(a). We allow all connections between nodes and have increased the number of nodes
to an 11 x 11 (Fig. 7(a)) and a 15 x 15 (Fig. 7(b)) equidistant layout ofnodes, giving 4492
and 15556 nonoverlapping connections and 5.9646 and 5.9344 nondimensional compli-
ances, respectively. The number of bars in the optimal topology increases dramatically
as the layout tries to mimic the curved layout of the optimum Michell truss, thus approx-
imating a layout which is at the limit of the range of a truss model; similar behavior is
seen in plate optimization and shape design (cf. [3]). The high number of active bars in
the final topology slows the algorithms considerably and indicates that it is important to
make a suitable choice of ground structure when optimizing topology.

Finally, it should be noted that the optimal compliance value fz* is not very sensitive
to variations in the values of the design variables. Small variations in the cross-sectional
areas of the bars in the optimal topology and even the addition or deletion of thin bars
have very little influence on the stiffness of the truss, as measured by compliance. Also,
multiple solutions seem to exist, especially in cases with possible symmetry. These re-
marks are but experimental observations. However, some of them can be substantiated
thoeretically by using results from, e.g., [2].

Acknowledgements. A guest professorship at the Technical University of Denmark
is gratefully acknowledged by A. Ben-Tal.
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Fro. 7(b). The optimal truss for the structure with the same geometry and load as in Fig. l(a), with 15 x 15
nodes (15556potential bars).
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Abstract. Stability results of Lipschitz and H61der type are obtained for the solutions and optimal values
of optimization problems when perturbations are measured in terms of the p-epi-distance.
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1. Introduction. Much has been said about the continuity properties of the optimal
value and of the set of (optimal) solutions of optimization problems as a function of
various perturbations. This is also the purpose of this paper, as well as its companion
[8]. However, we make a break with the standard approach in at least two ways. First,
we do not consider a particular class of perturbations, but allow for perturbations of a
global character. The reference to vadationalsystems in the title is aimed at stressing this
concern; the term "variational systems" was used in [45] to designate a mapping z f,,
with each f, to be viewed as representing a certain optimization problem that depends
on zt. Second, we are concerned with quantitative results that could be used to obtain
error bounds in the case of an approximating scheme or error estimates for the current
solution of an algorithmic procedure.

An overview of the stability results that are topological in nature could be gath-
ered from the work of Evans and Gould [19], Fiacco [20], Bank et al. [14], Dolecki [17],
Gauvin [23], Hogan [27], and Zolezzi [53]; for a recent survey one should consult [21].
Epi-convergence, a concept exploited relatively recently, has allowed for the consolida-
tion of a large number of these results; cf. Mosco [34], Wets [50], Attouch and Wets [4],
Attouch [2], Robinson [38], Kall [28], and Beer and Lucchetti [15]. It will also provide
the framework for this analysis.

The literature on quantitative stability results is much less abundant. The results
are local in character and rely mostly on quantities associated with first- or higher-order
(sub)derivatives, either of the functions defining the optimization problem or of the in-
fima (= marginal) function. There is the extensive work of Robinson [36], [37] on ob-
taining Lipschitz constants for solution mappings; see also Klatte and Kummer [30]. In
some cases, one can apply results that come from the study of the (sub)derivatives of the
marginal functions; cf. Rockafellar [41], [42] and Gauvin and Janin [24], [25]. Finally,
there is the workbased on the inverse function and implicit function theorems beginning
with the Robinson-Urescu theorem; in the introduction of [39] Robinson sketches out a
brief review. For example, Aubin [9] exploits the fact that locally, the optimal solutions
of the optimization problem minx f(z) are characterized by the optimality conditions

0 Of(a:),

where Of(z) is some set of generalized (sub)gradients of f at z; see also Aubin and
Frankowska [10] and Aubin and Wets [11]. Then, with a surjectivity assumption on the
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tangent cone to the graph of Of at (x, 0), one shows that the solution set 0-1f is pseudo-
Lipschitz at 0. The counterpart of the great generality and flexibility attained through
this approach is the need to calculate second-order (generalized) derivatives of f and
these calculations could be quite involved; there are also intrinsic limitations to the ap-
plicability of this approach brought out in [41].

We are mostly motivated by approximation questions, and thus we are interested in
perturbations of a global character, and this leads to results of a somewhat different fla-
vor than those mentioned above. However, in some situations one can profitably exploit
"localized" versions of our results: the statement of all basic results always allows the
replacement of any given function f by a function fa that coincides with f on a neigh-
borhood of the point of interest and is /o outside this neighborhood.

To measure the distance between optimization problems, we rely on the p-epi-
distance alp, a distance notion introduced in [7] and briefly reviewed in 2; dp is also
used in [8] to obtain Lipschitz continuity results for the approximate e-solutions of con-
vex optimization problems.

The main results are derived in 3. In particular, it is shown that the function f
inf f has locally Lipschitz properties with respect to 0, and that for well-conditioned
problems the optimal solutions have locally H61dermand in some cases Lipschitz--con-
tinuity properties with respect to d. In 4, we apply these results to a constrained con-
vex optimization problem, viz. the projection of a point on a moving convex set, and to
the analysis of the convergence of algorithmic procedures based on penalization. Con-
ditioning questions are raised in 5 and connections are established with well-posedness
and the conditioning number associated with a (nonlinear) optimization problem. Fi-
nally, in 6 we show that the H61der-like stability result is, in a certain sense, the best
possible.

2. The epi-distance. We introduced the notion of epi-distance in [7] and made first
use of it in deriving Lipschitz properties for the e-approximate solutions of convex opti-
mization problems [8]. We briefly recall the definition and state the Kenmochi conditions
that will be needed in the sequel.

Unless otherwise specifically mentioned, X will be a normed linear space with norm
I1" and d the metric induced by the norm. For any C c X,

d(x, C) := inf yll
yC

denotes the distance from x to C; if C we set d(x, C) . := { [ II ll 1 } is
the unit ball, p the ball of radius p _> 0, and 1(, p) the (closed) ball centered at and
with radius p. For any set C c X and p _> 0, we set

Co :=Cfp.

For C, D c X, the "excess" of C on D is

e(C, D) :-- sup d(x, D),
x_C

with the (natural) convention that e 0 if C ; note that these definitions imply
e o if D is empty and C . For p > O, the p-distance between C and D is defined
to be

t,(C, D) := sup{ e(C,, D), e(D,, C) }.
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We are going to define the p-epi-distance between two functions in terms of the
p-distance between their epigraphs viewed as subsets ofX x . In this context, it is con-
venient to define the norm of (, a) X x as max[ I[xll, la[] with the associated metric,
also denoted by d, defined accordingly. The unit ball lI := ltxx is the (cylindrical) set

DEFINITION 2.1. For p _> 0, the p-cpi-distancc between two extended real-valued
functions f and defined on X is

tp(f, g) .= ap(epi f, epi g).

Thus, alp(f, g) _< /means that

(epi f)p c epi g

where

(epi g)p C epi f + rill,

(epi f), { (x, t) (

_
f(x), x . p, [t[ _< p }.

Epi-convergence is, in the sense that can be made precise, the weakest notion of
functional convergence that will guarantee the convergence of optimal solutions; of.
for^example, [45], [2], and [28]. Convergence with respect to the family of "distances"
{ ap, p > 0 } implies epi-convergence. When X is finite-dimensional the two notions
of convergences coincide, and when X is infinite-dimensional, convergence of convex
functions with respect to ap (for all p) implies Moso-epi-convergence (epi-convergence
with respect to both the weak and the strong topology on X); refer to [3] and [7, 4] for
further details.

A very useful criterion, which allows us to compute or at least estimate the p-epi-
distance, is provided by the Kenmochi conditions.

THEOREM 2.2 [7, Thm. 2.1]. Let X be a normed linear space f, g X -. lIproperand
bounded below by -a( I[p + 1) for some a E + and p

_
1, and let

p0 > max[ d((0, 0), epi f), d((0, 0), epi )].

Then,
(a) for all p > po and x e dora f such that II ll < p, If( )l < p, and all e > O, there

exists ce dora g that satisfies

g(ce) <_ f(x) + tp(f g) d- ,
and similar conditions hold when the roles of f and g are interchanged;

(b) if]or all p > po there exists R+ such that for all x dom f with [Ix[[ <_ p,
[f(x)] <_ p, there exists c domg that satisfies

g()

_
f() -t-

and similar conditions hold]or all x dom g with IIxll _< p, Ig(x)l <_ p, then with Pt :=
p+a(p + 1),
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We know [5], [6], [3] that there are many other ways to introduce distance notions
on the space of lower semicontinuous (lsc) functions that induce epi-convergence. In
fact, those discussed in [7, 3] are known to induce the same uniformities [7, Thms.
3.4, 3.7, 3.9]. We state our results in terms of d because in many applications d is
easier to calculate or estimate, and usually comes with a more immediate geometric
interpretation.

3. Stability results. We now turn to the basic results. Because the p-epi-distance
is not invariant under translations, and the origin plays a special role, the results cannot
very well be localized away from the origin. It will thus be convenient to consider first
the canonical case, which means that the point of reference will be a function f such that
0 min f f(0). When the location of argmin f and the value of inf f are arbitrary,
we shall translate f (and all other functions) so as to bring us back to the canonical case.
We record the results for the general case at the end of this section.

We begin by obtaining a bound for the optimal value of a function g that lies in a
certain neighborhood of f.

THEOREM 3.1. Let X be a normed linear space and f X - be a properfunction
such that min f f(0) 0. Given p O, for allfunctions X - ]R such that

we have

argmin g fq p O, [infgl < P,

inf g min f inf g -< 0p(f, g).

More generally, given p > O, for all g such that inf,B g < P,

inf,B g inf f inf,a Y < d,(f, y).

Proof. If argmin g N pl and inf g[ < p, then inf, g[ < p. It thus suffices to
consider the general case.

From the definition of dp and (0, 0) E epi f, we have d((0, 0), epi g) < 0p(f, g). On
the other hand, since inf g[ < p, we have d((0, 0), epi g) < p. Thus,

d((O, 0), epi g) d((O, 0), epi g fq p) <_ dp(f, g),

and for all e > O, there exists (u, a) E epi g such that Ilu ll d (f, g) + e, lael <
d,(f, g) + , and max [[[u[[, [a[] < p. Since inf,a g <_ g(u) <_ a < cg,(f, g) + holds
for all > O: inf,B g _< 0(f, g).

Let us now prove that inf,a g _> -d,(f, g) also. For > O, let x p be such
that g(x) <_ infpa g + e. Choosing (0, p- inf,a g), we have that g(x) <_ p, using
here the assumption inf,a g[ < p. On the other hand, g(x) >_ inf,B g > -p and hence
(x, g(x)) epi g fq pll$. By definition of 0, there exists (v,) epi f such that

Ig(x) 1 <-- cp(f g) q- .
From this it follows that

g(x) >_ cgp(f g) >_ f(v) cp(f, g) >_ --cp(f, g) ,
since f _> O. It now remains to combine this inequality with g(x) <_ inf,a g + e and let
e 0 to conclude that inf,a g _> -tp(f, g). 0
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The preceding proof has a simple geometric interpretation. The assumption that
infpB g[ < p tells us that we need only be concerned with what happens in plI x [-p, p].
The argument relies on the fact that the projection prjR (x, c) a is a contractionwith
respect to p, i.e., for any sets At, A c px I-p, p], (prjr At, prj A) < 0(at, a).

Remark 3.2. When 9 is proper and bounded below, inf 9 is finite, and for p suf-
ficiently large, inf, 91 < P. Indeed, inf, 9 is monotonically decreasing as p -. .
Since for all x, 9(x) >_ lim,-.oo inf, 9 >- inf 9 (for p large enough z pI), we ob-
tain limo_oo info 9 inf 9- Thus the condition infp 91 < P is not restrictive; it is a
"minimal" assumption that will allow us to estimate inf f info 91 in terms of 0go.

COROLLARY 3.3 (from local to global minimization). LetX be a normed linearspace,
f, 9 X --, ]Rproper with rain f f(0) 0 and 9 bounded below. Given e > 0, let pe be
such that

Then

inf g < inf{ g(z) z e p } < inf g + e.

[inf g min f[ infgl (f, ) + , where % "= max [p, inf g + ].

Proof. The assumptions yield the following string of inequalities:

-% < -(I inf gl + e) < inf g < inf.r,B g < infp, g < inf g + < 7e.

Hence inf.r g[ < %. The theorem implies that inf. gl <- eg, (f, g), and conse-
quently,

-o.r (f, g)- < infT, g- < infp.B g- < inf g < infT. g < 0.r. (f, g),

i.e., inf g] < 7, (f, g) + e. [:]

Note that in order to satisfy the condition inf g < inf{ g(x) Ix E p] } < inf g + in
Corollary 3.3, it may be necessary to let p r c when 0, for example, if g is not coercive.

Remark 3.4. We can replace the condition infp g] < p in Theorem 3.1 by"infp g >
-p and 0p(f, g) < p" without affecting the conclusion. In fact, we can show that these
assumptions are very nearly the same. More precisely, under the same hypotheses as in
Theorem 3.1,

(infp g > -p, 0p(f, g) < p) infp gl < P (infpB g > -p, cp(f, g) < 2p).

To obtain the first implication, it suffices to show that infp g < p. The definitions
of 0 and (0, 0) E epi f fq p yield d((0, 0), epi g) < p. Thus there exists (u, a) epi g
such that Ilull < p and < p, i.e., u e p and p > a > g(u) > inf g.

To obtain the second implication, we need only show that d(f, g) < 2p. Let (v, 3) e
epi f fq pI. Since [infoe g[ < p there exists u p] such that -p < g(u) < p, i.e.,
(u, p) epi g and

d((v, ), epi g) <_ max [[Iv all I/3 p[] <_ 2p.

This shows that e(epi f fq plY, epi g) _< 2p. To see that e(epi g N p, epi f) _< 2p, let
(u, a) epi g N p] and observe that d((u, a), epi f) <_ d((u, a), (0, 0)) <_ p <_ 2p.

To be able to consider any possible perturbation of f and still obtain an estimate
of the distance between the minimizers of f and g, we must know something about the
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geometric shape of f in a neighborhood of a minimizer. We need to control the "curva-
ture" of f. We are going to assume that this can be achieved radially, i.e., that we know
of a function R+ ---, + with (0) 0 and of a neighborhood of argmin f, say
(, p) with p > 0, such that

We refer to such a function as a conditioningfunction and call . a C-minimizer of f.
The terminology has been chosen to suggest a certain relationship with the notion of
conditioning in numerical linear algebra; the connection will come to light after the dis-
cussion in 5. In the canonical case, it means that f > (11" II) on some neighborhood of
zero. Of course, 0 is then such a function, but, as we shall see, no information can
be gained from such a universal lower bound for f f(.). The best estimates will be
obtained by choosing as large as possible; a problem that admits a conditioning func-
tion that is strictly increasing could be called well conditioned. Figures 1 and 2 illustrate
two typical situations.

f(xf) x slope

f

2p

FIG. 1. (r) 11.

f(xf)

xf

2p

FIG. 2. (r) er2.

When (r) fr for some . > 0, the function f is sharply pointed at (see Fig. 1);
this will lead to Lipschitz continuity properties for the optimal solutions. When (r)
-r, the function f may be smooth at (see Fig. 2); this will only allow for Hflder-type
continuity.

THEOREM 3.5. Let X be a normed linearspace and f X - ]Raproperfunction such
that min f 0 f(O). Let be a conditioningfunction such that (11" II) <- f on 2pf]
for some pf > O, andfor t e +, let =(t) := inf{(s) + It slls rt/}. Given any
p e (0, pf], for allfunctions g" X -- ]R such that

argmin g f’l p] @, [inf g[ < p,

we have

=(11 11) < 4d (f, g) V: E argmin g Iq p].
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More generally, given p (0, pf for all g X such that inf,a l < p, we have

Proof. We have already shown in the proof of Theorem 3.1 that axgmin g f3 plt # O
and inf1 < P imply infaa 1 < P, and that consequently it suffices to consider the
weaker hypothesis, inf,a gl < P.

By assumption, Ig(5:)l infaa el < P, and thus (, ()) epi y fq p]. This means
that d((, y(5:)), cpif) _< d,(f, ); cf. Fig. 3. From Theorem 3.1, we know that I()l
infaa yl < da(f, g). With the triangle inequality, this yields d((, 0), epi f) < 2da(f, g).
Let us now observe that d((5:, 0), epi f) _< [I (5, 0) (0, 0)l[ -< P, and that for any (V, 7)
X x ]R with II(y, 7)[I >- 2p,

II (+, o) (, )II mx [11 11,
mx [1111 I1+11, I1] mx [1111 P, I1]

>_ max [llll- , Il- pl >- m [llll, Il] >- .
Hence, d((a, 0), epi f) d((:, 0), epi f N 2p]). Now, since (ll" II) f on 2p] (recall
that p < pf), d((, 0), epi f) > d((, 0), epi (11" II)), and in turn this implies

d((, 0), epi (11" II)) 2 p(f, g).

FIG. 3. Functions f, g, and (11" II).

Next we calculate a lower bound for d((5:, 0), epi (11" II))"

d((5, 0), epi (11. II)) inf{ max[ I1 11, I1] I -> (1111) }

in.f{ max[ IIz 11, (llzll) }

> 1/2 in.f{ IIx 11 + (llxll) }

_> 1/2 in,f{ Ilzll- IIll + (llzll) }
12(1111).
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Thus

=(1111) d((, 0), epi (11" II)) 2(L 9),

which yields the asserted inequality.
Remark 3.6. In certain situations, when some rough bound is available on the dis-

tance between (0, 0) and (&, inf g) with & E argmin g, it may be possible to relax the con-
dition (11" II) -< f on2, to one requiring that the inequality only be satisfied on pi.
More specifically, if max[ I111, inf gl] < Pf/3 and 0pf (f, g) =: r/ < 2pf/3 and there
exists a conditioning function (11" II) that minorizes f on plY, we can reach the same con-
clusion as in Theorem 3.5. The argument is essentially the same as in the proof of The-
orem 3.5, except that we need to show that d((5, inf g), epi f) d((, inf g), (epi f)p),
where again inf g g(5). To do this we proceed as follows. Since these conditions imply
those of Theorem 3.1, we know that (:, inf g) E (epi g). For any (x, a) p, we have

I1(, inf y) (z, inf Y)ll max[ I1 11, inf g al]
>_ mx[ I1=11 p/3, I1 p/3]

_> I1(=, )11 p/3 >_ 2p/3,

where we have used the assumption that max[ I111, I1] p/3 to obtain the first in-
equality. The distance from (5, inf g) to any point of the epigraph of f outside the p-
ball is greater than or equal to 2p/3. By assumption, tg,(f, g) =: ? < 2p/3, hence
d((:, inf g), epi f) < r/< 2p/3, and d((, inf g), epi f) d((, inf g), (epi f)p).

As already suggested by the examples in Figs. 1 and 2, the estimates for 11511 depend
on the properties of the conditioning function we are able to come up with. We discuss
this in further detail in 5, but there are a few observations that are in order at this point,
in particular about the relationship between and . Let us note that is itself a
conditioning function and that from the definition of % it follows that _< . This
means that, in general, the inequality (1111) _< 4alp(f, g) yields a weaker bound for

I111 than if one could assert (1111) _< 40p(f, g). But, in most "practical" situations, it
turns out that =- % at least in a certain neighborhood (in lR+) of 0. In fact, we are
only interested in comparing and at the point 11511. If is finite valued, convex on
JR+, or at least convex on [0, 2p], and (t) > 0 for t > 0, then must be monotonically
(strictly) increasing and directional derivatives exist at every point in +. Let

denote the right-hand side derivative of .
In such a situation, we have

(t) (t) whenever _(t) < 1,

and thus 4 on [0, tt] where tt := sup{t -(t) < 1} [26]. Assuming that IIll
Theorem 3.5 can also be interpreted as asserting that (1111) -< 4(f, g), or even that

I111 _< -1(4(f, g)), since is then invertible. We summarize these observations in
the following corollary.

COROLLARY 3.7. If in addition to the assumptions in Theorem 3.5, the conditioning
function 42 is finite valued, convexon [0, 2p], > Oon (0, 2p], and -(1111) -< 1, then

I111 _< -’(4d(y, )).
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If b(t) 7tP for7 > O, p > 1, and p <_ 1/2(p7)1/1-, then IIll - ((4/7)cp(f,9))1/. In
particular, ifp 2,

Ifp t 7t, then

I111 (4/’)(f, g) with ’7’ rain[3,, 1 ].

Proof. The discussion preceding the corollary provides the proof when p(t) /tv
and p > 1. When b 71" I, b 7’1" and we can apply the theorem directly.

The remaining statements of this section are here for convenient reference. We
rephrase the basic results for the case when the reference function f does not necessarily
achieve its minimum at 0. We will rely on translates of f and 9. Let f be such that
argmin f =: xf and let cf f(xl) and define the translation mapping ’f as follows:

for a function h X I, (’h)(x) := h(x + xf

The function (’ff) then has a minimum at 0 and (-j,f) (0) 0. This leads to the following
reformulation of Theorems 3.1 and 3.5 and Corollary 3.7, which we now combine in one
statement.

THEOREM 3.8. Let X be a normed linear space, f X ]R a properfunction that
achieves its minimum only at xf with af := rain f f xi ), and p a conditioningfunction
such thatfor some pf > O,

f(z) > cf + (llx zyll) whenever IIz zsll _< 2pf.

Let U(t) := inf{b(s) + It s s +} and denote by the translation mapping h -h(. + zf cf. Given p E (0, pf], for allfunctions 9" X ]R such that

argmin 9 r (xf, p) O, inf 9 min Yl < p,

we have

min 9 min fl -< cp(Tff, Tfg),
<_ 4c,(rff,-fg) vc gmin9n(zf,p).

More generally, ven p (0, pf], for all 9" X such that inf(zs,o) 9 inf fl < P, we
have

inf(,)g min f[ d(ff, fg),
=(11- zll) 4d(s$, sg) V gmin(t, g.

Moreoveg if is conv 0 < (t) < for t (0,), and (11- xsll) 1, the
preceding inequaliff can also be wKtten as

I1-11 -(4do(rfS, rsg)) V E argmina(,,o)g.

Remark 3.9. e best bounds, of course, are achieved by choosing as large as
possible. We shall come back to this in 5. But, in paieular, this applies to the case
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when we know of conditioning functions bf and bg, with zf the unique bf-minimizer
of f and z the unique b-minimizer of g. Let us also assume that the conditioning
functions pf,b are finite valued, convex, and positive on (0, o), and that

ax[ (s)’+(lls 11), ()(lls 11) < .
From the theorem we obtain

I1 11 mini b71 (4t,(r/f, rig)) b-x (4tp(’rgf, rgg))],

which shows that all other quantities being equal, the better bound is obtained with the
larger of the two conditioning functions.

Remark 3.10. Let us stress the fact that to applyTheorem 3.8, we only need insist that
one of the two functions f or g have a unique minimum, say f. When g is a perturbation
of f, it could very well happen that argrnina(,) g is not a singleton. Theorem 3.8 tells
us that, under the appropriate conditions,

argrnina(=,,p g c (xy, b-l(cp(’rff, "rig)) ).

Finally, Theorem 3.8 can be extended to a statement about global optimization.
COROLLARY 3.11. Let X be a normed linear space and f X --. IR a properfunction.

Suppose that f achieves its unique minimum at zf with af := f(zf), and that there exists
a conditioningfunction b such that

f(x) f(xf) q- (11 fll) whenever I1 fll 2p

for some p > O. Let "rl be the translation mapping: h H h(. + z) af. Let g X ]R

be a properfunction that achieves its global minimum at such that

I1 zsll <_ , If(x/) a()l < p;

then

Inf f inf1 (f,) and =(11 11) 4d,("ryf, "rfg),

wherefort E R+, b(t):= inf{(s) + It- ll
Proof. Simply note that since & E l(xi,p), g(&) inf g < infa(,)g < g(&).

This, with inf f inf gl < P, guarantees that the assumptions of Theorem 3.8 are
satisfied.

4. Examples. The most important potential applications of the results of 3 lie in
their use for obtaining error estimates when dealing with approximation schemes for
infinite-dimensional problems (control problems, stochastic optimization problems, vari-
ational inequalities, etc.). They also provide the tools for asymptotic analysis, such as in
the development of large deviations results for stochastic optimization problems [29],
as well for the asymptotic study of nonclassical differential equations. It is not possi-
ble, in the framework of this study, to pursue such developments. We will illustrate the
application of the results of 3 in two simple situations. The first example involves the
projection of a point on a moving convex set; this problem arises in many guises in var-
ious applications, for example, in mechanics [33]. The second example confirms, at the
theoretical level, what is already known experimentally about the slow convergence rate
of penalization methods in nonlinear programming.
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Example 4.1. Let X be a Hilbert space, (7 a nonempty closed convex subset of X,
and zo an arbitrary point in X. The optimization problem

minimize IIx xoll for x E C

has a unique solution pc(zo) called theprojection of zo on C. With

f(x) IIz zoll + c(x) { I1 oll if C,
cx otherwise,

we are in the setting of2 and 3. It is well known that Zo pc(zo) is a contraction. We
are going to consider pc(zo) as a function of (7 measuring the perturbations by means
of the p-distance. We show that if (7 and D are two nonempty closed convex sets and

p >_ max[ 1/6, d(xo, C) + d(xo, D)],

then

Ilpc(o) PD(O)II 5p1/2 d(C pc(zo),D pc(zo)) 1/2

To obtain this inequality as a consequence of the basic stability results, we use the fact
that

PC(Zo) E argminx{ I1 o11= C),

as follows from

(llpc(mo) moll lira moll) (llpc(mo) moll lira moll),

We are going to apply the results of 3 with f := I1" -zoll + 6c, a := I1" -zoll + 6o,
and b(t) tz as the conditioning function. Note that we always have

f(z) >_ f(PC(zo))-b IIz- pc(zo)ll.
This is certainly the case if z C, and if z E C’, then this follows from a basic trigono-
metric identity for triangles that yields

IIx xoll 2 IIpc(xo) xoll 2 + IIpc(xo) xll 2 211pc(xo) xoll(llpc(xo) xll)cos,
where is the angle between the line segments [xo,pc(xo)] and [pc(xo),x]. Because
pc(xo) is the projection of Xo on C, x C, and C is convex, it follows that 7r/2 <
and thus cos < 0, i.e., IIx xoll 2 >_ IIpc(xo) xoll 2 + IIPc(xo) 112. This tells us that
pc(xo) is a C-minimizer of f.

From Theorem 3.8 and Corollary 3.11, we have

with

7"ff(c) I1 (o pc(o))ll= + 6c-o)() I1o pc(o)ll,
(m) "= IIx (too pc(xo))ll + 6D-(o)(m) Ilxo Pc(xo)ll.

It remains for us to show that op(7-yf, -yg) < 6pdp((7 pc(zo), D pc(zo)).
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Let Co "= C pc(xo), Do "= D pc(xo), and &o := xo pc(xo). First note that
t(Co, Do) < 2p. To see this, pick x (Co) and let & POo (x). Then

I1- 11 I1- pZ>o(o)ll I1- oll + I1o- pZ>o (o)11
_< I111 + (lloll + d(o, D)) _< ,

where the first term in the penultimate expression is less than or equal to p because
x (Co) and the second term is less than or equal to p by definition of p.

To show that a(Tj,f, ’j,g) < 6pd(Co, Do), we use Theorem 2.2(b) (the Kenmochi
conditions). We show that for every x E (Co)p with IIz oll I1oll _< p, there exists

Do such that [Ix-ll < 6ptp(Co, Do) and II-0112- I10112 _< IIx-0112- I10112 /
6pa,(Co, Do). Since (Co), c Do + alp(Co, Do)l, there always exists e Do such that

I1 xll <_ o(Co, Do), and afortiori < 6pt,(Co, Do) since p > . For this , we have
that

-I1 oll -I1 11= + <- , o>
I1 11 + 11 11" I1 oll

_< I1 zll(ll xll / 211xll / 211o11)
< cp(Co, Do)(2p + 2p + 2p) <_ 6pdp(Co, Do),

where we have used the inequalities I1 zll (Co, Do) < 2p. We can repeat the
same argument, interchanging the roles of Co and Do, to show that for every x (Do),
with IIx 0112 -I10112 _< p, there exists e Co such that IIx 11 <- 6p(Co, Do) and

I1- oll2 -I1oll2 <_ IIx- oll2- I1oll 2 + 6pt(Co, Do).
We can also give a more direct derivation of this bound for IlPc(zo) -PD(zO)II that

does not (explicitly) rely on the general results of 3. It is included here because it yields
a better "constant." We assume now that p > Ilzoll + d(zo, C) + d(zo, D), From

IIpc(=o)ll <_ I1=oll + d(xo, C)<_ p, IlPo(o)ll-< I1oll + d(xo, D) <_ p,

follows the existence of E C and D such that

with

Ilpo(o) Zll d(pD(zO), (7), IlPc(o) Yll d(pc(zo), D),

IlPc(o)- 911 -< d(C, D), IIPD(O)- 11 < d,(C, D).

The classical optimality conditions for pc(xo) and pD(xO) tell us that

(xo pc(xo), ; pc(xo)) < 0, (xo pD(xo), 1 pD(XO)) < O.

Adding these two inequalities and regrouping terms, we have

Ilpc(o) po(o)ll _< (pc(o) o, po(o) ) + (p(o) o, pc(o) )
_< Ilpc(o) xoll IIp(xo) 11 / Ilpo(xo) oll Ilpc(xo) 11
<_ max[ IIPD(O) 11, IlPc(Xo) 11]" (d(xo, C) / d(o, O))
<_ pcp(C, D),
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where the last inequality follows from the definition of p. In 6, we return to this example
and show that this latter bound for Ilpc (z0) -po(zo)II is actually attained and is the best
possible.

Example 4.2. Penalization. Let fo X --. be a locally Lipschitz function to be
minimized on a set (7 c X. We approximate the problem

minimize f(x) := f0(x) + 6c(x),

where 6c is the indicator function of C, by a problem of the type

minimize fo(z) := fo(z)+ o(z),

where { qo0 X IR+, 0 > 0 } is a parametrized family of functions such that
(i) 0 0 on C;
(ii) for some p > 1 and a > 0:0 > aO[d(., C)]p.

We are going to let 0 tend to oo. Fix p > 0 and define

A := sup{ Ifo() fo()l/(ll 11) I111 < P, I111 < P, },

#, := sup{ Ifo()l IIll -< P }.

We will show that for some %, (calculated below), we have

tp(f, fo) < "YpO-lIp.

Moreover, with . E axgmin f and zo axgmin fo, and assuming that there exists a
finite-valued conditioning function such that

fo(:) fo(.) >_ (11:- :11) v:’ c,

we shall also prove that for 0 sufficiently large and pl as defined below,

=(llz0- 11) _< 47.,0-1/ for all xo E argmin fo,

i.e., xo converges to at an exponential rate. Since fo < f, e((epi f),, epi fo) 0 with
e the excess as defined in 2. The Kenmochi conditions (Theorem 2.2) will provide us
with an upper bound for e((epi fo),, epi f). We start with a point I111 _< p such that
If0()l <_ p. By the definition of fo and 0, it follows that

fo(Sc) + aOd(, C)p <_ p.

Because fol < on p, we have

d(, C) < [(a0)-l(p + #p)]/P,

and for every 0 < e < 1, there exists e C such that

I1 11 _< o-/P[-(p + .)]/P
The upper bound for f() is obtained directly from the preceding inequality and the
local Lipschitz property of fo. Since (7,

f(e) fo(e) < fo() -t- Am lie 11,
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where pl p + [(aO)-(p + #p)]x/, + 1. Ifwe now take into account that fo < fo and
that o0 > 0, we obtain

f(ce) fo(c) -I- O--1/P)ipl [ot--l(p-Jr IAp)] lip "
This, and the bound on II, show that the conditions in Theorem 2.2(b) are satisfied,
and thus dp(f, fo) < 7p0-x/p with

:= + ]).

The inequality b(llz0 l]) -< 4%10-/’ for some conditioning function p is obtained
from the preceding result via Theorem 3.8; to apply Theorem 3.8 recall that we need to
make the translation from fo to fo(" + ) fo(), and thus A needs to be replaced by
A,/IIII, and # by #/,/llll/lfo()l"

5. Conditioning functions. We introduced conditioning functions b’+
(with p(0) 0) in 3 to capture the (radial) shape of a function f in the neighborhood
of a minimizer . and we defined, in terms of p, the generally stronger notion of a p-
minimizer: axgmin f and for some p 0,

(5.1)

The basic inequalities in Theorems 3.5 and 3.8 rely on the conditioning function p, more
precisely on b, to obtain an upperbound on the distance between and a minimizer 5 of
a function g (in a certain neighborhood of f). Clearly, the best bounds will be obtained
with the "largest" possible conditioning function for which the preceding relation holds.

PROPOSITION 5.1. Suppose (X, I1" II) is a normed linear space, f X IR, and. E axgmin f. Then, given p > O, there exists a largest conditioningfunction py, such that

In fact,

bf,e(O) (inf{f(y)x3 f(x) Il -  11- 0} if o s [O, p],
for O>p.

Proof. Simply notice that if (Pi)iez is the family of conditioning functions for which
(5.1) holds, then supiez Pi is still a conditioning functions and thus pf, supez p.
To see that the expression for pi, is valid, one verifies that the expression defines a
conditioning function and that any function that is larger on [0, p] will fail to satisfy (5.1)
at some point x’ l(, p). [3

The function pf,e is called the radial regularization of f at because the function
is the largest radial function that minorizes y f(z / y) f(z) on

1(., p); pf, plays an important role in the theory of Orlicz spaces; cf. Fougres [22]. In
general, pf,e is not an increasing function, but this is always the case if f is convex and

is unique. When f admits a unique minimizer, instead of p,,, we simply write pf for
the radial regularization of f at .

PROPOSITION 5.2. Suppose (X, I1" II) is a normed linear space, f X IR is a convex
function, and ai argmin f. For given p > O, the radial regularization pf of f at my is
strictly increasing on [0, p]; in fact, 0 0-lpf (0) is an increasingfunction.

Proof. The proof is based on an elementary property of convex functions. Let 0 <
0 < 0z < p, and g be a point in X such that zll Set gx "= (1 O/O)z +
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(Ox/O2)W. Then IIw- ll- (ox/O2)ll 2- ll ox. Hence, bj,(0x) < f(vx)- f(c),which
by convexity of f yields

01 ) 01 01bf(01) _< 1 22 f(:c)+ 22f(y2)- f(a:) <_ 22(f(y2)- f(a)).

This inequality holds for any y2 such that IIY2 xl] 02; it follows that

01 bf (02)

Thus, 0 0-,(0) is an increasing function on [0, p]. We observe that ,(0) > 0when
0 # 0 (since xi is a unique minimizer), from which it follows that 0 Cj,(0) is strictly
increasing on [0, p].

Remark 5.3. Even if f is convex and z, is the unique minimizer of f, b, may very
well fail to be convex. If it is important to work with a convex conditioning function,
one could choose for b the convex closure of bf, i.e., the function whose epigraph is the
convex hull of epi bf.

The notion of aforcingfunction, which we encounter in the study of well-posedness
as well as in the design ofnumerical procedures for nonlinear problems, is closely related
to that of a conditioning function. A function ii li+ is a forcing function if
(0) 0 and (0) 0 implies 0 0. Of course, a forcing function is a conditioning
function. Moreover, if is a forcing function and z, is a o-minimizer of f, then z, is
the unique minimizer of f on (zf, p) for some p > 0 and every minimizing sequence
that lies in (xf, p) converges strongly to zf. This means that the minimization problem
is wellposed la Tykhonov [48]; Zolezzi [52, Cor. 1] noted that a minimization problem
is well posed if and only if there exists a forcing function so that zf is a -minimizer
of f. Although the basic results have been stated in terms of conditioning functions, the
practical use of these results will almost always depend on being able to come up with a
conditioning function that is in fact a forcing function.

When faced with a particular optimization problem with possibly a large number
of variables, the construction of an appropriate conditioning function could be quite
involved, the main reason being that the point xf that actually minimizes f is a priori
unknown. It is thus important to exploit the global properties of f that will guarantee
the existence of a useful conditioning function. This brings us to examine the notion
of uniform convexity. An abundant literature has been devoted to this subject; see, e.g.,
Zalinescu [51]; Vladimirov, Nestorov, and Chekanov [49]; Sonntag [47]; and Dontchev
[18] for the role played by uniform convexity in the analysis of stability questions in op-
timization and optimal control; for a recent survey, including new results, consult Az6
[12]. For simplicity’s sake, we are going to limit our observations to the case when X is
a Hilbert space.

For 7 > 0, a function f X is 7-uniformly convex if for all z, dora f and
all A [0, 1],

f((1 ,X)c + ,,1) <_ (1 )Qf(zc) + ,Xf(c1) 7,X(1 ,X)llc clll 2.
PROPOSITION 5.4. Let 7 > O, and f X -- ]i be a proper, lsc, 7-uniformly convex

function, with X a Hilbert space. Then f reaches its minimum at a unique point that
satisfies

f(c) > f(cf) + zf[I z vc x;
i.e., zy is a 7-lI" 2-minimizer of f
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Proof. Let Of(z) denote the set of subgradients of f at z. When f is 7-uniformly
convex, we have that for all z, y a dora f and v Of(z)"

f(y) f(x) d- (v, y x) -1- 11 yll2;

see [12] for details. From this the assertion follows directly since xf E axgmin f implies
o of(f).

DEFINITION 5.5 [40]. For f X -, JR, is a strong local minimizer of f if there exists

7 > 0 and a neighborhood V of such that for all e V, f() >_ f(e) + "lle ll.
A strong local minimizer is a C-minimizer of f with (r) 7r

z for 7 > 0. When
analyzing sufficient conditions for optimality in terms of second-order derivatives, we
are naturally led to the notion of a strong minimizer [41]. Recent results of Rockafellar
[41], [43] allow us to characterize the largest value of 7 in terms of a lower bound for the
second-order derivatives for a quite large class of functions. A lsc function f 1’ - IR
is epi-differentiable at x if the functions h (1/t)[f(x+ th) f(x)] epi-converge as t 0
[40]. This epi-limit is the epi-derivative of f at x and is denoted by f’ (with f’ (0) > -).
Avector v is an epi-subgradient at x if f’ (y) > (v, y) for all y ]R’. A function f is twice
epi-differentiable at x relative to v if it is epi-differentiable at x and the functions

,v;t(u) t- [f(c + tu) f(x) t(u, v)]

epi-converge as t 0. The epi-limit is the second-orderepi-derivative and is denoted by f",v
(with f", (0) > -). When f is epi-differentiable at x relative to every epi-subgradient
v (at x), f is said to be twice epi-differentiable at x.

PROPOSITION 5.6 [44, Thm. 2.2]. Let f IR" I be lsc and c a point at which
f is finite and twice epi-differentiable. Suppose zero is a pseudo-gradient of f at and
f’,o (u) > 0 for all u O. Then is a strong local minimizer of f. Moreover, with /o "=

minlI= fff,o (u), we have

f(Y) f(:) q- 1/2r011 11 + o(11 11).

Thus, for all "y < "Yo/2 there exists p. > 0 such that

f(y) f() -t- llY ll2 Vy e (, p).

To conclude, let us also examine the relationship between uniform convexity and the
conditioning number associated with a nonlinear optimization problem. For an intro-
duction to nonlinear conditioning, cf. Lemaire-Misonne [32], for example.

Let X be a Hilbert space, f X , and z0 E argmna(o,p) f for some t9 > 0. Let
e > 0 and assume that for all linear perturbations f- (v, .) of f with Ilvll _< there exists
z a unique local minimizer of f (v, .). The conditioning number associated with f at
z0 (relative to linear perturbations) is the (positive) number defined by

Ct(xo; f) "= lim sup limsup
xo I111< I1,11 ,--.o Ilvll

If f is convex and f* is the conjugate of f, the preceding assumptions are equivalent to:
the mapping Of* X X is single-valued for all Ilvll _< , and

Ct(xo; f) := limsup IlOf* (v) Of*(o)ll
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The following proposition is well known in nonlinear analysis; we sketch out a proof for
the sake of completeness.

PROPOSITION 5.7. Let X be a Hilbert space, f X --. IR. Suppose that f is a proper,
lsc, 7-uniformly convexfunctionforsome 7 > 0 and zy the (unique) minimizer of f. Then

f) < 1/27.
Proof. The optimality conditions tell us that 0 e Of(xf) and v e Of(xv) for all

Ilv[I <_ e. And thus, from -y-uniform convexity, it follows that

Applying the Cauchy-Schwarz inequality yields  zll)/llvll < 1/27 for all I1 11 < ,
from which the bound for Cl(zf; f) follows immediately.

The upper bound for C(zy; f) is tight; simply consider the case when the Cauchy-
Schwarz inequality turns out to be an equality. When Of is linear, note that the condi-
tioning number does not depend on the point zf, and the definition of the conditioning
number is then consistent with that commonly used in numerical linear analysis.

6. Evaluating bounds. This last section is a grab bag of examples. They highlight
various features of the basic results in 3. In particular, we shall again be concerned with
Example 4.1the projection of a point on a moving convex setto underscore the fact
that the upper bound for ll5 zf[I (57 argmin g) in Theorem 3.8 is a "best" possible
bound.

Let us begin with a simple example where we utilize Theorem 3.5 to estimate a.
Example 6.1. Let X IR, f(x) x2/2, and

1/2x2 if x _< -20,
-Ox if-20 <_ x < 0,

ifo< <i ,
1/2x-20 if 20_<x,

for 0 a positive parameter that will be allowed to go to zero; see Fig. 4.

-2O

f

FIG. 4. Estimating cp(f fo ).

The functions f and fo are convex continuous functions that are piecewise C. They
achieve their minimum at x0 0 and xo 0 (with value -09/2). Thus argmin f
argmin fol 0. We have that

sup If(x) fo(x)l 202.
xER
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From Corollary 3.7, it follows that

0 I1o- 011 _< 8d(/,

From the definition of cp(f, re) < Ill folloo 0. Thus (f, f0) is approximately
02 with varying between and 2.

This example also provides us with an illustration of the results of [7, 5] that re-
lates the distance between subgradient mappings and the epi-distance between func-
tions. Both f and fo are differentiable with

x if x _< -20,
-0 if-20 <_ x < O,f(x)- x-O ifO <_ _< 2,
x if 20 < x,

and f’(z) z. For p sufficiently large, cp(gphf’,gphf) 0. Of course, this is in
accordance with [7, Thm. 5.2], which asserts that when t9 is large enough, d(gph Of,
gph Ofo) < n(ca(f, fo)) x/2 for some "constant" n that depends on p.

The next example is also elementary but this time it involves nonsmooth convex
functions (with nonsmoothness occurring precisely at the point at which f achieves its
minimum).

Example 6.2. Let X ]R, 0 a positive parameter (that will go to zero), and for some
p ( [1, o),

llzlPfo(z) 0P-:lzl +
0(1 0"-1- 01 +

The functions fo and go achieve their minimum only at xy(O) 0 and xg(O) 0; see
Fig. 5.

0

FIG. 5. Calculating the p-Hausdorffdistance.

Hence Izy(0) zg(0)l 0, while doo(fo, go) := sup If0(z) g0(z)l 0p. Thus,
Iz,(0) z(0)l doo(fo, o)/p. From [7, 3], it follows that

cp(fo,go) < do(f,g) < (1 +0p-1 + pP--1)dp(fo,o)
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for all 0 > 0 and p > 0. In terms ofTheorem 3.5, we see that zf(O) 0 is a b-minimum of
fo with p(r/) (1/p)rl. And, indeed, the largest conditioning function k (independent
of 0), such that for all z, c, fo(z) > fo(O) + (11), is (1//9)1. I! [3

The next example shows that the exponent 1/2 obtained in Example 4.1 (the projection
of a point on a moving set) is the best possible. We shall show later that the geometry
of the space plays a determining role in this. This exponent 1/2 comes up in a number
of related, but more specialized, results: the sweeping problem (le problme de rafle)
studied by Moreau [33], in the work on isometries for the Legendre-Fenchel transform
by Attouch and Wets [5], in thework on approximation for the solutions of elliptic partial
differential equations by Rabier and Thomas [35], in approximation and perturbation
analysis of optimal control problems (Dontchev [18]), and when dealing with specific
perturbations in nonlinear programming (Daniel [16] and Schultz [46]).

Example 6.3. Let X ]i with the euclidean norm. Let Co AEo and Do
AFo, both depending on the angle (parameter) 0 as in Fig. 6; AFo is a chord, AEo is
a horizontal line segment, and Eo lies on the same vertical axis as Fo, both Fo and Eo
converge to A as 0 --. 0.

FG. 6. Projection on a convex set.

The point z0 (0, 0) is projected on these convex sets: Pco (zo) A and poo (z0)
Ho, i.e., IlPc (z0) p (z0)ll sin 0, assuming that 0-- is of length 1. On the other
hand, for p sufficiently large, d(Co, Do) d(Eo, Fo) 2sin 0, and thus Ilpco(z0)
poo ( 0)11 Do) Thus, Hflder continuity of order 1/2, as obtained in
Example 4.1, is the best possible.

To see how the exponent 1/2 is related to the Hilbert structure of the space X, we
make use of the fact that Clarkson’s inequalities characterize the spaces of type p, like
R’, I1" II,) with Ilzllp IxilP) or/’(N),/;’(f), W’,P(f) (see [1, Thm. 2.28]):

ifp >2"_ II z.,,+ ,v
2

if p<2"_ II u+v2
p

_< 1/211 11 + 1/211 11 - x;

p

where p’ p/(p 1) is the conjugate exponent of p. The functions f 6c + I]" -x0
when p > 2 and f 6c + I1" -x011’ when p < 2 satisfy the same type of inequalities.
Consequently, if X is a space of type p with p e (1, oo), the functions f defined above
are proper, lsc, convex functions that satisfy: for all u0, u dom f and all , (0, 1),

f((1 .,)’G0 -{- ///,1) --< (1 X)f(z,0) + Xf(l) )(1 ))b(ilz,0 Z*l lip)
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for p’+ IR+ defined by

1 1
rl
p,(r/) "=

2,_2
ifp _> 2 and b(r/) :=

2p,_2
ifp < 2.

Note that p(0) 0 and p(r/) > 0 if r/> 0. It is shown [12] then that for all z0 E dom f
and vo Of(no),

It follows that for p > 2, pc(xo) e argmin 6c + I1" -x011 o is in fact a C-minimizer of

f with (r/) 2z-’r/. Similarly, if p < 2, then pc(xo) argmin 6c + I1" -x011 ’ is a

C-minimizer of f for (y) 2z-’’y’. The next proposition then follows from Theorem
3.5.

PROPOSITION 6.4. Let X be a Banach space oftype p (say/)’(f),/P(N)...) with 1 <
p < . For xo X and C nonempty, closed, and convex, the mapping C pc(xo) is
HSldercontinuous with exponent 1/p ifp >_ 2 and with exponent 1/p’ (p- 1)/p ifp <_ 2.

1/2

2 P

FIG. 7. Variation ofthe Hflder exponent.

Figure 7 shows the variation of the HSlder exponent as a function of p. It is in the
Hilbert case that we are able to obtain the best stability result; the Hilbert metric is
well suited to approximation theory. In contrast, when p 1 or p the HSlder
exponent goes to zero. Indeed, it is well known that in a Banach space of type 11, L1,...,
the solution of a minimization problem involving the norm may not be unique because
the norm is not uniformly convex. Let us consider the case X ll’ equipped with the
/-norm. Then pc(xo) is, in general, a nonempty convex set.

It may be tempting to conjecture that when Co C with respect to the Pompeiu-
Hausdorf distance, then Pco (xo) pc(xo) for the Pompeiu-Hausdorff distance. But
that is not the case, as can be seen from the following simple example: Let X IR2,
Ilxll Ix l + Ix21, x0 (0, 0), c { 1) + (I )(1, 0) IA [0, 1] }, and Co
{ A(0, 1) + (1 A)(1 + (1/0), 0) lA e [0,11 }; cf. Fig. 8.

When working in a nonreflexive Banach space, we show in [8] that the notion of
approximate e-solution still enjoys good stability properties.

Acknowledgment. We are particularly thanldul to Dominique Az6 (Perpignan),
Alain Foug/res (Perpignan), R. T. Rockafellar (Washington), and Pierre-Jean Laurent
(Grenoble) for many comments and suggestions.
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G. 8. Projections and the Hausdorffmetric.
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PARTIAL-UPDATE NEWTON METHODS FOR UNARY, FACTORABLE, AND
PARTIALLY SEPARABLE OPTIMIZATION*
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Abstract. Amodified Newton method for solving unary optimization problems that is based upon only par-
tially updating an approximation to the Hessian matrix at each iteration is developed using rank-one updates.
Two partial updating criteria are presented: the first enables the method to retain the quadratic convergence
property of the classical Newton method, while the second enables it to achieve the superlinear convergence
property of quasi-Newton methods. Globally convergent modifications of the partial-update Newton method
are also given. Finally, the methods and proofs of their convergence are extended to partially separable and
factorable optimization problems.

Key words, unary function, partially separable function, factorable function, inexact Newton method,
partial-update Newton method, rank-one update
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1. Introduction. Consider the unconstrained nonlinear optimization problem

(1.1) min f(x).

Following McCormick and Sorer [20] we call problem (1.1) a unary optimization problem
if f(z) takes the form

(1.2) f(x) U (c,(x)),
i=1

where, for i 1,..., m, ci(x) ax, ai is a constant vector of size n x 1, and Ui(.) is a
unaryfunction, i.e., Ui (.) is a function of a single argument. Note that a separable func-
tion f(z) -i=1 fi(zi), the objective function of the linear robust regression problem
(e.g., see Byrd [1]), and the dual objective function of the entropy problem in information
theory (e.g., see Eriksson [5]) are of the form (1.2).

Let us assume that the unary functions Ui(.), i 1,..., m, in (1.2) are all twice
continuously differentiable. Then, using the chain rule of differentiation, the gradient
vector and the Hessian matrix of function (1.2) are

(1.3) Vf(x)=(dU(c(x)))dcz ai and
i=1 d/2

respectively.
For problem (1.1), ifwe assume that f(z) takes the form (1.2) and the Hessian matrix

’2f(z) is nonsingular for all z E R’, then a classical algorithm for finding a solution to
(1.1) is Newton’s method:
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Given an initial point z0, for k 0, 1,..., compute a sequence of steps {sk } and
iterates {z} as follows:

(1.4)
solve Vzf(zk)sk --Vf(zk)

and set z+ z + sk.

It is well known that, under suitable conditions, Newton’s method has a local quadratic
rate of convergence; i.e., there exists a positive constant 7 such that

if z0 is sufficiently close to z*, where z* is a stationary point of (1.1).
On each iteration of Newton’s method (1.4), after forming the Hessian matrix and

gradient, we need to solve a system of linear equations, which takes O(na) operations.
When the Hessian matrix has the special form (1.3), we can modify the above Newton
method (1.4) to develop a more efficient algorithm for solving the unary optimization
problem (1.1)-(1.2). To see this, let

V2f(x) i(x)aiaTi AT(x)A,
i=l

where (x) d2Ui(oi(x))/do, i 1,...,m, and (x) diag{(x),...,,(x)},
and AT [al,..., am]. Clearly, as the Hessian matrix changes, from step to step, only
the diagonal matrix is affected. Suppose that only the jth diagonal elements of (xk)
and (x_x) differ at iteration k, i.e.,

AT(xk)A AT(xk-1)A + (j(Xk) Cj(Xk_l))aja,
or, equivalently,

+
Consequently, V2f(xk)- can be obtained from V2f(xk_x)- (assuming that both
V2f(xk) and V2f(xk_) are invertible and V2f(xk_)-x is given) by the well-known
Sherman-Morrison rank-one updating formula [24]:

+ +
where H, c, and w correspond to V2f(xk_,), a, and (xk) (xk-,), respectively.
Therefore, the next iterate

v2 y(z )

can be obtained in only O(n2) arithmetic operations after evaluating Vf and i, i
1,..., m. If entries of (xk) and (xk-x) differ, we can perform rank-one updates
and obtain the new inverse V2f(xk)- in O(ln2) operations. A similar approach is used
in polynomial interior point algorithms for linear and quadratic programming to reduce
their complexity bounds (see, e.g., Karmarkar [18], Gonzaga [13], Goldfarb and Liu [12],
and Ye [27]).

The foregoing observation motivates us to consider the following modified Newton
method, whichwe refer to as apartial-update Newton method. This method takes advan-
tage of the computation done in previous steps and only partially updates the diagonal
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matrix , even though all of its diagonal elements might change at each iteration, using
the rank-one updating formula given above to obtain the inverse of an approximation to
the exact Hessian matrix at the current iterate. To be precise, we define a diagonal matrix
k diag{k,..., eke}, a "working approximation" to (xk) in step k, by o (xo),
i- 1,...,m, and for k _> 1,

{ -x if (xk) is "replaceable"by k-x,
(Xk) otherwise,

for i 1,..., m. Then from I,k we obtain a "working approximation" Hk ATkA to
V2f(xk), or equivalently,

Hk = V2f(xk) + Ek,

where Ek ’i: (/k i(Xk)) aiaT, and compute

(1.5) sk (Hk) -1 Vf(xk) (V2I(Xk) -+- Ek) -1 Vf(xk),

instead of computing sk as in (1.4).
Since V2f(xk)sk --Tf(xk) + rk, where

(1.6) rk Ek (V2f(xk) + Ek) -1 Vf(xk),

the partial-update Newton method can be viewed as a special type of inexact Newton
method. In [2], Dembo, Eisenstat, and Steinhaug analyzed the convergence properties
of such methods under various assumptions on the forcing sequence {r/k } of bounds on
the relative residuals in (1.6), where Ilrkll/llVf(xk)ll <_ k. Also note that, if 0
(x0), i 1,..., m, for all > 1, then the partial-update Newton method reduces to
the simplified Newton method xk+ xk vf(zo)-vf(z), for all k > 1.

In the first subsection of2we prove the local convergence of the conceptual partial-
update Newton algorithm and in the second subsection we establish the rates of conver-
gence for two variants of the method determined by different partial-update criteria.
Our analysis is closely related to the analysis of Dembo, Eisenstat, and Steinhaug [2]. In
3, two globally convergent modifications of the partial-update Newton method are pre-
sented and some preliminary numerical results obtained using these methods are given.
The final section is devoted to an extension of the partial-update Newton method to
partially separable and factorable functions.

2. Local convergence results. In this section we assume:
(A1) there exists a point x* R’ with Vf(x*) 0;
(A2) Vf(x) AT(x)A and V:f(x*) is nonsingular, where AT [a,... ,a,]

is an n x m matrix with rank n, a is the ith column of AT, i 1,..., m, and (x)
diag{(x),..., ,(x)};

(A3) (x) is continuous in a neighborhood of x*.
We use the Euclidean vector norm and the matrix norm induced from it, both of

which we denote by I1" II, and we define/ IIV2f(x*)-Xll,
2.1. Local convergence. Here we show that, under assumptions (A1)-(A3), the

partial-update Newton method is locally linearly convergent. First note that, under
(A1)-(A3), for any e > 0 and T > 0 there exists a > 0 such that

(2.1) lie(x) ’I’(y)ll < T
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and

(2.2)

provided that max{]Ix x*]], ]IV z’]], I]z x’l]} < 61.
The next result is an immediate consequence of the Perturbation Lemma in Ortega

and Rheinboldt [22, Theorem 2.2.3].
LEMMA 2.1. Under assumptions (A1)-(A3), for 0 < e < l, there exists a positive

constant 62 such that

(2.3)

V2f(xk) + Ek is nonsingular, and

(2.4)

provided that I1 *11 < and IICk (k)ll < ’, where 7- /211AII < 1/811AII.
THEOREM 2.2. Let assumptions (A1)-(A3) hold. Then there exists > 0 such that, if

Ilzo-z* II -< , the sequence {z}generated by thepartial-update Newton method converges
to z*. Moreover, the convergence is linear, i.e.,

(2.5)

where 0 < t < 1.

Proof. Let > 0 be such that 0 < t 4/ < 1, - IIAII 2, and min{6, 6} so
that (2.1)-(2.4) hold. Assuming that Ilzo z*ll < , we prove (2.5) by induction.

Since Eo is the zero matrix, it is easy to verify that (2.5) is true for k 0. Now
supposing that (2.5) is true for k < N 1, then IIz z* II <- t Ilzo z* II < 6, 0 <_ _< N.
Hence, since [b b(zv)[ Ib(z,) bi(zv)l for some li, where i < li < N, it
follows from (2.1) that

l<i<m 0<I<N

Therefore, (2.2)-(2.4) hold with k N, and

The result then follows by taking norms and using the triangle inequality.

2.2. Rates of convergence. In this section we assume
(A4) (z) is Lipschitz continuous at x* with Lipschitz constant L.
It then follows that Vzf(z) is Lipschitz continuous at z* with Lipschitz constant

IIAl[ZL and, from Ortega and Rheinboldt [22, Theorem 3.2.12], that (2.2) can be strength-
ened to

(2.7)
L

IlVf(k) Vf(x*) V2f(x*)(xk *)11 -llAIlllk *11

for IIz z* II sufficiently small.
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We now give two "replacement" criteria for the partial-update Newton method.
The first one retains the local quadratic convergence property of the classical Newton
method. Under the second criterion our partial-update Newton method converges su-
perlinearly and there is trade-off between the rate of convergence and the number of
rank-one updates.

Oiteion 1. For i 1,..., m,

k is replaceable by /k-1 if

where 0 < / < 1. Note that Criterion 1 essentially says to keep k -x as long
as IIXTf(z)ll is not too small relative to Ii(zk) k-xl. Therefore, only as zk z*,
i.e., only as zk becomes very close to z*, is set equal to i(zk) if /is close to 1, say
r/= 0.99.

Oiteion 2. For i 1,..., m,

ik is replaceable by k-1 if k < p or

where p is a given positive integer.
In order to characterize the rates of convergence for variants of the partial-update

Newton method that use these two replacement criteria, we need the following lemma.
LEMMA 2.3 (Ortega and Rheinboldt [22, Theorems 9.2.8 and 9.2.9]). Let the se-

quence {xk }, which is generated by an iterativeprocess, converge to a limit x*. Furthermore,
let 7o, "Yx, ..., /t be nonnegative constants. Ifthere is a ko > such that

Vk >_ k0,

then the iterates {xk } converge to x* with R-order at least rt, where rt is the uniquepositive
root oft+x -t- 1 O. Moreover, rt E (1, 2), rt+x < rt, and limt__,o rt 1.

THEOREM 2.4. Let assumptions (A1), (A2), and (A4) hold and let {xk} be the se-
quence ofiterates generated by the partial-update Newton method. Then

(1) {xk } is locally quadratically convergent to x* if Criterion 1 is used and
(2) {xk} is locally superlinearly convergent to x* with R-order at least rp, where rp is

the unique positive root of tp+ tp 1 O, if Criterion 2 is used. Moreover, 1 < rp < 2,
rp+ < rr, and limp__,o rp 1.

Proof. (1) Since, under Criterion 1, II(I)k (xk)ll <_ l_,llVf(xk)ll, conclusion (1)
follows from Theorem 3.4 in [2].

(2) Under Criterion 2, we have from (2.5) and (A4) that

max {ll’I’(:) ’I’(x*)ll + II(x-) (x*)ll}k-pq-l <_j <_k

X*< 2LIIx-r,

if k > p. Let [Ix0 x* 11 < 6 and 6 be sufficiently small so that Theorem 2.2 holds and
II(x) (*)11 -< LIIx *11 for I1 x*ll _< . It then follows from (2.6)-(2.8) that

IIx+x :*11 < I1: :*11 (3,LIIAllz I1: :*11 + 4,LIIAII2 I1:-,, II) Vk > p.

Conclusion 2 then follows from Lemma 2.3. [:1
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Under Criterion 2, the parameter p determines the average number of rank-one
updates required at each iteration, as well as the R-order of the convergence of the
iterates to z*. This fact is established by the following proposition.

PROPOSITION 2.5. On the average, the numberofthe rank-one updates at each iteration
is at most - if Criterion 2 is used.

Proof. It follows from Criterion 2 that for all i, i 1,..., m, -/0 i(z0), and that after any iteration k in which i(zk) is not replaceable by k-,
i.e., is set equal to i(zk), then i(zt) is replaceable by- during at least the next
p iterations k + 1,..., k + p. The proposition is an immediate consequence of this
observation. U

Ifwe use Criterion 2 and take p m, then each iteration of the partial-update New-
ton method requires on the average at most one rank-one update, and hence just O(n)
operations, the same amount of work as in quasi-Newton methods. In [6] Gay proved
that Broyden’s so-called "good" and "bad" rank-one update quasi-Newton methods con-
verge superlinearly to a stationary point z* of f(z) with order at least 2x/’. When
p m, the order of convergence of our partial-update Newton method r, > 2/’, if
n < m < cn and 1 < c << n. Thus, in this special case, the lower bound on the efficiency
of our method is better than the lower bound for either of Broyden’s methods.

Note that, under Criterion 2, each, i 1,..., m, stays fixed for at leastp iterations
and all may not get updated at the same time. If all of the stay fixed for exactly p
iterations and they are all updated at the same time, then the partial-update Newton
method under Criterion 2 reduces to the p-step method

(2.9) Xk+l Zk,p, Xk,i+l Xk,i V2f(Xk)-lvf(Zk,i),
i O, 1,...,p- 1, Xk,o xk,

considered in Traub [26], in which each major iteration consists of p simplified Newton
steps. Shamanskii [23] considered the p-step Newton-like method obtained by replacing
the 72f(xk) in (2.9) by the operator J whose jth column is Je (Vf(xk / he)
--Vf(xk))/hk for j 1,..., n. (Here ej is the jth column of the identity matrix and hk
is of order IlVf(xk)ll.)

3. Globally convergent implementations. In the first part of this section we present
two modifications of the partial-update Newton method to make it globally convergent.
In the second part we give some preliminary numerical results.

3.1. Globally convergent modifications. From the local convergence analysis of 2,
we know that the partial-update Newton methods considered there converge rapidly to a
stationary point z* of f(z) once they get close enough to such a point. However, if these
methods do not start near enough to z*, they can fail to converge. Also, if the partially
updated Hessian ArkA is singular, these methods are not well defined. Therefore,
as in the case of Newton’s method, it is necessary to modify our partial-update Newton
methods so that they converge globally. In this sectionwe propose modifications that uti-
lize the special structure of ArA to compute a positive definite approximate AA
so that a descent direction is obtained.

Consider the following Wolfe-type linesearch algorithm.
ALGORITHM 3.1. For given c and c2, where cq (0, ) and czg. (cq, 1), and a

given point z0, determine zk+, k O, 1,2,..., as follows: If convergence stop.
Otherwise, compute the descent direction dk -(ArA)-Vf(z), whereAAis
nonsingular, and choose a steplength ),k > 0, such that
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(3.1a) f (x + Ad) < f(x) + alAVf(x)rd
and

(3.1b) f (Xk + ,kdk)Tdk >_ c2Vf(xk)Td,

and set x+l xk + kdk.
Let the smallest and largest eigenvalues of matrix H be denoted by )m(n) and

m,(n), respectively.
THEOREM 3.1. Let ,(x) be continuous on an open set D and let the level set S {x

f(x) < f(xo)} be a compact subset ofDfora given xo D, and assume that Vf(x) 0
forall k > 0 and f has afinite numberofstationarypoints in S. Then ifthere exist constants
#1 and #2, where 0 < #1 2, such that #1 )min(ArkA) )max(ArkA) #2 for
any k > O, the sequence of iterates {zk} generated by Algorithm 3.1 converges to some
z* E S with Vf(z*) 0. Moreover, the rate ofconvergence is at least R-linear/fVy(z*)
is invertible.

Proof. From the fairly standard argument (e.g., see Dennis and Schnabel [3], Gold-
farb [11], or Mor6 and Sorensen [21]) z --. z* S with Vf(z*) 0.

Let 0 > 0 and ko be such that (z) is continuous on the closed ball B B(z*, o) c
S and xk B for all k > k0. Then, since IlVf(z)ll= dk(ATkA)Zdk <_ #lldkll 2,

>_ and, from (3.1b),

--Vf(x)Tdk < l llvf (zk + )d,) Vf(z)ll- Ildkll,
1

we have from the mean-value theorem (e.g., see [22]) that

(3.2) #--L IlVf(zk)ll" IId ll-< -V/(xk)rdk -<   lldkll Vk _> ko,

where 7o max(llVUf(z)ll z B). Hence, combining (3.1a) and (3.2), we see that

Vk >_ ko,

and the result that the rate of convergence is at least R-linear follows from Theorem
14.1.6 in [22].

The simplest modification of that ensures that the conditions on the eigenvalues
of ArA required by Theorem 3.1 are satisfied, assuming that /,(z) is continuous on
S, is to define the modified "working approximation" k =diag{tk,...,k} to (Xk)
by the following modifications.

Modification 1. For i 1,..., m, set /o max{0, i(x0)}, where 0 is a prescribed
small positive constant, and at step k, k > 1, define k by the following criteria.

Criterion 1’.

max{O, (xk)}

if < r/,

otherwise,

where 0 < r/< 1.
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Criterion 2’.

6-x if k < p or

max{O, $()} otherwise,

where p is a given positive integer.
Modification 1 may be overly cautious since ATCkA can be positive definite even if

some diagonal elements of Ok are negative. Consequently, we now propose an alternate
modification which ensures that the modified "working approximation" A(A is ex-
actly equal to the unmodifiedworking approximation ATI,kA for all k whenever ATCkA
is positive definite for all k. The modification is based on a method of McCormick [19,
7.3-7.4] for computing the positive part for a symmetric matrix given in dyadic form.

o ATOA AT ((xo) + Eo) A isModification 2. For i 1,..., m, determine a so
positive definite, where Eo diag {al,..., am}, and at step k, k >_ 1, set

where is defined by the following.
Criterion 1".

otherwise,

where 0 < r/< 1.
Criterion 2".

k k-i if k <_ p or

i(zk) otherwise,

max
k-p+l_<j

< 1,

where p is a given positive integer, and Ek diag {ak,..., ak} is determined as de-
scribed below to guarantee that ATA is positive definite.

To specify how the a/ are to be chosen in Modification 2, we define the sets Uk

,k k-1 i ,k .> 2#-1 i 1,...,m}, and Wk{i -i w 1,...,m},Vk {i -i -,
Ofori UkUVanddefineSkas{i q < k-x, i 1,..., m}. If we set ai

k AT(k-1A + ’’eV (i(xk) k-)aiaTi, then it follows from the definition of
AT(bkA under Criteria 1" 2"or that

(3.3) ArkA qk + y] graia,
jEW,

where ,(zk)+a-q-1. IfATk-1A is positive definite then qk is. Moreover, if

is any index in Wk, qk + rataf (qk) 1/2 (I + r (k) -1/2 ata (qk) -1/2) (qk) 1/2

is positive definite if and only if > (1/a (qk) -1 at) since I + tk (k) 1/2 ata"
(qk)-l/2 has all unit eigenvalues except for onewhich equals l+#tkaT (qk) -1 at. There-
fore, we can determine a, i e W, recursively as follows:



390 DONALD GOLDFARB AND SIYUN WANG

Let be any index in W and consider q + (b,(x)+ r -t-1) a,a’. If we

choose

(3.4)
a 0 if (,(xk)- -1)a (*k) -1 at + 1 > O,

0" kl -1 l(2Ck " "q- min{0, 7t
k } otherwise,

where 7 (1/a’ (#k) -1 )at > 0 and 0 is a prescribed small positive constant, and

update

k := 9k + (,(Xk)+ a -) ata and Wk
"= Wk {/},(3.5)

then the updatedk is positive definite, andwe can repeat the above procedure until Wk

is the emp set. Note that the te rain{0, 7t} in (3.4) not only ensures that 9 remains
positive definite during its recursive computation, but more impoant, that llArAll
is unifoly bounded above for all k.

Choosing Ek by the above procedure ensures that ATkA is positive definite. Ini-
tially, we need to deteine a E0 so that ArA A ((Zo) + 0) A is positive defi-
nite. Ifwe write Ar ((z0) + E0) A as

m
0AT ((x0) + E0) A ATA + (,(x0) + a,

i=1

this can be accomplished by applying the above procedure with 6 replaced by i(x0)
and -1 replaced by 1.

Modification 2 has several desirable propeies. First, gorithm 3.1 using Criterion
2" still needs, on the average, only at most rank-one updates at each iteration. Second,
k k if ATkA is positive definite, and hence k Ck, where Ck is defined by
Criterion 1 or 2, whenever ATCkA is positive definite for all k. To veri this, we just

k 0, for i 1, m, under our selection role, if ATkA isneed to show that a
positive definite. Since for any s Wk

( ) ( )ATA + s(x) -1 a,as + $,(x) 4-1

it follows from the negative and positive definiteness ofiw()(0i(x) -l)aia
and ATA, respectively, that + (,(x) -)a,a is positive definite, which

k =0implies thata 0. Updating and arguing inductively, one can conclude that ai
i 1,..., m. Finally, as we point out in the ne section, the era computation required
to implement Modification 2 is moderate.

Setting + 0, for all i and k, so that min(ArA) Omin(ArA), we then

have the following theorem, which is an immediate consequence ofeorem 3.1.
EOM 3.2. Under the assumptions of eorem 3.1, Algothm 3.1, where

defined by either Modification 1 or 2, global and R-linear conveent.
3.2. Implemention. At the kth step of gorithm 3.1 for k 1, the main compu-

tational effort involves soMng (AT A)d -Vf(x), where

(3.6) ATriA AT-A + 5aja,
jJk
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dk (j Cj(zk) is not "replaceable"by -1 at iteration k}, and & max(j(zk), 0}--- if Modification 1 is used, and $(zk) + a + 0 6- if Modification 2
T ATk-1is used. Assumin that the CholCsky factorization Lk_IL}_ of A is available,

the Cholesky factorization LkL of AT@kA can be obtained by applying a numerically
stable rank-one updating procedure, such as Method C2 in Gill Ct al. [8] or Method 2 in
Goldfarb [10], IJkl times. If Modification 2 is used, the updates corresponding to indices
j Vk C_ Jk are performed first to give the Cholesky factors of the initial matrix 9k.
The remaining indices in Jk and the corresponding updates of the Cholesky factors are
then computed using the recursive procedure (3.4), (3.5) to determine Ek. Note that the
extra cost of computing k is just the cost of solving IWk triangular systems of linear
equations.

We now present some preliminary numerical test results. All algorithms were coded
in FORTRAN and compiled by the F-77 SUNFORTRANcompiler, and the results were
obtained using double precision arithmetic on a SUN SPARC. We used the termination
condition ]l’f(xk)]] < 10-5 max{l, []xkll} and the linesearch algorithm proposed in
Dennis and Schnabel [3] with the parameter settings at 10-a and a2 0.1 in the
linesearch conditions (3.1a) and (3.1b). The test functions that we used were

(1) the extended Powell singular (EPS) function in n variables:

f(x) [(xa,-3 + 10xa,-2)z + 5(xa,_ xa,)2
i=1

+(i- 2xi_ + lO(i_a xi)

starting at x0 (3,-1, 0,1, 3,-1, 0,1,...);
(2) the extended Rosenbrock (ER) function in n variables:

f(z) [100 (zz,- z22,_1)2 + (1- z2,_l)2]
i=1
n/2 200 3 100 3100xi_l + x2i (x2i-1 + x2i)
i=I

100
(X2i X2i--1)3 + (1 x2i_1)2

3

starting at x0 (-1.2, 1,-1.2, 1,...);
(3) the extended Rosenbrock cliff (ERC) function in n variables:

S(x) y x2,- 3

= 100 + (x2i x2i-1) + exp[20(x2i_l

starting at x0 (0,--1, 0,--1,...);
(4) the variably dimensional (VD) function in n variables:

f(x)-- (:r,i- 1)2 + i(x,- 1) + i(x,- 1)
i=1 i=1 i=1

starting at x0 (i), where 1 E, i1, n; and
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(5) the Broyden tridiagonal (BT) function in n variables:

f(x) E [(3 2x,)x, i-1 2x,+1 W 1]2
i=1

[ 2(2xi xi- 2xi+1 1)3
2
(4x xi- 2x+ + 1)34x4 1 1

i=1
4
(3Xi 2Xi+l q- 1)3 (37i 1 ],+- xi- + xi- 2x+x + 1)2

where xo xn+ 0, starting at x0 (-1,-1,-1,-1,...). Note that the second
expressions for the ER and BT functions are in unary form.

The test results are summarized in Table 1. The quantities Ni/NI/N,pd in the first
row ofeach cell ofthese tables are, respectively, the numbers of iterations, function eval-
uations, and rank-one updates performed by the algorithm. The number in parentheses
in the second row of each cell is the CPU time in seconds. The table presents results for
the extended Powell singular, the extended Rosenbrock, the extended Rosenbrock cliff,
the variably dimensional, and the Broyden tridiagonal functions for n (the number of
variables) equal to 40, 80, and 160. The column headings "PUI-I’" and "PU1-2’" refer,
respectively, to the partial-update Newton method under Criteria 1’ and 2’ in Modifica-
tion 1, while the headings "PU2-1"" and "PU2-2"" refer, respectively, to the method un-
der Criteria 1" and 2" in Modification 2. In these methods we used p [vJ, r/= 0.99,
and 0 10-6. The last two columns, with the heading "Newton" and "p-Newton," give
results for the modified Newton method of Gill and Murray [9] and the p-step modified
Newton method of Traub [25] and Shamanskii [23], respectively, using the same termi-
nation criterion and linesearch as the other algorithms.

The test results for Modifications 1 and 2 were identical (except the CPU time) for
problems EPS, ERC, and VD because they were convex. Also, due to the structure of
the extended Powell singular function, starting at the chosen x0, it is not difficult to see
that, for i 2,..., Z,

4i-3(k) l(Xk), 4i-2(Xk) 2(Xk),

4i-l(Xk) 3(Xk), and 4i(Xk)

at any iteration k, k _> 1. Hence the number ofrank-one updates in each iteration will be
an integer multiple of . The numbers N,pd associated with the extended Rosenbrock
and the extended Rosenbrock cliff functions can be similarly explained.

These preliminary results show that although the partial update methods take more
iterations and function evaluations than Gill and Murray’s modified Newton method,
partial update methods take less time to solve some types of problems than do modified
Newton methods. In our test set this was true for the EPS, ERC, and VD sets of prob-
lems, all of which were convex. Also, method PU2-2" took the least time to solve the
largest incidence of problem BT.

4. Extension to partially separable and factorable optimization. The goal of this fi-
nal section is to extend our partial-update Newton method to solvepartialty separable and
factorable minimization problems. Partially separable problems are defined by Griewank
and Toint [14], [15] as problems where the objective function has a decomposition of the
form

(4.1) f(x) E f,(x), x
i=1
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TABLE 1

Problem n PUI-I’ PU1-2’ PU2-1" PU2-2" Newton p-Newton

(EPS) 40 6/17/40 7/36/20 6/17/40 7/36/20 7/14/0 9/44/0
(0.36) (0.34) (0.38) (0.35) (0.55) (0.33)

80 8/24/120 8/42/40 8/24/120 8/42/40 7/14/0 11/48/0
(2.35) (1.68) (2.84) (1.83) (2.99) (1.89)

160 8/24/240 10/46/80 8/24/240 10/46/80 7/14/0 16/58/0
(28.01) (10.69) (28.48) (11.28) (28.08) (13.01)

(ER) 40 50/238/2540 78/288/880 20/40/1000 43/115/1000 11/27/0 61/134/0
(65.46) (15.13) (11.43) (14.07) (1.39) (2.88)

80 59/274/5640 94/350/2320 20/39/2080 50/118/2080 11/27/0 85/189/0
(259.64) (109.09) (72.20) (79.98) (13.49) (20.65)

160 53/244/10560 98/342/4400 20/43/4800 52/124/4080 11/27/0 109/238/0
(1243.11) (590.62) (510.52) (472.33) (69.27) (82.13)

(ERC) 40 13/37/140 14/41/120 13/37/140 14/41/120 10/22/0 31/119/0
(1.10) (0.99) (1.12) (1.10) (1.12) (1.79)

80 13/43/240 15/44/240 13/43/240 15/44/240 10/22/0 34/135/0
(5.26) (5.44) (5.28) (5.48) (5.95) (6.79)

160 15/39/560 17/54/480 15/39/560 17/54/480 10/22/0 49/187/0
(40.15) (36.36) (41.26) (37.42) (47.68) (43.36)

(VD) 40 11/33/4 16/47/4 11/33/4 16/47/4 11/19/0 13/67/0
(0.40) (0.53) (0.41) (0.55) (1.41) (0.62)

80 14/31/7 17/46/5 14/31/7 17/46/5 11/20/0 25/89/0
(1.81) (1.93) (1.85) (2.00) (18.24) (3.59)

160 20/37/9 24/48/8 20/37/9 24/48/8 12/22/0 62/169/0
(12.09) (12.23) (13.26) (13.09) (104.67) (59.03)

(BT) 40 18/34/97 16/33/68 8/10/214 11/21/145 5/7/0 8/16/0
(1.71) (1.49) (3.84) (2.06) (0.36) (0.31)

80 15/29/176 18/32/110 11/20/327 14/26/280 5/7/0 10/21/0
(11.26) (5.54) (36.55) (26.66) (2.41) (2.02)

160 19/40/179 18/40/18 14/27/483 17/33/5 5/7/0 13/27/0
(46.35) (19.65) (98.13) (16.51) (27.81) (17.48)

Numbers in cells are: Ni/Nf/Nur,,/--first row; (CPU sees.) second row.

where each elementfunction f (-) depends on only ni variables, where ni is small com-
pared to n, the total number of variables of the problem. Partially separable problems
arise naturally in many different fields, such as finite elements, variational calculations,
and transportation networks (see [16] for more examples). Building approximations to
the low-rank Hessian of each element function separately, Griewank and Toint [14], [15]
developed partitioned variable metric update algorithms and obtained encouraging nu-
merical results [16].

Assume that f(z), i 1,..., m, in (4.1) are all twice continuously differentiable,
and the gradient vector and the Hessian matrix of function (4.1) are
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m m

VS(x) E Vf(x) and V2,t’(z) E V2f(z)’
i=1 =1

respectively. Note that each elementHessian 2/ has noero entries in at most ni rows
and columns since element nction/ only depends on ni << n "inteal" variables. We
can rewrite 2/(z), which we shall also denote by Hi (z), as

(4.2) Hi(x) V2fi(x)= MiGi(x)M, i= 1,..., m,

where G(x) consists of the ni x ni noero submatr of V2fi(x) and M is an n x ni
matr whose jth column is the qth column of the n x n identi matr if xq is the jth
internal variable of fi. For example, if n 4 and fi(x) is a nction of only Xl and
then

0 0
0 0 0 0H,(x) 0 0 0 0

h41(x) 0 0

h41

Factorable optimization problems are defined by McCormick [19] as problems where
the objective function f(z) is a factorable function, i.e., one that can be represented as
the last in a finite sequence of functions {f (z)} that are composed as follows:

(1) for j 1, n, f.C(x) x;
(2) for j > n, fj(x) equals fk(x) + ft(x), fk(x)" fl(x), or T [fk(x)], where T(.)

is a function of a single variable, and k, < j. It is quite easy to see that a unary function
is a special case of a factorable function.

As pointed out by Jackson and McCormick [17], a factorable function possesses two
properties, that can be exploited to produce efficient algorithms: (1) its gradient and
Hessian can be computed exactly (in terms of the derivatives of T (.)), automatically,
and efficiently if it is assumed to be twice continuously differentiable; (2) its Hessian is
naturally given as a sum of outerproducts (dyads) of vectors, i.e.,

(4.3) r +

where {ui (x)} and {v (x)} are n vectors, and {ai(x)} are scalars, which are all available,
having been required for the computation of the gradient of f(x). This dyadic structure
of V2f(x) has been used by Emami [4] to obtain a factorization of a generalized inverse
of the Hessian of a factorable function, by Ghotb [7] for computing the generalized in-
verse of a reduced Hessian, when it is given in dyadic form, and by Sofer [25] to obtain
computationally efficient techniques for constructing the generalized inverse of such a
reduced Hessian and updating it. Since

(4.3) can be rewritten as
m

V2f(x) Hi(x),
i=1
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where Hi(x) i(x)ai(x)ai(x)T, i 1,... ,m, are rank-one matrices, ai(x), i
1,..., m, are n vectors; and i(x), i 1,..., m, are scalars, all ofwhich are functions of
X.

Thus, in both the partially separable and factorable cases, we can express the Hessian
of f(z) as

m

i=l

where each Hi(x) has low rank. Because ofthis, it is possible to extend the partial-update
Newton methods of the previous sections to solve partially separable and factorable op-
timization problems.

Such partial-update Newton methods for partially separable and factorable opti-
mization compute a step direction by formula (1.5). But now the "working approxima-
tion" Hk to V2f(xk) takes the form

m

i=1

where, for i 1,..., m, Hk is a "working approximation" to the element Hessian
Hi(xk) V2fi (xk) in the methods for partially separable optimization and to the rank-
one matrix Hi (xk) i(xk)ai(xk)ai (xk)T in the methods for factorable optimization.

To be specific, unmodified versions of these methods initially set H/ Hi(xo),
i 1,..., m, and at step k (k > 1) set

(4.4)
if Hi(xk) is "replaceable"by H/-x,
otherwise,

for i 1,..., m. Also, in analogy with the replacement criteria of 2, we have, substitut-
ing H for and the Frobenius norm II IIF (or any other matrix norm) for the absolute
value I. I, the following.

Criteon 1". For i 1,..., m,

Hi(xk) is replaceable by H/-1 if

where 0 < r/< 1.
Criterion 2*. For i 1,..., m,

Hi(xk) is replceable by H#- if k < p or IIHP- H()ll
max {IIH,(x)- H(x-)IIF} -< 1,

k-p+l<_j<_k

where p is a given positive integer.
We note that because of the special form (4.2) of H(x) in the partially separable

case, H/k can be expressed as

H M,GkMT,
where Gk is an n, x n, dense matrix. Moreover, since IIHP n,(z)lls IIC,-x
(k)ll and IIn(k) n(-x)ll -I1() -,(-)11, ’s can be substituted
for H’s in the updating procedure (4.4) and in Criteria 1" and 2* in this case.
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It is not very surprising that if we replace assumptions (A2)-(A4) by:
(A2’) Vfi(z), i 1,..., m, are all continuously differentiable in a neighborhood of

z* and Vf(z*) is nonsingular; and
(A3’) VJ’i (z), i 1,..., m, are all Lipschitz continuous at z*,

we can prove the following local convergence results using arguments analogous to those
used in 2.

THEOREM 4.1. Let {a:} be the sequence of iterates generated by the partial-update
Newton methodforpartially separable orfactorable optimization. Then

(1) {a:}/s locally and linearly convergent to z* under assumptions (A1) and (A2’);
(2) {z}/s locally quadratically convergent to z*, ifCtitedon 1"/s used, under assurnp-

tions (A1), (A2’), and (A3’);
(3) {a:k }/s locally superlinearly convergent to a:*, ifCriterion 2*/s used, underassump-

tions (A1), (A2’), and (A3’). Moreover, ifp is finite, the rate ofconvergence is at least r
where r is the uniquepositive root oftp+t 1 0 and 1 < r < P and on the average

’ low-rank updates.each iteration needs at most -As in the first part of 3 we can modify the partial-update Newton methods for par-
tially separable and factorable problems to ensure global convergence to a stationary
point of f(z). These modifications, their implementation, and the results of numerical
testing will be presented in a future report.
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LARGE-STEP INTERIOR POINT ALGORITHMS
FOR LINEAR COMPLEMENTARITY PROBLEMS*

MASAKAZU KOJIMAt, YOSHIFUMI KURITA$, AND SHINJI MIZUNO

Abstract. Recently Kojima, Megiddo, and Mizuno showed theoretical convergence ofprimal-dual interior
point algorithms with the use of new step length rules for linear programs. Their rules, which only rely on the
lengths of steps from the current iterates in the primal and dual spaces to the respective boundaries of the
primal and dual feasible regions, allow taking large step lengths without performing any line search. This paper
extends and modifies their analysis to interior point algorithms for positive semidefinite linear complementarity
problems. Global convergence and polynomial-time convergence are presented under similar step length
rules.

Key words, interior point algorithm, linear complementarity problem, linear programming, large step,
long step, global convergence

AMS subject classification. 90C33

1. Introduction. Many interior point algorithms have been developed for the pos-
itive semidefinite linear complementarity problem (LCP). They work as a primal-dual
interior point algorithm when they are applied to a linear program and a quadratic pro-
gram. Among others, this paper is concerned with a class of interior point algorithms
(see [3], [7], [8], [15], [22], [24], [27], etc.) characterized by

extensions of the primal-dual interior point algorithm originating from a funda-
mental analysis by Megiddo [12] on the central trajectory, leading to optimal solutions
of the standard-form linear program and its dual,

moving in Newton direction towards the central trajectory at each iteration.
Kojima, Megiddo, Noma, and Yoshise [3] studied a unified approach to this class

of algorithms, which was suggested by Kojima, Mizuno, and Yoshise [8]. See Kojima,
Megiddo, and Ye [4]; Mizuno [14]; and Todd [21] for other types of interior point al-
gorithms for the LCE We remark that the projected scaled steepest descent algorithm
given for the positive semidefinite LCP in [21] can also be regarded as an extension of
the primal-dual interior point algorithm for linear programs.

The first polynomial-time primal-dual interior point algorithm was given by Kojima,
Mizuno and Yoshise [6]. Their algorithm solves the standard-form linear program and
its dual simultaneously in O(nL) iterations. Soon after, the theoretical computational
complexity O(nL) was improved to (/-L), and the primal-dual algorithm was extended
to interior point algorithms for the positive semidefinite LCP and a convex quadratic
program in [7], [17], and [18]. Independently, Tanabe [19], [20] proposed similar algo-
rithms, which he called a centered Newton method.

In interior point algorithms, certain neighborhoods of the central trajectory and
(primal-dual) potential functions (Todd and Ye [22]) have been major tools to determine
step lengths ensuring global and/or polynomial-time convergence. This paper presents
new step length rules which rely on neither of these tools but only the length of the step
from the current iterate to the boundary of the feasible region of the LCP. The new
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rules are extensions and modifications of the step length rules that Kojima, Megiddo,
and Mizuno [1] recently proposed for primal-dual interior point algorithms for linear
programs.

2. Main results. The main results of this paper are founded on [1] where the origi-
nal rules were given. We omit the proofs of some of the lemmas which we can derive by
the same arguments as the ones used in [1]. But there are some substantial differences
between interior point algorithms for linear programs and the positive semidefinite LCP,
which require some additional analysis. We outline the interior point algorithms for the
LCP, and then make the differences clear.

Let M E R’x’ and q E R’. The linear complementarity problem (LCP) is the
problem of finding a point (a, z) R2’ such that

z M:r, + q, Xz O, (a:,z) > O,

where X diag(a) R’x’ denotes a diagonal matrix with the coordinates of a vector
a (zt,z2,... ,z,)" R’. The equality Xz 0 is rewritten componentwise as
z:zj 0 for j 1, 2,..., n, which we call the complementarity condition. Define

S {(a:,z)>O’z=Ma:+q},
s++ z > o}.

We call S and S++ the feasible region of the LCP and its interior, respectively. We may
state that the LCP is the problem of minimizing the total complementarity a:7‘z over the
feasible region S; if the minimum total complementarity attains zero, then the LCP has
a solution. Throughout the paper we assume that

(a) a point (a:, z) S++ is known in advance,
(b) the matrix M is positive semidefinite, i.e., a:rMa: _> 0 for every :r R’.

We define the central trajectory ’cen for the LCP as the set of solutions (a:(#), z(#)) to
the system of equations with a parameter # > O:

(1) z=M:r,+q, Xz=#e, and (a:,z)>O.

Here e denotes the n-dimensional vector of ones. It is well known that the central tra-
jectory Seen converges to a solution of the LCP under the assumptions (a) and (b) as
# > 0 approaches zero. See Theorem 4.1 of [5]. Assuming that we have obtained an
interior point (a:k z) of the LCP at the beginning of the kth iteration, we now show how
we compute a direction (zaa:, Az) to generate a new interior point (:r+, z+) of the
LCP. Define fk (x,k)7"z/n. Let 0 _</ < 1. We call/ a search direction parameter.
We compute a feasible direction (A:r, zaz) by applying Newton method at (a, zk) for
finding a point (a(#), z(#)), with some # =/f,/ [0, 1], on the central trajectory
Seen. In other words, we solve the system of linear equations

(2)
ZkA:r, + XAz fke- Xzk,

Az MA:r,

to get (za:r, Az). The feasible direction satisfies

(3) (zk)7"Aa: + (a:k)7"zz --(1
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Now we consider the pair of the standard form LP and its dual:

(P) Minimize cTr
subject to zeP={z Az=b,z>0).

(D) Maximize bTy
subject to (y,z) D {(y,z) ATu + z c,z > 0}.

Here A Rmx, c R’, b Rm, v Rn, y Rm, and z R’. In this case, we get
a feasible direction (Av, Ay, Az) at a kth iterate (:r, y, zk) by solving the system of
linear equations

(4)
ZA +XAz 3fe- Xz,

AAx 0,

ATAN + Az 0

(see [1]).
We now state some differences between interior point algorithms for the LCP and

the LP.
(i) In the LCP case, we need to take a single step length a ak over the entire

space and a new iterate (m+, z+) such that

(5) 0 < a < a a,

where

(6) CZd max{cz" ak + czaz > O, zk + caz > 0}.

In the LP case, we can take distinct step lengths an ap in the primal space, ad c
in the dual space, and a new iterate (z+, ys+, z+) such that

(7)
0 __< Op < pk, 0 __< Od < dk,
:Vk+l :Vk 4- apACe, (yk+l,zk+l) (yk, Zk) 4- ad(Ay, AZ),

where & max{a- r + ca >_ O} and & max{a" z + czaz _> 0}.
(ii) The directions Az and az for the LCP form an acute angle, i.e.,

ATAz AvTMA > O,

while the directions A:r and zz for the LP are orthogonal, i.e.,

zrTAz --ZyTAA 0.

Most of the existing theoretical primal-dual interior point algorithms for linear pro-
grams choose a single step length, which is usually much smaller than the distinct step
lengths employed in the practical implementation in [10], [11], and [13], to ensure global
and/or polynomial-time convergence. They often utilize certain neighborhoods of the
central trajectory and/or primal-dual potential function when they determine a single
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step length. It was the aim of the paper [1] by Kojima, Megiddo, and Mizuno to fill these
gaps between the practically efficient step lengths and the theoretical step lengths ensur-
ing global and/or polynomial-time convergence. They proposed two sets of step length
rules, Rule G and Rule P, which utilize no neighborhoods of the central trajectory, no
potential function, and no line search, but only & and &ak. Rule G ensures the global
convergence, while Rule P ensures the O(nL) iteration polynomial-time computational
complexity. These two rules are extended and modified to Rules G’ and P’.

Now we focus on the second difference (ii). Let 0 < < 1. Suppose that we
take a common step length a c ak a in the primal and dual spaces of the LE
Then

(8) (zk+I)Tzk+l (zk)Tzk c(1 })(z})Tz}.

In the LCP case, we observe that

(9) (v+I)Tz+I (a:)Tz a(1 )(a:)Tz +
In both cases, we may view the total complementarity (:r+)rz+l at the new iterate
(z+1 z+1) as a function of the step length a. In the LP case, it changes linearly with
a while it changes quadratically in the LCP case. In both cases, the coefficient -(1
#)(a:)rz of the linear term is strictly negative. The quadratic term in (9) makes an
essential difference between the step length rules [1] for the LP and their extensions and
modifications to the LCP, which we present in this paper. Under the assumption (b), the
quadratic term azAa:rAz a2AaTMAre is always nonnegative. Therefore, the total
complementarity (a:+l)7"z+ for the LCP is not monotone decreasing with respect to
a if ZZTAz > 0. Let

(1 t:)(z)Tzk
if AxTZiz > 0,

(10) k 2ATAzCmin
+o otherwise.

Then the total complementarity attains its minimum at the step length Cm.k when
Zia:T Az > 0. Thus, in the LCP case, it is reasonable to choose a step length c c
satisfying 0 < c < cbka and c < Cmi,.k It should be noted that ca is always finite under
the assumptions (a) and (b) (since (zaa:, zz) 0 by (3)) while k

Cgmin can be
A generic interior point algorithm is summarized as follows.

ALGORITHM. Let (x, z) > 0 be an initial feasible solution for the LCP, i.e., z
Mz + q, (z, z) > 0.
Step 0. Let k 0.
Step 1. Choose a [0,1], and compute (A, Az) by solving the system (2).
Step 2. Choose a step length a ak and compute a new point (:rk+l z+x) by (5).
Step 3. Let k k + i and go to Step 1.

Now we are ready to describe two rules, Rules G’ and P’, which are extensions and
modifications of Rules G and P in [1], respectively, for controlling the parameters a and

in the Algorithm.
Rule G’. Let 0 < < 1, 0 < 0 < 1, and 0 < a* be fixed. At each iteration of

the Algorithm, choose a search direction parameter k e [0, ] and a step length
ka a min{a’, (min}, where
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Rule P’. Let 0 < fl* < 1/2,/ - <_ O* < 1, and 0 < a* < i be fixed. At each
iteration of the Algorithm, choose a search direction parameter/ =/k e [/,,/] and a
step length a ak min(a’, k }, wheremin

a’ e [0a*, 0*abkd] if ad >_

a’ e *, 0*Obd /O*] if Obkd <
Obviously, Rule P’ is a special case of Rule G’. In either of the rules, the step length

tx cek satisfies

OOZbd k < a < aa and(11) 0 < min /a*,
o* min a< k

Omin

Hence the Algorithm using either of them generates a sequence { (:rk, zk) } in the
interior S++ of the feasible region S such that (ggk+l)Tz,k+l (flk)Tzk.

As in [1], we utilize a quantity 7rk to measure a deviation from the central trajectory
Sn at the current iterate (a:, zk) S++:

{kk }7rk=min a: "j=l,2,...,n

Obviously, 0 < 7rk < 1.
We establish the following two theorems. Their proofs are given in 5 and 6, re-

spectively.
THEOREM 2.1. TheAlgorithm usingRule G’ generates a bounded sequence {(ak zk }

such that limk--,oo (k)Tzk O.
THEOREM 2.2. At each iteration oftheAlgorithm using Rule P’, we have

3a2 ) (k)Tzk(12) (k+)Tzk+ <_ 1
8na*

where

(13) a min {Tr0, (1- 0*)fl*a*2 (1 0")2*}
So far we have assumed that the LCP has a known initial interior point (a, z)

S++ from which the Algorithm starts. Theoretically, we can embed the LCP to be solved
into an equivalent artificial linear complementarity problem having a known interior fea-
sible solution with the total complementarity of order 2(L) from which the Algorithm
starts, where L denotes the size ofthe original LCP to be solved. Theorem 2.2 guarantees
that the Algorithm then generates in O(nL) iterations an approximate solution, with the
total complementarity less than 2-2L, of the artificial problem, from which we can com-
pute an exact solution of the LCP in O(na) arithmetic operations or we can determine
that the LCP has no solution. Thus the Algorithm using Rule P’ solves the LCP in O(nL)
iterations. See [3] and [7] for more details. Practically, however, this approach has the
disadvantage that the artificial problem involves a very large number, called the big
which may cause numerical instability and/or computational inefficiency. To overcome
such a difficulty, Kojima, Mizuno, and Yoshise [9] recently proposed a method accord-
ing to which we can update A/I during the iterations of interior point algorithms even
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if we start with a relatively small M. Their method can be easily incorporated into the
Algorithm using Rule G’ without destroying the global convergence (Theorem 2.1).

The rest of the paper is devoted to the proofs of Theorems 2.1 and 2.2. In 3, we
list mathematical symbols and notation which are used throughout the paper. Section 4
presents some basic lemmas. The proofs ofTheorems 2.1 and 2.2 are given in 5 and 6,
respectively.

3. Notation.

e (, ,..., )r e R.
S {(m, z) _> O" z Ma + q}" the feasible region of the LCP.
S++ {(m, z) > 0" z Ma + q}" the interior of S.
S {(, z) S++ Xz e for some > 0}" the central trajecto.
(mk, zk) the kth iterate of the gorithm.

f= ()rz.
(,) the search direction at the kth iterate.
(+,+) (,) +(,)" the (k + 1)th iterate.

a step length at the kth iteration.
a direction parameter at the kth iteration.

ad m{a" (mk, Zk) +(,Z) 0}.
)()T

ifTz > O,k
min

+ otheise.

*, 0"", 0, a*, constants ed in Rules G’ and P’
xzr=min
fk

"j=l,2,...,n

e search direction (,z) depends on the kth iterate (, z), but we omit its
dependence on k.

4. mmas. In this section, we prove some lemmas which are used for the proofs
of eorCms 2.1 and 2.2. roughout this section, we assume that 0 k < 1
and 0 < a ak < ad. In the LP case, we have the equali (k+)Tzk+ (1
a(1 ))(k)Tzk, as we have obseed in (8). is Cquali plays an essential role in
[1]. Howewr, the equaliW is no longer valid for the LCP case because of the quadratic
te a Tz in the step length a appCarin in (9). Instead, we have the followin
lemma.
LM4.1. ssume tat 0 < mi{a, a}.

0 < < < z))2

(1_
0 < 1-(1-) <1.

Proof. It suffices to show the inequalities

kTk( ( Z))( < (+)r+ a(1 -/)) (ak)Tzk
2
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because all other inequalities follow directly from the constructions of (x+x, zk+x) and
fk+. If ZaTAz 0 then we easily obtain the desired inequalities from (9). Now
suppose that zmTztz > 0. Then k

Omin (1 -/)(k)TZk/(2ZTZZ). Hence we see
from the equality (9) that

The lemma below can be proved in the same way as Lemma 3.3 of 1], and the proof
is omitted.

LEMMA 4.2.

(ad)2 >_ min , (/2 27rk + 7rk)n 4’ n

LEMMA 4.3.

k
Cgmin

2(i )Tr > 2(1 )Tr/ 2r/ + r

Proof. By using the same argument as in the proof of Lemma 3.3 of [1], we have

nfk
7r
kZXT/Z 4----(2 271"k/ + ).

Hence

2AxTAz
(1 )(x)Tz 4"k

/2 27rk/ + 7rk

nfk(2 27rt + 7rk)

(since (xk)Tzk nfk).

Thus the first inequality of the lemma has been shown. The second inequality follows
from 0 < 27r + 7r < 1, which is proved in [1].

LEMMA 4.4. Let j { 1, 2,..., n}. If

(14) 1 a (1 olkbd) O

_
O,

then

(..k+l ~k+l Ol 7rkfk (()
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Otherwise,

._k+l .,k+l

Proof. By using the same argument as in the proof of Lemma 3.4 of [1], we have

It follows from the definition of 7r that xz > 7r fk. Replacing xjkzjk by 7rkf in the
above inequality, we obtain the former assertion of the lemma. Now we deal with the
case

If kk
Xj Z <_ fk, the inequalities above imply

If kk
xj zj >_ fk, we have

xjkTiz’jk/l (X -I- oixj)(Z] "l- olAzj)

(by the definition (6) of ca and 0 <_ < ca)

1 --a

Thus we have shown the latter assertion of the lemma. D

5. Proof of Theorem 2.1. Throughout this section we assume Rule G’; hence 0 _<
/<1, 0<<1, and 0<a*.Define

and

We need another lemma to prove Theorem 2.1.
LEMMA 5.1. Assume that 7rk < 1/2, ak < n, and k E [0,/].
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1(i) </’d -< .
(ii) c,/(cd) < 1/c,*.
(iii) 0 < 1- c- (1- b)(/) <_ 1.
(iv) 7r+x > (1 c,(1 3)/2)’7r. (Recall that 0 < (1 c,(1 -/)/2) < 1. See

Lemma 4.1.)
Proof. (i) If aa > */2 then the desired inequality follows from the assumption

k2<_ a*/4. Otherwise, the step length c chosen by Rule G’ satisfies c < OZbd lot Hence
1/b _< b/* _< .

(ii) The step length c is less than ak.ba, see (11). If Cbka > c* then a/cbkdz < 1/Cbka <
k21/c*. Otherwise, a < OZbd / which implies OZlOl,kbd2

__
l/a*.

(iii) By the assumption, a < 1/4 and c < Cbka. Hence

0 _< 1- c-a
1 c (1 ca) (-a)
i-

(iv) First we observe that 1 c(1 )/2 > 0, since 0’_< ct <_ <_ 1/4 and 0 </ <
1. Let j be fixed. By (iii) and Lemma 4.4, we see that

k+l+l (x zj > 1 -c-

By Lemma 4.1, fk+l <_ (1 c(1 )/2)f. Hence

xk+l ~k+l

>o()= ()fk+l
where ’[0, 1] R and X’[0, 1] ---} R are functions such that

( ( /() 1---- (1--bd) q- --bkd bkd
X() 1--(1--)

2

We now prove that () (0) by showing that

qo’() ’()X() X’()() > 0 for every [0 /]X()

Evaluating the numerator ’()X() X’()() for each [0, ], we have

(f)X(f) X(f)(f) c Cbd C--d 1 C(12-- f)
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2 --(-) + -
_-o

1-a 1- - (by(iii))

> (1-)7-8
"(since,<and’<),

a/l (by (i)).

uswe have sho ’(() 0 for all ( e [0, ]. Hence

k+l ~k+l

f+1
_> (/)

>_ ,(0)
(1 cz (1 Obkd)(/bkd)2)X"/

1 -/2

(1-/2+(1-a)(/a)2)-/2
8

1- 7 g+
is inequali holds for eve j 1, 2,..., n, so we obtain from the definition of+
that

zk+ I- + d
We now utile the inequali i 7’’ (1 ,)2’ for eve ’ [0, 1] and 7’ 0 such
that ’’ {. t 7’ 8(1 + 2/2)/(7(1 )) and ’ (1 )/2. enwe have
0 ’ 1,7’ O, and

’7’ 8 8 1
:? 7+ <?- + -<-’2

Hence z+1 (1 ’7’) (1 ,)27’. By (ii) and 3 3, we finally obsewe that

7’= 8( +2/) < 8(1 + 2/*)
7(-) 7(1-3)

We are ready to prove eorem 2.1 in the same way as eorem 3.2 in [1]. First we
show that the generated sequence {(z, z)} is bounded. It is well own that for eve
t 0, the set {(, z) S" zTz t} is bounded under assumptions (a)and (b), stated
in 2. In fact, if (z, z) {(z, z) S" zTz t} for some t 0, then

0 ( =)TM(= o)
( =O)T( o)
Tz (.O)T=_ (=O)T
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hence (a:, z) belongs to a bounded set {(a, z) > O" (z)T + (O)Tz < t + (a:O)TzO}.
On the other hand, the inequality (k+)Tzk+X < (k)Tzk holds for every k O, 1,
Therefore, the generated sequence {(ak, z)} is contained in a bounded set { (a:, z) >
O" (zO)T,-b (:r,O)Tz <_ 2(a)Tz}.

Let be an arbitrary positive constant not greater than 1/4. If 7r > , we see 22/n <
(abkd)2 by Lemma 4.2, 2(1 )" Cgmin by Lemma 4.3, and

0 < nl min {/a*, 2/2na* 2(1-/)/ _< min {/a*,/(abka)2 Cgmin

by the inequality (11). On the other hand, if ak >_ 1 or a >_ n, we have by Lemma 4.1
that

(+I)Tz+I <_ (1 --6)()Tz with 8 1/2(1 )min{tq,}.

Hence ()7z converges to zero as k if the inequali above holds for infinitely
many k’s. So we may restrict ourseNes to the case where there ests an integer e such
that

1
lim =0, a< and k< forevek>L

Applying (iv) of Lemma 5.1 and Lemma 4.1, we obtain

7r
k >_ 71

-k7rk-b1 1
2 (Ir,k)Tzk

for every k > t.

It follows that

for every r 1, 2,

Since limr--.oo 7re+r 0 by the assumption, we conclude that (ae+)Tze+ 0 as r
c. This completes the proof of Theorem 2.1.

6. Proof of Theorem 2.2. We prove a series of assertions that lead to the proof of
Theorem 2.2:

(i) cr _< min{a*/16, 1/32}.
(ii) 7r > r for every k 0, 1,
(iii) At each iteration, the step length a satisfies a > 3r2/(2na*).
(iv) (’+l)Tzk+l < (1- 3trz/(8na*))(:r,k)7"zk.

1(i) By the assumption, we have 0 < 1 0* < 1/4 and 0 < * < . Hence

< min
(1 -O*)*a*

I, 2

< rain f (1/4)(1/2)a*
I, 2

_< min{a*/16, 1/32}.

(ii) We prove the assertion by induction. By the definition, we have 7r > tr. Assum-
-k+~+ trf+ > 0 for every j 1, 2, n. Then 7r+ > tring 7r > tr, we show

follows from the definition of 7rk+l. Let a a and fl fl.
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(ii.a) We first consider the case where the inequality (14) holds. From Lemma 4.4,
7r > r, and Lemma 4.1, we have that

ot 7rkfkaj’k+lzjk+l O.fk+l _> 1 a (1 ad --aa

_> (a),

where

We observe that g() is a quadratic function with the coefficient of the quadratic term

-( <dloSkl<ff dnP<l’ --(<" + (n ")dlP’/’b’
<_ --(r + (t* --O’)Otkbd)fklotbkd2

<0.

Obviously, g(0) 0. Hence if g() > 0 then g(’) > 0 for all ’ [0, ]. Since

a _< 0*ad if ad _> a*,

a _< 0*(ad)z/a* otherwise,

it suffices to show that

kg(O Olbd

__
0 if ad _> a*,

g(O*(ad)2/a*) >_ 0 otherwise.

If abkd >_ a* then

( O’ad(1 + )- (1--ad)(O’)2) af + (O*d --ad(O’)2) fk

(0:ad (20.-21)-(0")2) afk+(l--O*)O*adnfk

-(o’)I + (1 o*)o*’*I
(since * N , N O* < 1, and *

> -(o*)( ’)’*I + (1 o’)o*’’I
2

O*
( )(1

>0.

Otherwise,

(_0. /if(O*Old2I*) > Olbd (1 + n)
2c* \
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+
a* \

=-(1 ;a* +0")0* (adZo’fk + (a* --O*aa,O* (OZkbd 2

a] af+(1-0*)a*0* B*f

(since 0 , 0", a* 1, aa < a*, and * )

(-2a + (1-0")’3")0"-(a)2 y

>0.

(ii.b) Now we consider the case where the inequality (14) does not hold. From
Lemma 4.4, we have that

k+l k+lx. zj _> 1- cz--d fk
> ( o*)*f+ (since cz/cba < 0", fl* _< , and f > f+)
>_ af+ (since a <_ (1 0")9*).

(iii) At each iteration of the Algorithm using Rule P’, the step length a satisfies (11)
with/ 1/4. First we see, by Lemma 4.2,

1 2(7r)21(ah)z >_ min , n

{1 2a2} (sinceTrk>aby(ii))> min ’ n

2a2
_> (since a _< 1/32 by (i)),

and, by Lemma 4.3,

and 7rk > a).Omink >__ 2(1 3)7rk _> a (since _<

Since the step length c satisfies (11) with at each iteration of the Algorithm using
Rule P’, we obtain

4 ’2no*’a > 3o-2
(since a <_ a*/16 by (i)).

(iv) By Lemma 4.1 and < 1/2, (T,k+I)TT.,k+l <__ 1 -- (xk)Tzk. Hence the

desired inequality follows from (iii).

7. Concluding remarks on the local convergence. Recently many studies (see [2],
[23], [25]-[27], etc.) have been done on the local convergence of interior point algo-
rithms for linear programs and positive semidefinite linear complementarity problems.
Among others, we refer to the work by Ye and Anstreicher [23], in which a version of the
predictor-corrector interior point algorithm is proposed (see also Mizuno, Todd, and Ye
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[16]). The algorithm of Ye and Anstreicher enjoys not only the O(x/-L) iteration global
convergence, but also the Q-quadratic local convergence under the assumption that

(A) the LCP has a strict complementary solution.
It may be regarded as a special case of the Algorithm presented in 2. But their step
length control of [23] elaborately utilizes a collection of prescribed neighborhoods of
the form {(a,z) S++ IlXz/(  z/n) ell _< } with a (0,0.5], and is very
different from our Rules G’ or P’. See also Ye, Gtiler, Tapia, and Zhang [25]. We can
prove the following result, but the proof is omitted.

THEOREM 7.1. Let * (0, 1] and 0 (0, 1) be fired. At each iteration of the
Algorithm, choose a direction parameter fl and a step length a such that

(B) 0 < k < 1, /k
__

0 as k o and {k/Trk } is bounded; for example, let k 0
throughout the iterations, or/ min{fk, 7r, /} adaptively;

(C) ak min {OkOd Ok (obkd)2/O* k
Omin}, where {Ok [/, 1)" k 1, 2,... } is a

sequence converging to 1.
Then the generated sequence { (a:k, zk) } is bounded and (ak) zk -- 0 as k -- oo. If

in addition
(A)’ the LCPhas a unique solution (*, z* ), which satisfies the stct complementarity

a* + z* > O, then (ak)Tzk converges to 0 Q-superlinearly as k -- oo, i.e.,

(k+l)Tzk+l
lim O.

Acknowledgment. The authors thank two anonymous referees for useful comments
and suggestions.

REFERENCES

1] M. KOJIMA, N. MEGIDDO, AND S. MIZUNO, Theoretical convergence oflarge-stepprimal-dual interiorpoint
algorithms ]’or linearprogramming, RJ 7872, IBM Almaden Research Center, San Jose, CA, 1990.

[2] M. KOJIMA, N. MEGIDDO, AND T. NOMA, Homotopy continuation methodsfor nonlinear complementarity
problems, Math. Oper. Res., 16 (1991), pp. 754-774.

[3] M. KOJIMA, N. MEGIDDO, T. NOMA, AND A. YOSHISE,A UnifiedApproach to Interior PointAlgorithmsfor
Linear Complementarity Problems, Lecture Notes in Comput. Sci. 538, Springer-Verlag, New York,
1991.

[4] M. KOJIMA, N. MEGIDDO, AND Y. YE,An interiorpoint potential reduction algorithm for the linear com-
plementarityproblem, Math. Programming, to appear.

[5] M. KOJIMA, S. MIZUNO, AND T. NOMA,Limiting behavioroftrajectories generated by a continuation method
for monotone complementarityproblems, Math. Oper. Res. 15 (1990), pp. 662-675.

[6] M. KOJIMA, S. MIZUNO, AND A. YOSHISE,A primal-dual interiorpoint algorithm for linearprogramming,
in Progress in Mathematical Programming, Interior-Point and Related Methods, N. Megiddo, ed.,
Springer-Verlag, New York, 1989, pp. 29--47.

[7] ,A polynomial-time algorithm for a class oflinear complementarityproblems, Math. Programming,
44 (1989), pp. 1-26.

[8] ,An O(x/-L) iteration potential reduction algorithm for linear complementarity problems, Math.
Programming, 50 (1991), pp. 331-342.

[9] ,Alittle theorem ofthe big .AA in interiorpoint algorithms, Math. Programming, to appear.
[10] R. MARSTEN, R. SUBRAMANIAN, M. SALTZMAN, I. LUSTIG, AND D. SHANNO, Interior point methods for

linearprogramming: Just call Newton, Lagrange and Fiacco and McCormick.t, Interfaces, 20 (1990),
pp. 105-116.

[11] K.A. MCSHANE, C. L. MONMA, AND D. F. SHANNO, An implementation ofa primal-dual interior point
method]or linearprogramming, ORSA J. Comput. 1 (1989), pp. 70-83.

[12] N. MEGIDDO, Pathways to the optimal set in linearprogramming, in Progress in Mathematical Program-
ming, Interior-Point and Related Methods, N. Megiddo, ed., Springer-Verlag, New York, 1989,
pp. 131-158.



412 M. KOJIMA, Y. KURITA, AND S. MIZUNO

[13] S. MEHROTRA, On the implementation ofa (primal-dual) interiorpoint method, Tech. Rep. 90-03, Dept.
of Industrial Engineering and Management Sciences, Northwestern Univ., Evanston, IL, 1990.

14] S. MIZUNo,A newpolynomial time methodfora linear complementarityproblem, Math. Programming, to
appear.

[15] S. MZUNO AND M. J. TODD,An O(naL) adaptive path following algorithm for a linear complementarity
problem, Math. Programming, to appear.

[16] S. Mlztmo, M. J. TODD, AND Y. YE, On adaptive-stepprimal-dual interior-point algorithmsfor linearpro-
gramming, Math. Oper. Res., to appear.

17] R.D.C. MONTEIRO AND I. ADLER, Interiorpathfollowingprimal-dual algorithms. Part I: Linearprogram-
ming, Math. Programming, 44 (1989), pp. 27-41.

18] ,Interiorpathfollowingptimal-dual algorithms, Part II: Convex quadraticprogramming, Math. Pro-
gramming, 44 (1989), pp. 43-66.

[19] K. TANABE, Complementarity-enforcing centered Newton methodfor mathematicalprogramming, in New
Methods for Linear Programming, K. Tone, ed., The Institute of Statistical Mathematics, Minami-
Azabu, Minato-ku, Tokyo, 1987, pp. 118-144.

[20] ,CenteredNewton methodformathematicalprogramming, in Systems Modeling and Optimization,
M. Iri and K. Yajima, eds., Springer-Verlag, New York, 1988, pp. 197-206.

[21] M.J. TODD, Projected scaled steepest descent in Kojima-Mizuno-Yoshise potential reduction algorithm for
the linear complementarityproblem, Tech. Rep. 950, School of Operations Research and Industrial
Engineering, Comell Univ., Ithaca, NY, 1990.

[22] M. J. TODD AND Y. YE, A centered projective algorithm for linear programming, Math. Oper. Res., 15
(1990), pp. 508-529.

[23] Y. YE AND K. ANSTREICHER, On quadratic and O(x/-L) convergence ofa predictor-corrector algorithm
for LCP, Working paper, Dept. of Management Science, The Univ. of Iowa, Iowa City, IA, 1990.

[24] Y. YE, K. O. KORTANEK, J. A. KALISKI, AND S. HtJANG, Near-boundary behavior ofprimal-dualpotential
reduction algorithms for linearprogramming, Working Paper Series No. 90-9, College of Business
Administration, The Univ. of Iowa, Iowa City, IA, 1990.

[25] Y. YE, O. GOLER, R. A. TAPIA, AND Y. ZHArG,A quadratically convergent O(v/’L)-iteration algorithm
for linearprogramming, Math. Programming, to appear.

[26] Y. ZHANG Arid R. A. TAVIA, A quadratically convergentpolynomialprimal-dual interior-point algorithm
for linearprogramming, TR90-40, Dept. of Mathematical Sciences, Rice Univ., Houston, TX, 1990.

[27] Y. ZHANG, R. A. TAeA, AND F. POTRA, On the superlinear convergence of interiorpoint algorithms for a
general class ofproblems, TR90-9, Dept. of Mathematical Sciences, Rice Univ., Houston, TX, 1990.



SIAM J. OPTIMIZATION
Vol. 3, No. 2, pp. 413-422, May 1993

() 1993 Society for Industrial and Applied Mathematics
010

ON THE SUPERLINEAR CONVERGENCE OF INTERIOR-POINT ALGORITHMS
FORA GENERAL CLASS OF PROBLEMS*

YIN ZHANGt, RICHARD TAPIA$, AND FLORIAN POTRA

Abstract. In this paper, the authors extend the Q-superlinear convergence theory recently developed by
Zhang, Tapia, and Dennis for a class of interior-point linear programming algorithms to similar interior-point
algorithms for quadratic programming and for linear complementarity problems. This unified approach con-
sists ofviewing all these algorithms as a dampedNewton method applied to perturbations ofa general problem.
A set of sufficient conditions for these algorithms to achieve Q-superlinear convergence is established. The
key ingredients consist of asymptotically taking the step to the boundary of the positive orthant and letting
the centering parameter approach zero at a specific rate. The construction of algorithms that have both the
global property ofpolynomiality and the local property ofsuperlinear convergence will be the subject offurther
research.

Key words, interior-point algorithms, linear programming, quadratic programming, linear complemen-
tarity problems, Q-superlinear convergence
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1. Introduction. Consider the general nonlinear system

(1) F(x,y) ( Mx + Ny- h ) =o, (z,y) >o,
XYe

where x, y, h, e E Rn, M, N E R’xn, X diag(x), Y diag(y), and e has all compo-
nents equal to one.

We call the following set the feasibility set of (1):

f ((x, y) x, y l:tn, Mx + Ny h, (x, y) > 0}.

A feasible pair (x, y) E f is said to be strictly feasible if it is positive. In this work we
tacitly assume that the relative interior of2 is nonempty, i.e., strictly feasible points exist.

Problem (1) is sufficiently general to include linear and quadratic programming
problems and linear complementarity problems. Observe that ifN -1, then this prob-
lem is the standard linear complementarity problem (LCP). Moreover, the assumption
that M is positive semidefinite will be sufficient to guarantee that the algorithms under
investigation produce well-defined iterates (Corollary 2.2).

It is well known that quadratic programs are special cases of LCPs. We now provide
a somewhat different formulation of quadratic programs as special cases of (1) instead
of those of the standard LCP. Consider the quadratic program (QP)

minimize C,Tz -- 1/2 XTQx(2)
subject to Ax b, x > O,
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where c,z E R’, b R’, A R’x’(m < n)and has full row rank, and Q
is symmetric. In Corollary 2.2, we will demonstrate that iterates produced by the al-
gorithms under investigation are well defined if Q is positive semidefinite on the null
space of A. In this case, it is well known that the problem is convex and the first-order
conditions are both necessary and sufficient for optimality. The first-order conditions
for (2) can be transformed into the form of (1). To see this, let B R(’-m)x’ be any
matrix such that the columns of BT form a basis for the null space of A. The first-order
conditions for the quadratic program (2) are (see Dantzig [1])

Ax b

(3) AT,X Qx A- y c O, (x, y) > O,

XYe

where A and y are the dual variables. To eliminate the dual variables A from the above
system, we premultiply the second equation by the nonsingular matrix [AT BT]T. Notic-
ing that BAT 0, we obtain

0 (AT,k Qx + y c)
B -BQx + By- Bc

Since AAT is nonsingular, A is uniquely determined once x and y are known. Remov-
ing the equation for A, we arrive at the following 2n-dimensional nonlinear system with
nonnegativity constraints for (x, y)

Ax b

(4) -SQx + By- Sc O, (x, y) >_ O.

XYe

Clearly, (4) is in the form of (1) with

(5) M= N= and h=
-BQ B Bc

When Q 0, the quadratic program (2) reduces to a standard-form linear program
(LP)

minimize cTx
(6)

subject to Ax b, x>0.

Hence (2) also includes the linear program. However, because of the importance of
linear programming in optimization, we will state results for linear programming sepa-
rately, fully aware that they are special cases of quadratic programming. We have shown
that the framework of problem (1) is quite general.

The objective of this work is to analyze the asymptotic behavior of a generic interior-
point algorithm for solving (1). More specifically, we will study the Q-convergence rate
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of this general algorithm. The issues of global convergence and complexity are not of
concern here.

Recently, Zhang, Tapia, and Dennis [18, Thm. 3.1] established a Q-superlinear con-
vergence theory for a class of primal-dual interior-point algorithms for linear program-
ming. In this paper, we extend their result to the general problem (1) and therefore
extend the result to quadratic programming and LCPs. In spite of its dose connection
to [18], we have made this paper self-contained.

Given u, v E Rn and r/E R, we will use the notation

min(u) min [u]i and min(u, v, ) min{min(u), min(v), r/},
l<i<n

where [u]i denotes the ith component of u.
The paper is organized as follows. In 2, we describe a general interior-point al-

gorithmic framework for (1). Then in 3, we present our superlinear convergence rate
result. Concluding remarks are given in 4.

2. Algorithm. It is now fairly well understood how a class of interior-point algo-
rithms can be viewed as damped Newton methods and that the inclusion of the logarith-
mic barrier term (so-called centering) can be viewed as perturbing the right-hand side
of the Newton system. Indeed, Zhang, Tapia, and Dennis [18] focused on issues con-
cerning how fast the damped Newton method could approach the Newton method (i.e.,
step-length approaches one), and how fast the perturbation term (barrier parameter)
should be phased out so that the fast convergence of Newton’s method is not compro-
mised. Their work covered linear programming applications. As previously mentioned,
the objective of the present work is to extend a particularly nice part of their superlinear
convergence theory to quadratic programming and LCPs. Our vehicle for accomplishing
this objective is the use of the general problem (1). We assume that the reader is famil-
iar with the above algorithmic considerations and we therefore present our algorithmic
framework with no further motivation or explanation.

Recall that F(z, y) is given by (1).
ALGORITHM 1. Given a pair (z0, Y0) > 0. For k 0, 1, 2,..., do
Step 1. Choose ak [0, 1)and Tk (0, 1). Set # o’zy/n.
Step 2. Solve the following system for (Az, Ayk):

--F(xk, Yk) +
Ay pke

Step 3. Compute the step-length:

(8) a
min(X- Axe, Y-1Ayk, __7.k)

Step 4. Update: Xk+l Xk -1- Ol.kAXk and Yk+l Yk "1" akAyk.

Notice that in Algorithm 1, we do not require that the starting point (x0, y0) be
feasible. Also notice that without the perturbation term #ke in the right-hand side of
(7), the search direction (Axe, Ayk) is the Newton step. We always have 0 < a < 1.
Moreover, ak 1 if and only if min(XlAxk, Y-lAyk) _> --Tk. We should expect that
only in rare cases would the full Newton step lead to a strictly positive iterate; hence we
should expect in most cases to have ak < 1 where ak is given by (8). The choice r 1
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corresponds to allowing steps to the boundary of the positive orthant and to a loss of
strict feasibility. Therefore, it is natural to view Algorithm 1 as a perturbed and damped
Newton’s method. We see that if (x0, y0) is in fl, then the iteration sequence {(xk,
will be strictly feasible. In the case of linear programming, there are no linear equations
in F(x, y) that involve both and y. If (xk, Vk) E f, then different step-lengths can be
used to update xk and Yk and still retain strictly feasible (xk+x, Yk+l). This strategy has
been shown to be more efficient in practice (see Lustig, Marsten, and Shanno [9], for
example). However, it will not affect our results since our analysis will show that as long
as Tk --* 1 both step-lengths will converge to one.

Algorithm 1 covers or is closely related to a wide range of existing interior-point
algorithms for linear programming, quadratic programming, and LCPs. In particular, it
covers most ofthe existing primal-dual interior-point algorithms for linear programming
as well as quadratic programming, including Kojima, Mizuno, and Yoshise [7]; Todd and
Ye [15]; Monteiro and Adler [12], [13]; Lustig [8]; Gonzaga and Todd [2]; Mizuno, Todd,
and Ye [11]. Algorithms for LCPs that are covered by or closely related to Algorithm 1
include Kojima, Mizuno, and Yoshise [5], [6]; Kojima, Megiddo, and Noma [3]; and
Kojima, Mizuno, and Noma [4].

Although these algorithms have been motivated and presented in various ways in-
eluding path-following (homotopy or continuation), potential reduction, or affine scaling
algorithms, most of them fit into the framework of the perturbed and damped Newton’s
method applied to the general problem (1). Due to the extensive activity in this area, our
list of references is not complete. For a more complete list of references, especially in
the cases of quadratic programming and LCPs, we refer the reader to two recent survey
papers by Ye [16], [17].

The following proposition gives a condition which guarantees that the iterates pro-
duced by Algorithm 1 are well defined.

PROPOSITION 2.1. The iterates produced by Algorithm 1 are well defined iffor any
positive diagonal matrix D I"x’, the matrix N MD is nonsingular.

Proof. Since (zo, o) > 0 and

[ ](9) F’(x,y)=
M N

Y X

the nonsingularity of F’(x0, Y0) is equivalent to that of

This latter matrix is nonsingular if and only if N MYff-Xo is nonsingular. By our
condition, (x,) is well defined. An induction argument completes the proof. [3

The following corollary is well known and one can easily verify that Proposition (2.1)
is satisfied in the three cases of interest.

COROLLARY 2.2. The iteratesproduced byAlgorithm 1 are well definedfor
1. the LCP (N -I) with Mpositive semidefinite,
2. the quadratic programming problem (2) with Q positive semidefinite on the null

space of A,
3. the linearprogrammingproblem (6).
We should mention that we have stated Algorithm 1 in the current form purely

for the purposes of obtaining a unified theory and notational convenience. By directly
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applying the perturbed and damped Newton method to the first-order conditions for
the quadratic program (2), it is not difficult to see that an identical iteration sequence
{(zk, yk)} will be generated without eliminating the dual variable A and introducing the
matrix B.

3. Superlinear convergence. The literature contains numerous studies directed at
investigating the convergence properties ofinterior-point algorithms covered by or close-
ly related to Algorithm 1. However, most of these studies were concerned only with
the issues of global convergence and complexity. The issue of convergence rate, which
is certainly important, has not been thoroughly studied for many interior-point algo-
rithms. One of the few papers that studied asymptotic behavior (local convergence) of
interior-point algorithms is Kojima, Megiddo, and Noma [3]. In their paper, Kojima,
Megiddo, and Noma proved that for a class of complementarity problems, in addition
to global convergence, superlinear and quadratic local convergence can be achieved by
some interior-point algorithms in the form of Algorithm 1. However, all their conver-
gence rate results were obtained under the restriction that the Jacobian matrix F’ (z, y)
was nonsingular at the solution. In this section, we provide a set of sufficient conditions
for superlinear convergence of Algorithm 1 applied to the general problem (1). These
conditions do not require the nonsingularity of F’(z, y) at solutions. How to apply these
conditions to construct globally and superlinearly convergent algorithms is an interesting
topic and the subject of further research.

It is satisfying that it is possible to obtain a superlinear convergence rate without the
assumption of nonsingularity of the Jacobian matrix at the solution. In the case of linear
programming, this allows one to avoid restrictive nondegeneracy assumptions. The mo-
tivation for this theory came from numerical experiments that demonstrated superlinear
convergence even for highly degenerate linear programs.

At the kth iteration of Algorithm 1, let

17k min(XkYe)"

Since xYkln is the average value of the elements of XkYke, it is clear that Tk > 1.
THEOREM 3.1. Let { (xk, Yk } be generated by Algorithm 1 with ’k --+ 1 and ak --+ O,

and let (xk, yk - (x,, y, ). Assume
1. stdct complementarity at (x,, y,),
2. that the sequence {rlk } is bounded,
3. that there exists p [0, 1) such thatfor k sufficiently large

P (Az(X[lYk)Ax + Ay(XkY[1)Ay:).AzAyk >_--
Then (x., y.) solves problem (1) and the sequence {F(xk, Yk) } componentwise converges
to zero Q-superlinearly. Furthermore, the sequence {F x yk } itselfis also Q-superlinearly
convergent, i.e., for any norm

IIF(x+,U+)II
lim sup 0.
-+o IIF(x,y)ll

Beforewe prove Theorem 3.1, wewould like to comment on the assumptions ofThe-
orem 3.1. First, assumption 3 is not particularly restrictive since we will see later that in
the context of linear programming, quadratic programming with Q positive semidefinite
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on the null space of A, and LCP with M positive semidefinite, we have the stronger re-
sult that AzAv > 0 for (z, V) ft. We used the more general assumption 3 instead
of Az"AVk > 0 based on the consideration that the former could be useful in studying
situations where (z, V) is not feasible. We stress that the algorithm designer is free to
choose ak and r, and the requirement that they be chosen so that tr 0 and r 1
is not particularly restrictive.

On the other hand, the compatibility of assumption 2 with the choices r 1 and
tr - 0 may be a cause for concern. It seems as if letting r 1 and cr 0 might force

oo. However, our numerical experience has shown this not to be the case for linear
programming. In our numerical studies with Netlib problems for linear programming,
we let r 1 and trk 0 and always observed strict complementarity and bounded
{r/}. While on occasionwe saw some rather large values for ’s, they eventually leveled
off or actually started to decrease as the iterates approached a solution. We did not
observe continued growth in the values of r/ as our algorithm converged. Moreover, the
observed convergence was clearly Q-superlinear and a - 1. Of course, the behavior
of{} varies with several factors, including how fast {r} converges to one and {a} to
zero. We do not mean to imply that unbounded{} cannot occur. Instead, we feel that
it appears to be more the exception than the role in linear programming. It still remains
to be seen whether or not this same phenomenon exists in quadratic programming and
LCPs. There is no doubt that this topic merits further study.

To prove Theorem 3.1, we need the following lemma.
LEMMA 3.2. Under the assumptions of Theorem 3.1,

(10) lim ak 1.

Proof. Define at each iteration

(11) Pt X- Axt and q Yk- Ayk.

At iteration k, from (7) and (9) we have

YkAxk + XkAyk --XkYke + #ke,

or equivalently, recalling that # crkzW/n (see Step 1 of Algorithm 1)

(12) Pk + qk --e + #(XY)-e -e + akTke

where T (zW/n)(XY)-1. Since r/ IITkelloo, assumption 2 and a 0 imply

(13) lim (Pk + qk) =--e.
k-.+(x)

Multiply both sides of (12) by (XYk)1/2 and consider the square of the g2-norm.
After dividing both sides by Tz W, we obtain the following equality:

[[(XkYk)1/2pk[[ + [[(XkYk)1/2qk[[ -Jr" 2AxAyk (1 2o.k + o.Xyk eT(XkYk)-le)xTk yk n n

Note that

II(XY)1/2p[[ Az(XYk)Azk and II(XYk)1/2qkll Aff(XkY-)Ak.
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By assumption 3,

Xyk n n

Multiplying both sides of the above inequality by n, we obtain

Assumption 2 implies that { [[Tk } is bounded above and { I[T- } is bounded away from
zero. Therefore, from (14) both {Pk} and {qk) are bounded. It now follows from (8) that
{Cek } is bounded away from zero.

Now assume [x,]i > 0. Obviously,

1 lim
[Xk+l]i

lim (1 + ok[Pk]i).

This implies [p]i -, 0, because {a} is bounded away from zero. From (13) we have
[qk]i -- --1. On the other hand, if [x,]i 0, then [y,]i > 0 by strict complementarity.
The same argument, interchanging the roles ofpk and qk, gives [qk]i "- 0 and [Pk]i -- 1.
Therefore, the components ofPk and qk converge to either 0 or -1. Consequently, from
(11), (8), and Tk -- i it follows that ak --* 1. This completes the proof.

Now we are ready to prove Theorem 3.1.
Proofof Theorem 3.1. Let

F (x, y) Mx + Ny h and F2(x, y) XYe.

We will prove that both {Fx (xk, Yk)} and {F2(xk, Yk)} componentwise converge to
zero Q-superlinearly. This will imply that {F(xk, Yk) } componentwise converges to zero
Q-superlinearly. It is not difficult to see that componentwise Q-superlinear convergence
of a vector sequence implies its Q-superlinear convergence.

First we show that the sequence {F1 (xk, Yk) } componentwise converges to zero Q-
superlinearly. If Fx (x0, y0) 0 (i.e., (x0, y0) is a feasible starting point), then it is easy
to see that F(x,yk) 0 for all k. Therefore, we need only consider the case where
F(x0, y0) 0. Note that Newton’s method solves linear equations in one step. If for
some integer p > 0, a, 1, then we have F(xk, Yk) 0 for all k > p. Therefore, we
need only consider the case where czk < 1 for all k. It is easy to see from Steps 2 and 4
of Algorithm 1 that

F(xk+,yk+) (Mxk + Nyk h) + ak(MAxk + NAyk) (1 Ok)F(xk, Yk).

Since ak --* 1, (Ft (x, Yk) } componentwise converges to zero Q-superlinearly.
We then show that the sequence {F2(xk, Yk)} also componentwise converges to zero

Q-superlinearly. From Step 4 of Algorithm 1,

Xxk+ e + Otkpk and Yk-lyk+l e d" Otkqk.

Adding the above two equations, we have

-1xlxk+l -I- Yk Yk+l 2e + ak(Pk + qk).
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It follows from (13) and a --, 1 that

(15) + e.

If [z,]i 0, then by strict complementarity, [y,]i > 0 and [yk+l]i/[y}]i - 1. It
follows from (15) that [z}+]i/[z}]i ---, O. Therefore, [z}]i 0 Q-superlinearly. By the
symmetry of the relation (15), we have [y}]j ---, 0 Q-superlinearly if [y,]j 0. Thus, all
variables that converge to zero do so Q-superlinearly. That is, for each index i either

or

lim
[x}+]i

=0 and lim

lim
[xk+]i

1

In either case, for every index i,

(16) lim
[X}+ ], [y}+l]i

=1

and lim
[y}+ ]i O.

lim
[Xk+lY}+le]i O.

}oo [XkYke]i

We have proved that {[X}Yke]i } converges to zero Q-superlinearly for every index i.
As was mentioned above, the componentwise Q-superlinear convergence of {F(x}, y})}
implies its Q-superlinear convergence. This completes the proof. q

A key idea in the proof of Theorem 3.1 can be traced back to a 1980 work by Tapia
[14]. In Theorem 3 of that paper, Tapia pointed out that an algorithm which at each iter-
ation satisfies the Taylor linearization of the complementarity equation has the property
that the variables that converge to zero do so Q-superlinearly. This result assumed strict
complementarity and step-length one. Observe that (15) is equivalent to

+ + ---, O.

We see that the Taylor linearization of complementarity is satisfied asymptotically in our
situation.

The following theorem deals with the Q-superlinear convergence of Algorithm 1
applied to LCPs, quadratic programming, and linear programming.

THEOREM 3.3. Let { (x}, y} } be generated by Algorithm 1 with Tk 1 and ak --- O,
and let (x}, y} --, (x,, y,). Under assumptions 1 and 2 of Theorem 3.1, if (xp, yp) E f
for some p, then (x,, y, solvesproblem (1) and the sequence {F(x}, y} } componentwise
converges to zero Q-superlinearlyfor thefollowing three cases:

1. the linear complementadtyproblem (N -I) with Mpositive semidefinite,
2. the quadraticprogrammingproblem (2) with Qpositive semidefinite on the nullspace

of<
3. the linearprogrammingproblem (6).
Proof. We need to prove that assumption 3 ofTheorem 3.1 is satisfied for each of the

above three cases. Observe that for all k > pwe have (x}, y}) f and MAx}+NAy}
0 (see (7)). It suffices to prove that uTv > 0 for all u, v l:t’ satisfying Mu + Nv O.

In the first case (N -1), Mu + Nv 0 is equivalent to v Mu. Hence uTv
uTMu > 0 because M is positive semidefinite.

In the second case (see (5)), Mu+ Nv 0 is equivalent to Au 0 and BQu By.

Using the representations u BTu2 and v ATvl + BTv2, where Vl ( R" and
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uu, v: R’-’, and noticing that AT _1_ BT, we have uTv uT2BBTv2. Moreover,
BQu By is equivalent to BQBTu2 BBTv2. Hence, if Q is positive semidefinite in
the null space of A, then

uTv uT2 BBTv2 uT2 (BQBT)u2 >_ O.

The third case follows immediately from the fact that Q 0 is positive semi-
definite. [:1

It is worth noting that feasibility is assumed in Theorem 3.3 but not in Theorem 3.1.
It is not clear if assumption 3 of Theorem 3.1 may be satisfied without feasibility. This
topic perhaps deserves more study because infeasible starting points are used in most
practical implementations.

4. Concluding remarks. The generality of (1) and the perturbed and damped New-
ton’s method viewpoint have enabled us to analyze the local convergence behavior of a
class of interior-point algorithms for linear programming, quadratic programming, and
LCPs in a unified approach.

We developed a Q-superlinear convergence theory that does not assume any infor-
mation on the Jacobian matrix at the solution. This theory was used to establish suffi-
cient conditions for Q-superlinear convergence of a class of interior-point algorithms for
linear programming, quadratic programming (with Q positive sernidefinite on the null
space of A), and positive semidefinite LCPs.

Acknowledgment. We thank two anonymous referees for their constructive com-
ments.

REFERENCES

[1] G.B. DANTZIG, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.
[2] C.C. GONZAGAAND M. J. TODD,An O(v/-L)-iteration large-step primal-dual aj/ine algorithm for linear

programming, SIAM J. Optimization, 2 (1992), pp. 349-359.
[3] i. KOJIMA, N. MEGIDDO, AND T. NOMA, Homotopy continuation methodsfor complementarityproblems,

Math. Oper. Res., 16 (1991), pp. 754-774.
[4] M. KOJIMA, S. MIZUNO, AND T NOMA, A new continuation method for complementarity problems with

uniform p-functions, Math. Programming, 43 (1989), pp. 107-113.
[5] M. KOJIMA, S. MIZUNO, AND A. YOSHISE, An O(V/-L) iteration potential reduction algorithm for linear

complementarityproblems, Math. Programming, 50 (1991), pp. 331-342.
[6] .,Aprimal-dual algorithm for a class oflinear complementarityproblems, Math. Programming, 44

(1989), pp. 1-26.
[7] ,Aprimal-dualinteriorpointmethodforlinearprogramming, in Progress in Mathematical Program-

ming, Interior-Point and Related Methods, N. Megiddo, ed., Springer-Verlag, New York, 1989, pp.
29-47.

[8] I.J. LUSTIG,A genericprimal-dual interiorpoint algorithm, Tech. Rep. SOR 88-3, Dept. of Civil Engineer-
ing and Operations Research, Princeton University, Princeton, NJ, 1988.

[9] I. J. LUSTIG, R. E. MARSTEN, AND D. E SHANNO, Computational experience with a primal-dual interior
point methodfor linearprogramming, J. Linear Algebra Appl., 152 (1991), pp. 191-222.

[10] N. MEGIDDO, Pathways to the optimal set in linearprogramming, in Progress in Mathematical Program-
ming, Interior-Point and Related Methods, N. Megiddo, ed., Springer-Vedag, New York, 1989, pp.
131-158.

11 S. MIZUNO, M. J. TODD, AND Y. YE, On adaptive stepprimal-dual interior-point algorithmsfor linearpro-
gramming, Tech. Rep. 944, School of Operations Research and Industrial Engineering, Cornell
Univ., 1989; Math. Oper. Res., to appear.

[12] R.C. MONTEIROAND I. ADLER, Interiorpath-followingprimal-dualalgorithms. Part I: Linearprogramming,
Math. Programming, 44 (1989), pp. 27-41.

13] .,Interiorpath-followingprimal-dualalgorithms. Part II: Convexquadraticprogramming, Math. Pro-
gramming, 44 (1989), pp. 43-66.



422 Y. ZHANG, R. TAPIA, AND E POTRA

14] R.A. TArA, On the role ofslack variables in quasi-Newton methodsfor constrained optimization, in Nu-
merical Optimization of Dynamic Systems, L. C. W. Dixon and G. P. Szeg6, eds., North-Holland,
1980, pp. 235-246.

[15] M. J. TODD Am) Y. YE, A centered projective algorithm for linear programming, Math. Oper. Res., 15
(1990), pp. 508-529.

[16] Y. YE, Interiorpoint algorithms for quadratic programming, Working Paper Series No. 89-29, Dept. of
Management Sciences, The Univ. of Iowa, Iowa City, IA, 1989; also in Recent Developments in
Mathematical Programming, S. Kumar, ed., Gordon & Beach Scientific Publishers, New York,
1991, to appear.

17] ,Interiorpoint algorithmsforglobal optimization, Ann. Oper. Res., 25 (1990), pp. 59-74.
[18] Y. ZHAtC;, R. A. TAI’A, ArCD J. E. DErrIS, On the superlinear and quadratic convergence ofprimal-dual

interiorpoint linearprogramming algorithms, SIAM J. Optimization, 2 (1992), pp. 304-324.



SIAM J. OPTIMIZATION
Vol. 3, No. 2, pp. 423-441, May 1993

() 1993 Society for Industrial and Applied Mathematics
011

POINTWISE BROYDEN METHODS*
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Abstract. Pointwise quasi-Newton methods are designed for nonlinear equations and optimization prob-
lems in function spaces. They update coefficients of differential and integral operators and therefore take
advantage of finer structure than conventional quasi-Newton methods. In this paper a general theory for
those pointwise quasi-Newton methods that are based on Broyden’s method are given. This paper unifies the
theory of pointwise methods with that for Broyden’s method in Hilbert space. A new superlinearly convergent
method is introduced for elliptic boundary value problems and the new theory allows for a direct extension of
a pointwise method for integral equations.

Key words, pointwise quasi-Newton method, superlinear convergence
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1. Introduction. In this paper we put one class of pointwise quasi-Newton methods
into a general framework and give a convergence proof sufficient to describe many of the
applications in the literature and extend some ofthem. Pointwise quasi-Newton methods
update coefficients of operators in function spaces. This is in contrast to methods such
as Broyden’s method, which update the operators themselves by adding low-rank terms.
In many cases pointwise updates of this type give superlinear convergence whereas di-
rect extensions of updates derived for finite-dimensional problems do not. The updates
considered in this paper are pointwise extensions of Broyden’s method [1] and we unify
the theory of pointwise methods with that for Broyden’s method itself. Pointwise meth-
ods that are extensions of rank-two updates were considered in [11] and [13] but are not
considered in this paper.

Pointwise methods have been applied to boundary value problems [3], [6], [10], op-
timal control [11], [13], and integral equations [8], [9]. While the method in [11] is a
pointwise extension of the BFGS method, the methods proposed in the remainder of the
papers cited above are in one way or another based on pointwise variants of Broyden’s
method. The focus of this paper is on nonpartitioned forms of pointwise quasi-Newton
methods. In [11] and [13] partitioned methods were used to take into account sparsity
patterns of the coefficients of differential operators. These methods will be considered
in a subsequent paper on partitioned pointwise methods.

In the body of the paper we give several examples, and in this introductory section
we give only one to illustrate the idea. Consider the two-point boundary value problem

u" + f(u, u’) 0, o.

We write the problem as F(u) 0 on the space

X {u u e C2([0, 1]), u(O) u(1) 0).

We assume that there is a solution u* and that the Fr6chet derivative ofF is a nonsingular
second-order differential operator at *.
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Astandard finite element or finite difference discretization ofthis problem leads to a
problem with a tridiagonal Jacobian matrix. As was pointed out in [6] the quasi-Newton
iterates generated by use of the standard sparse Broyden or Schubert [15] algorithm do
not converge rapidly to the solution. This observation was explained in [10], where it was
shown that in the limit the Schubert update converges to an update that only modifies
the zeroth-order term in the error in the Fr6chet derivative. The update proposed in [6]
for the discrete problem and analyzed in [10] for the continuous case updates both the
first- and zeroth-order terms of the error in the Fr6chet derivative. If the approximate
derivative at the current iterate is

d2 d
A +axx +a

and u+ u A F(u) is the new quasi-Newton iterate, the update of the coefficients
is given by

a+o a + (y- Acs)(x)s(x)(s(x)2 + s’(x)2)+

and

d (s(x)2 + s,(x)2 +at a + (y Acs)’(x)s’(x)-x
Here we have used the convention,

a+ 1/a ifa-fi0,

0 ifa=0

fora e R.
Note that this update modifies both unknown coefficients. In [10] it was shown that

the iterates produced by this update converge q-superlinearly in C provided the ini-
tial iterate is near the solution in the C norm and the initial approximations for the
coefficients are near those for F’(u*) in the uniform norm.

In this paper we put these pointwise updates in an abstract setting and unify several
such methods. In 2 we formulate this abstraction. In 3 we state and prove the basic
result on superlinear convergence in a weak sense. We apply this result, together with a
compactness condition, to obtain q-superlinear convergence results in 4. The results in

4 extend those in [10]. When the compactness condition does not hold, a nonstandard
notion of superlinear convergence often describes the performance of the algorithms,
and we discuss this in 5. We use the ideas in 5 to extend the work in [8] and [9].

2. Notation and definitions. In this section we introduce pointwise inner product
spaces. These are the fundamental objects in our study ofpointwise quasi-Newton meth-
ods. With the definition of pointwise inner product space in hand we discuss the basic
assumptions that relate the pointwise inner product with the nonlinear equation to be
solved. All of this structure is used in 3 to define pointwise quasi-Newton updating in a
general setting and to prove the basic convergence result.

DEFINITION 2.1. Let f C RM for some M < o0 be compact and let H be a Hilbert
space. A Banach space X of H-valued functions on f is apointwise innerproduct space
over fl if there is a map #x X x X - L (f) satisfying, for all f, 9, h E X, z E fl, and
aER,
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1. #x(f g)(x) #x(g, f)(x),
2. x(f + og, h)(x) #g(f h)(x) + lzx(g, h)(x),
3. #x(f, f)(x) > 0 and 0 for almost all x f if and only if f 0,
4. the norm on X is

(2.1) Ilfllx IIx(f, f)l/2lloo.
We will call #x a pointwise inner product. It will be convenient to define

II/llx () #x(f,/)1/2(x)

for each f E X. When the dependence of H on the space X is important we will refer
to Hx.

An example of such a space is X L (f; H), the space of functions on valued
in a Hilbert space H with norm

Ilfllx ess-sup(llf()l]).

Here,

#x(f, g)(x) (f(x), g(x))H,

where (., ")H is the inner product on H. Only in simple cases like this is #H(’, ") (’, ")H.
Another choice for # could be

x(/, a)() (1(), a()). + f.(/(u), a(u)).
which would give an equivalent norm. This choice was used in [9] in the context of
integral equations. Similarly, the space of continuous H-valued functions could also
have the structure above, as it is a closed subspace of L(f; H). For the Hart-Soul
update considered in the introduction we formulate the problem/method pair so that
H Rx,

x(f, a)() f()a() + f’()a’(),

and X C.
Spaces of differential or integral operators can be viewed as pointwise inner product

spaces. This was done in [10]. Consider the space ofoperators on Ck(f; RN) ofthe form

Lu= a,(x)D’

with continuous N x N matrix coefficients {an }. This is a pointwise inner product space
with

Iz(L’L2)(x) Z (a(x)’a2a(x))n’

and H Rvxvx. Ck(f; RN) is also a pointwise inner product space with

x(u,v)-- ((Dau),(Dav)).a.
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The space of integral operators of the form

Lu(x) m(x)u(x) +/ k(x, y)u(y) dy

on C(f; RN) with m continuous was made into a pointwise inner product space in [9]
with

#x(Lx,L2) (m(x),m2(x))v + f(k(x,y),k2(x,y))vv dy.

Let X and Y be pointwise inner product spaces over f c RN with corresponding
pointwise inner products #x and #y (., ")Hr. In this paper Y is an intermediate space
but its structure as a pointwise inner product space is crucial to the analysis. We consider
nonlinear equations of the form

(2.2) F(u) O,

where F X X. We assume that F’, the Fr6chet derivative of F, has the form

(2.3) F’ + C JA

In (2.3) Jc is a Lipschitz continuously differentiable map fromX to E(X), JA a Lipschitz
continuously differentiable map from X to (X, Y), and CP a bounded linear map from
Y to X. The idea is that Jc and CP will be computed and JA will be approximated by a
quasi-Newton method. The map UP will be viewed as a preconditioner and is used for
the most part as a theoretical artifice to make F a map from X to X. We discuss the
reasons for this in the context of the applications in the following sections, but here we
note that in the case of the Hart-Soul update,

-1

Jc I, and JA is the first-order part of the Fr6chet derivative. Multiplication of the
equation by (*P on the left does not change the iterates and is not done in practice. It
does, as we shall see, assist in the analysis.

The iteration will take the form

u+ u B[1F(u)

where Bc Cc + CPA. Here C and CP are approximations to Jc(u*) and CP that
are computed by means other than quasi-Newton methods. As in [7] we do not explicitly
address how C and CP are computed, but if one uses CP CP and C Jc(uc) then
all the conditions we put on these maps to insure superlinear convergence are satisfied.
We illustrate this through several examples in 4 and 5.

This is an extension of the type of splitting used in [2]. The new feature is the inclu-
sion of the preconditioning map CP. The motivation for the imposition of this structure
on F’ will become clear in 4 when specific pointwise quasi-Newton methods are dis-
cussed.

We make the standard assumptions on F.
ASSUMPTION 2.1. There is u* E X such that F(u*) O, F’(u*) is nonsingular, and

F’ is Lipschitz continuous in a neighborhood Af of u* with Lipschitz constant
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Basic to all pointwise methods is the notion of a generalized rank-one operator. For
any measurable Hy-valued function u on f and functions v, w X define

(2.4) i(,,) ux(, o),.

Since v and w are in X and u is a measurable Hy-valued function, i(u, v)w is a measur-
able Hy-valued function. Note that if is a scalar-valued function on 9t,

(2.5) ((,,)o)() ()((,.)o)()

for all x E f.
We assume that our initial approximation A0 to Ja (u*) differs from JA(u*) by an

error EA which lies in a linear space of admissible error operators, $ c (X, Y). We
assume that t; is a Banach space with norm ]l" lie and we make the following assumption.

ASSUMI’TON 2.2. For all x f, u E X, and E E ,
In the case of the Hart-Soul update is the space of first-order differential operators
with coefficients in L. The norm is the sum of the norms of the two coefficients. In this
case Assumption 2.2 is clearly true. A trivial but important consequence ofAssumption
2.2 is that for all E , x f, and u X,

(2.6) IIEII(x,Y IIEII.
We apply (2.6) and estimates on the errors

Ec C- Jc(u*) and EA A- JA(U*)

to prove the following simple lemma on invertibility of operators B of the form

(2.7) B C + ’PA
where

P CP + EP.

LEMMA 2.2. There is eo > 0 and 6 e C[0, e0) with 6(0) 0 such that if e [0, e0),
A (X, Y)with EA ,

IIEAII < e,

IIECIIc<x) < IIEPIIc<Y,x) < and B is given by (2.7), then B- exists and

lIB- F’(u*)-ll:(x) < 6(e).

Proof. By (2.6) the result is a consequence of the Banach lemma since

B F’(u*) Ec + ’PA CPF4(u*)
Ec + (P CP)A + CP(A JA(U*))
Ec + EPA + CPEA,
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and so

IJF’(u*) Bll (x) _< q(e)

where

q(e) e(1 + e / IIJA(u*)ll (x,g) + IIcPIl (g,x)).

Therefore, the result holds with

6(e)
1- IIF’(u*)-Xll (x)q(e)

as is standard. ]

We make the following assumption to relate generalized rank-one operators to the
error class.

ASSUMPTION 2.3. Let s E X. For all u E X and y Y

and for all x f

(2.8)

For all E 6 g’

(2.9)

and

(PsE) lzx(s, s)+i(Es, s) 6 E

(2.10) liP, Ilk(e) 1 and I1 - P, II (e) 1.

Note that (2.9) and the first half of (2.10) follow from (2.8). We include all of them
in the assumption in order to collect all the facts on P in one place. At this point it
becomes somewhat nontrivial to check the assumptions. The verification for the Hart-
Soul update was done in [10] and will be placed in a more general context later in the
present paper.

Assumption 2.3 is the critical coupling relation between the error class and the space
on which the nonlinear equation is defined. In the following section we show how the
assumptions in this section lead to superlinear convergence results and apply these to
the Broyden method itself as well as to extensions of the method for elliptic boundary
value problems proposed in [6] and analyzed in [10].

3. Basic results. In this section we prove a weak superlinear convergence result
from which the convergence results for specific methods in 4 will follow.

Pointwise Broyden updates take the form

(3.1) A+ A + #x(s, s)+i(y# As, s),

where y# is selected to enforce various extensions of the secant condition B+s y
F(u+) F(u). Because the details of the formation of y# are varied, we give an hypoth-
esis on y# that will be verified in the subsequent sections in the context of applications.
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ASSUMPTION 3.1. There is a neighborhood Af of u* and 8 > 0 such that for all
u,, u+ u, + s Af there are CA > 0 and # Y such that for each z fL

Define an operator A, by

zx, P,ZX, ,x(,)+i(v# Ja(’*),).

Upon noting that A8 is in by Assumption 2.3 we obtain the following trivial but
important lemma, the proof ofwhich is a direct analog of the finite-dimensional analysis
in [2].

LEMMA 3.1. Let Assumptions 2.1, 2.2, 2.3, and 3.1 hold, and let uc,+ EAf. If
EA E then E and

(3.3)

with

(3.4)

From this lemma we obtain a bounded deterioration inequality,

I[ A A

and therefore q-linear convergence in the X-norm in the standard way.
COROLLARY 3.2. Assume that the assumptions ofLemmas 3.1 and 2.2 hold. Thenfor

all tr (0, 1) there is 6 such that iffor all n

IIECll(x) < *.

and e0 Ix < . and EoA such that E0a lie < . then the pointwise Broyden iterates
specified by the updateformula (3.1) converge q-linearly to u* in the norm ofX with q-factor
a and the devative errors tiE.lie(x) and IIEAII are bounded.

In the setting of traditional quasi-Newton methods one can obtain superlinear con-
vergence by showing that the Dennis-Mor6 condition

=0

holds. In the case of infinite-dimensional spaces verification of this condition requires
additional assumptions and sometimes is not possible. One extension of this condition
which can be verified in our context is given in the main result of this section.

This theorem requires a preliminary lemma and a compatibility assumption on the
class with an equivalence relation . For f we equip X with the semi-inner
product #x(’, ")(). The space of equivalence classes under the relation

u v if #x(u v, u v)() I1 11= () 0,

is a pre-Hilbert space under the inner product #x(’, ")(), and we denote its comple-
tion by X. In the discussion that follows we will identify an element of the class with a
representor. We can relate E E E to a map on X if we make the following assumption.
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ASSUMPTION 3.2 For all E :, u, v X, and f Ilu vll () 0 implies
Eu() Ev(’2).

In the simple example of the Hart-Soul update discussed in the introduction, u v
means that u and v agree to first order at . The assumption asserts that if u and v agree
to first order at then any first-order operator applied to them will give the same value.
We show how this assumption holds in the discussion of applications in 4.

We have the following lemma.
LEMMA 3.3. LetAssumptions 2.2 and 3.2 hold and let , f be given. Then the map

from X to Hy defined by

Ef (Ef)() for all f X

is a bounded linear mapfrom X to Hy with

(3.5) IIEIl(,m.)-< IIEII.
Proof. The map E is well defined by Assumption 3.2. It is a continuous linear map

by Assumption 2.2. In fact, Assumption 2.2 implies that

IIfllH II(Ef)()IIH <--IIEIlllfll.x()= IIEIlllfll.
This completes the proof.

THEOREM 3.4. Let the assumptions of Corollary 3.2 hold and let 6 > 0 correspond to
some a (0, 1). Then for each x f and Hy,

(3.6) lim #x(s,, s,)+ (x)(, (EA s,)(X))H. O.

Moreover, there is MA such that

(3.7) sup [lx(s, s)+(x)(, Ea s). (Y)I < Mallll-
x,yf

for all n >_ O.
Proof. We fix f throughout the proof. Given a step s u+ u, let

x(, )+().

Hence from (3.3) and the fact that PA A, we obtain for f e X

f (E__f)(.) (EAf)(.) (PsEAf)(.) + (PsAsf)(.) (FcA)f Rsf

where R, (X, Hy) is given by

Rsf (Ps(EA As)f)(.) fz#x(s, f)(.)((EA As)s)().

We can compute the adjoint R e (Hy,X*) with respect to the inner products
#x(’, ")() on X and (., ")H. on Hy"

((/), Rsf)Hy fz#x(s, f)()(, ((EcA As)s)(.))Hy

#x (R;, f) (.) Hy, fX,

so that for e Hy

R; p(. ((E: -/X.))(e))...
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Similarly, the adjoint (E)* e .(Hy, .,,*) satisfies

x((a)., )() (, (a)) (, (a)()),,.
Hence we obtain the following important identity. For any E Hy

-2#x((EeA)*,Rs)(e) + Ix(

,x((A)., (A).)()
-2#(, ((EeA As)s)())Hy#X((EA)*, s)()
+#2(, ((ETA As)s)())2Hy#X(S, s)(5:)

,x ((EA)*, (E)*)() p(, (Ef)(Z)),.
+p(, (ZX.)(Z)),..

So for n 0, 1,..., if we let P, Ps, and A, As, we have
(3.8)
’]’=o lZX(Sk, Sk)+()(, (EkAs)())2Hv <_ #x((EoA)*, (EoA)*)()

+ E=0,x(, )+()(, (zx)(e)),.
As 6 f is arbitrary and Lemma 3.3 implies that

#x((EoA)*, (EoA)*)() < IIEIIIIII
independently of , the proofs of (3.6) and (3.7) will be complete if we can estimate
the sum on the right side of (3.8) independently of both and k. To do this note that
Assumption 2.2 and (3.4) imply that

CzxlleOIIxIIIIH(, + /x) < 2CalIIIH.
Hence the series

(,)+(z)(, (zx)(z)),. <
k=O

4(cx IIllm.)
1 0.2

converges. Setting

MA= 1_a2 +IIEII
completes the proof.
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4. Superlinear convergence in the conventional sense. Consequences of Theorem
3.4 depend on properties of the nonlinear equation. In this section the problems satisfy
a stronger assumption than Assumption 3.1.

ASSUMPTION 4.1. F can be written F Fc + CPFA with Jc(u) F(u) and
JA (u) F(u). There is a neighborhood N" of u* such that for all u, v E 3/"

(a)
(4.1)

(b)
Ft(u) Ft (v) E e for all u, v X

IIfit() fit()I1 I1 llx-
and

We note that Assumption 4.1 implies Assumption 3.1 in the following lemma.
LEMMA 4.1. IfAssumption 4.1 holds and

u# F(+ F(u),

then Assumption 3.1 holds.
The standard situation considered in the literature on pointwise quasi-Newton meth-

ods [3], [6], [8], [9], [10], [11], [13] is one for which Hy is finite-dimensional. In that case
(3.6) becomes
(4.2) lim x(s,s)/()llEas(z)ll 0.

In the case where X Y H RN, F FA, and f is a single point, (4.2) is the
Dennis-Mor6 condition. In the case where X Y H is infinite-dimensional, f is a
single point, F FA, and #x(’, ") (’, ")H, (3.6) is the weak superlinear convergence
condition described in [5], [7], and [12]:

(4.3) lirn ,
IIsll ]

0.

Equation (4.3) is the basis for the convergence analysis of Broyden’s method in infinite-
dimensional spaces done in [14], [12], and [7]. We illustrate this with part of the next
theorem.

The transition fromweak to norm superlinear convergence depends on the structure
of the particular problem. Broyden’s method itself has been analyzed from this point of
view in Hilbert space [12] and in Banach space [7]. In this section we prove a theorem on
superlinear convergence of pointwise methods. We show how the conventional formu-
lation of Broyden’s method can be described in this setting. In the following section we
discuss another notion of superlinear convergence that is relevant when the compactness
conditions necessary for superlinear convergence in the traditional sense do not hold.

Let X be a pointwise inner product space and define Xp to be the completion ofX
in the norm

Not that x X. Our rst rsult i8 an xtnsion oth rsult in I0 and a unieation
othat rsult with th 8uprlinear eonvrgne analysis or Broydn’8 mthod in Hilbrt
space given in [12].

THEOREM 4.2. Assume that either
Hy is finite-dimensional, or
X Y H, f is a singlepoint, and #x(’, ") (’, ")H. In addition, letthe hypotheses

for Theorem 3.4 hold, and let 6 > 0 correspond to some a (0, 1) as in Corollary 3.2.
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Assume that the computedparts ofF’ satisfy

(4.4) lim
lIEge IIx

-o
=0

and

(4.5) lim IIEPll(y,x 0.

Also assume that F’(u*)-ICP can be extended to be a map in (yvl, Xp2 )for some 1 <
p < o and i <_ pz <_ o. Finally, assume thatfor every M > 0 thefamily

{F’(u*)-CPE] E e e, IIElle _< M} c (X)

is collectively compact. Then u, u* q-superlinearly in the norm ofX.
Proof. The goal in the proof will be to show that

(4.6) lim IIEas"llx
.-o IIs.llx

0.

Equations (4.4), (4.5), and (4.6) together imply that the Dennis-Mor6 condition

lim II.llx 0,

which implies q-superlinear convergence since the assumptions of this theorem already
imply q-linear convergence.

Since B,s, -F(u,), for each z f we have

E.s. (B. F’(u*))sn -F(u.) F’(u*)(en+ en).

Therefore,

Since

E.sn -F’(u*)en+ F(un) + F’(u*)e.

-F’(u*)e.+ + f(F’(u*) F’(u* + te.))e, dr.

PE, EC. / (C. A. CPFt(u*))

EC. + (CP. -CP)A. + CP(A.- Ft(u*))

P A=ECn +EPnA.+C E,

we have that

(4.7)

where

7-. MnIIE II<Y,X) +
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Here MB is a bound on the sequence {llA,[lr.(x,y)}, which exists by Corollary 3.2.
By Assumptions 2.2 and 2.1 for each z fl

Il fo(F’(u*) F’(u* + te))e dt

Hence

(4.8) II P AC E, s, + F’(u*)e,/xllY --Ilellc + TIIsIIx.

Ile./llx llF’(u*) P A F’ -C En s.llx + (u*) II(x)(llellc + +2’lle.llx)

(4.11) <-II.llxllsllx / IIF’(u*)-ll(x)(llellc / 2’.lle.llx)

<_ I111x(1 / )llellx / IIF’(*)-xll<x>(llell / ’llllx).

We now consider the case of finite-dimensional Hy. Let aN E L (f) be given by

(4.9) a, /#x(s,, s,)+(EAs,, Es,)Hy.

ByTheorem 3.4 the finite-dimensionality ofHy implies that (4.2) holds and hence aN
0 for each z E f; therefore, aN 0 in/A’(f) for all 1 <_ p < o by the dominated
convergence theorem. In particular, a, 0 in Lpl (f). So for each z f,

and therefore the sequence

is uniformly bounded (and hence is contained in Y) and converges both pointwise to 0
in fl and also to 0 in the norm of YP.

Since II.all is uniformly bounded, the collective compactness assumption implies
that the sequence {,} given by

(4.10) <:n F’(u*)-1 P aC E(i

has an X-norm convergent subsequence. The limit of any such sequence must be zero
as

EnAsn 0
IIllx

in the space YPl and hence , 0 in Xp- by the hypothesis that F’(u*)-CP can be
extended to be a map in (YP, Xp). Therefore, , 0 in X.

For the case X Y H, fl a single point, and #x(’, ") (’, ")n, we also seek to
show , - 0. The approach is only a little different and the argument we give here is
taken directly from [12]. We include it to show how the result given here unifies point-
wise and conventional quasi-Newton methods. In the present case (4.3) holds, {,} is
bounded, and {,} therefore converges weakly to 0. The collective compactness as-
sumption implies that {,} has an X-norm convergent subsequence which must have
limit zero by the weak convergence. Hence ,, 0 in X.

In either case we can use (4.8) and obtain
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Hence,

where

Xn IIF’(u*)-lll(x)(llenllx + 2rn) + (1 + tr)llnllx-

As X, 0 as n , the proof is complete. [q

The second case of Theorem 4.2 is the main result of [12], which we state directly as
a corollary. This is the special case Fc O, CP I, f a single point, and X Y H.

COROLLARY 4.3. Let F be a Lipschitz continuously differentiable mapfrom a Hilbert
space H with F(u*) 0 and F’(u*) nonsingular. Then there is 6 > 0 such that if Ilu0

< , II 0 < , and Bo F’(u*) E COA(H), then the Broyden
iterates converge superlinearly to u*.

The first case of Theorem 4.2 allows us to extend the results of [10]. In [10] systems
of semilinear second-order elliptic partial differential equations were considered:

C(u) V2u + f(x, u(x), Vu(x)) 0,

subject to linear Dirichlet boundary co:aditions on a set f c RM; an approximation to
the Fr6chet derivative of the form

M 0v: + +
j=l

was maintained. The N x N matrices aj were intended to approximate the first- and
zeroth-order terms in the linear differential operator G’(u*). The update proposed for
two-point boundary value problems in [6] and extended to elliptic systems in [10] can be
expressed in terms of the pointwise inner product

in exactly the form

M 0U

j=0

B+ Bc + i((y- Bcs), s).

The main result in [10] was that the update was locally q-superlinearly convergent in the
topology of C if uo C2 was close to u* in the C norm and the coefficients of B0
were uniformly dose to those of G’ (u*). The update as expressed above does not fit into
the precise scope of this paper, as V is not defined on X C. We obtain the same
iterates, however, if we consider the map F V-ZG. We have

F(u) u + V-2f(x, u, Vu).

This is ofthe form (2.3) with X C, Fc(u) u, CP 7-2 with homogeneous Dirich-
let boundary conditions, and FA(U)(X) f(x, u(x), VU(X)). The equation F(u) 0
may be viewed as a weak form of G(u) 0.

We can apply Theorem 4.2 to extend the result in 10]. We consider equations of the
form

(4.12) Lu / f(x, u, Du, Du,..., D’u) 0



436 C.T. KELLEY AND E. W. SACHS

on a bounded domain f c RM. Here L is a linear differential operator of order k, f is
a smooth nonlinear function of z e RM and at most m x ’ak.-1 M vector variables in
RN. Here {c} are multi-indices of partial derivatives. We impose linear homogeneous
boundary conditions which we write as B(u) 0. We define

(4.13) #x(u, ) E ((D’u)(x), (Dav)(x))R

and let X Ck-t. We consider the equation in the form

(4.14) F(u) u + L-lf(x,u,D’u,D’2u,... ,D’XMu) O.

In (4.14) L-1 denotes the solution operator for Lu g with the boundary conditions

B(u) 0. We let the space E denote the space of linear differential operators of order
k 1 with coefficients in L and write E E E as

(4.15) E E aa(x)Da g"

Il_<k-1

We make E a pointwise inner product space by defining the pointwise inner product for
z fby

2(El’E2),e(x)= E (ala(x)’aa(x))F"
levi<k-1

Here I1" denotes the Frobenius norm. So

(4.16) IIEII sup IIEII. (x).

We have the following theorem.
THEOREM 4.4. Assume that f is Lipschitz continuously differentiable. Assume that a

solution u* exists and that F’(u*) is nonsingular. Assume that L-1 is a bounded operator
from L(f; RN) to Ck-l(f; RN) and from LZ(f; RN) to Hk(f; RN). Let F be given
by (4.14) with #x given by (4.13), X C-(f; RN), the space of linear differential
operators oforder k 1 with coefficients in L, and [1 Elie given by (4.16).

Then ifnx ny RN, C, L CP L-, and

FA(u) f(x, u, Dau,D’u, ,D’Mu),

then the hypothesis ofTheorem 3.4 holds ifuo is sufficiently near to u* in the norm ofX and
the coefficients ofAo are sufficiently near to those ofF4(u*) in L (f; RN). Therefore, the
iterates given by the update (3.1) converge q-linearly in the norm ofX.

If in addition L-1 is a compact operatorfrom L(f; RN) to Ck-l(f; RN) then the
hypothesis of Theorem 4.2 holds and the iterates converge q-superlinearly in the norm ofX.

Proof. The proof consists of verification of the assumption that F’(u*)-ICP
(yp, Xp,) (Assumptions 2.1, 2.2, 2.3, 4.1, and 3.2). Of these assumptions, 2.1, 3.2, and
4.1 follow directly the assumptions on f and F and definitions ofg and #x. The assump-
tion that Ft(u*)-ICP c= ,(Yp, Xp.) is trivial taking pl p2 2 since then YP L2,
Xp Hk-, and F’(u*)-ICP is a bounded map from L2 to Hk by our assumption on
L. We complete the proof by verifying Assumptions 2.2 and 2.3.
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Let u E X. Note that for all z E f, u X, and E g given by (4.15), we have by
the Cauehy-Sehwarz inequality that

which is Assumption 2.2.
Now let u, w E X and y E Y. By definition,

Il_<k-1

y(x)(Du(x), Daw(x)),

and so, by the Cauchy-Schwarz inequality,

This is exactly (2.8).
To complete the verification of Assumption 2.3 it remains only to show that [lI

Pll(e) -< 1. For s E X and E g given by (4.15) we have

i(Es, s)u (Es)(x)#x(s, u)

Y’lrl<k-l(a’(x), (D"s)(x))u -]l,l<-l(Dau(x))(Das(x))"
Ifwe write

(I P,)E E b, (x)D’,

we have that b as if #x(s, s)(x) 0. If #x(s, s)(x) 0 then P8 is an orthogonal
projection on the vector space RvN onto the one-dimensional subspace spanned
by {D’u(x)}<_k_ and hence

(<k-1 a<k-1

This completes the verification of Assumption 2.3 and hence the proof. D

5. Nonstandard superlinear convergence. Problems and methods to which Theo-
rem 4.2 can be applied are characterized by knowledge of the Fr6chet derivative up to a
compact error. This is the meaning of the requirement that the family

{F’(u*)-CPEIE , IIEIle < M} c Z:(X)

be collectively compact. When this compactness condition is violated a different form
of superlinear convergence has been shown to hold in many situations [4], [8], [9], [11],
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[13]. In the notation of 4 the local convergence is q-linear in X and superlinear in the
sense that

lira Ile/xllx =0(5.1)
n-oo Ilellx.

for certain 1 < r < s < oo. The difference from the traditional notion of superlinear
convergence is that the norms in the numerator and denominator are not the same.

We state and prove the general theorem on this type of convergence and then con-
sider applications of that theory to the problems given in [4], [9], and [13]. This result
gives (5.1) with s oo. A corollary of the proofwill give the general form of (5.1) under
an additional assumption.

THEOREM 5.1. Assume that Hy is finite-dimensional, the hypothesesfor Theorem 3.4
hold, and that > 0 corresponds to some a E (0, 1) as in Corollary 3.2. Assume that the
computedparts of F’ satisfy (4.4) and (4.5). Finally, assume that there are r0, r E [1, oo)
such that F(u*)-ICP can be extended to be a bounded operatorfrom yro to XL Then

(5.2) lim Ile/xllx 0.
.-o Ile.llx

Proof. The proof follows the lines of that of Theorem 4.2. The finite-dimensionality
of Hr implies that if c, is given by (4.9), then c, 0 in Lp(fl) for all 1 < p < oo.
Therefore,

’o ’oliE.as.liNgo f IIE.As.II (z) dz

(5.3)

Equation (4.8) implies that

(5.4)

where

(5.5)

< f Eo()llllTM ()d/X

_< I1 TM oIILo IIllx

_F --1 P A.+ (u*) C E. +.,

(fo
I ). F’(.*)- (F’(u*) F’(.* + te.))e, at- c.s. EP,A,s,

Our assumptions imply that

Therefore,

II.+xllx IIF’(u*)-xCPIl(Yo,x)ll.llLoll.llx + II.llx

IIF’(*)-CPII(Yo,x>II.IILo(1 + )lle.llx + II.llx,

which completes the proof. [-1

In order to obtain the superlinear convergence rate given by (5.1) with values of s
other than oe, additional assumptions must be made on the convergence of the iterates.
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Such assumptions are often trivial to verify [9], [11], [13]. We will state these assumptions
in terms of the sequence , defined in (5.5).

THEOREM 5.2. Let the assumptions for Theorem 5.1 hold. In addition, assume that
ro <_ r and thatfor some s (r, x]

(5.6) IIllx __, 0,

and that the convergence is q-linear in Xpfor all p > r. Then (5.1) holds.
Proof. We reconsider (5.3). We note that for any p > 1 and lip + 1/q 1

(5.7)

Since

IIAllo o
Yo f IIAall()d

_< f ()llall()dx

we may choose p > I such that pro s and conclude that

(5.8)

The remainder of the proof is exactly the same as that ofTheorem 5.1 up to the final
estimate. We set

and obtain

l/toII,+llx- <_ IIF’(*)-lCPIIcY"o,x)II5IIL, IIllx" + II-IIx.
This is equivalent to (5.1) and completes the proof. I3

Often, as in [9], [11], and [13], the assumptions for Theorem 5.2 are natural conse-
quences of the structure. In the remainder of this section we consider several examples.

The simplest example is that of substitution operators (see [4]). Here

F(u)(x) f(u(x)),

where f is a Lipschitz continuously differentiable map on RN. The standard assumptions
in this case are that F’(u* (z)) is a nonsingular matrix-valued function with uniformly
bounded inverse. We have Hx Hy RN, #x (’,’)RN, X L(f Rg), SO

Xp LP( RN). We let be the class of operators of multiplication by bounded
M x M matrix-valued functions. If E E is the operator of multiplication by ms we
define

IIEII sup IIm(z)lln.

We take F FA. The assumptions required for Theorem 3.4 hold trivially. The point-
wise update is Broyden’s method itself applied at each x 12. Letting A, be the operator
of multiplication by m, we have

,+() m() + (11()11)+ (y- Acs)(x)s(x)T.
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The compactness conditions required in Theorem 4.2 do not hold because multiplication
operators are not compact. However, the assumptions of Theorem 5.1 clearly do hold.
In fact, since

for all 1 < p < c the iterates converge q-linearly in all the spaces Xp for 1 < p < .
Since

<_

for all z f, where 7 is the Lipschitz constant of f’, the assumptions of Theorem 5.2
hold as well.

In [9] fully nonlinear integral equations of the form

(5.9) F(u)(x) f(u(x)) +/f k(x, y, u(y), u(x)) dy 0

were considered. Here the unknown function u E L(f RN). The Fr6chet derivative
is a sum of a multiplication operator and a compact integral operator. The requirement
in [9] that all functions be continuous can be relaxed ifwe put the problem in the setting
of this paper. We let

#x(u, v) u(x)Tv(x) + ff u(y)Tv(y) dy.

can be taken to be the space of operators of the form

Eu(x) mE(x)u(x) +/ kE(x, y)u(y) dy.

In [9] t was made into a pointwise inner product space, as was mentioned briefly in 2,

#e(A,B) (mA(x),mB(X))RF + f(kA(x,y),ks(x,y)), dy.

The norm on E is the pointwise inner product space norm

[IE[[e sup #e(E, E)(x) 1/2.

In this application X Y L(f RN), FA F. Verification of the hypotheses for
Theorem 3.4 is direct and was explicitly carried out in [9]. The assumptions for Theo-
rem 5.2 hold only for r >_ 2 and this is also described in [9].

The same update can be applied to the more general problem

F(u)(x) I(u(x),lC(u)(x)) 0,

where

f
1E(u)(x) ] k(x, y, u(y), u(x)) dy,

k L(fl x f x RN RN RP), and f L(RN RP RN) for some P. The
pointwise inner product, the error class, and the convergence results are the same in this
case.
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NONSMOOTH EQUATIONS: MOTIVATION AND ALGORITHMS*
JONG-SHI PANG AND LIQUN QIt

Abstract. This paper reports on some recent developments in the area of solving of nonsmooth equations
by generalized Newton methods. The emphasis is on three topics: motivation, characterization of superlin-
ear convergence, and a new Gauss-Newton method for solving a certain class of nonsmooth equations. The
characterization of superlinear convergence extends the classical result of Dennis and Mor6 for smooth equa-
tions and that of Ip and Kyparisis for B-ditferentiable equations. The Gauss-Newton method is different from
that proposed recently by Han, Pang, and Rangaraj; it uses convex quadratic programs to generate descent
directions for the least-squares merit function.

Key words, nonsmooth analysis, Newton methods, convergence theory, variational inequality, nonlinear
programming, complementarity problems

AMS subject classifications. 90C30, 90C33

1. Introduction. In the past few years there has been a growing interest in the study
of systems of nonsmooth equations; these are nonlinear equations that are defined by
functions that are not differentiable in the traditional sense of Fr6chet or GSteaux. In
particular, the numerical solution of these nonsmooth equations by some generaliza-
tions of the classical Newton methods for their smooth counterparts has received con-
siderable attention. Two major factors have stimulated this growth of interest. The first
factor is that nonsmooth equations provide a unified framework for the study of a num-
ber of important problems in mathematical and equilibrium programming. Within this
framework these problems are brought one step closer to the classical problem of solving
smooth equations for which there are rich theory and abundant solution methods that
are very powerful [6], [21]. The second factor, which is a consequence of the first, is that
on the basis of their nonsmooth equation formulation, some new solution methods can
be developed for solving optimization and equilibrium problems; these methods are not
only highly efficient but they also actually resolve the lack of robustness in many previous
solution approaches (see [24]).

The present paper is intended to provide a unified treatment of the theory of solving
nonsmooth equations by generalized Newton methods. This research emphasizes three
major topics: motivation, characterization of superlinear convergence, and the design
of a new Gauss-Newton method. To motivate the discussion we begin with a descrip-
tion ofvarious sources of nonsmooth equations; these are drawn from complementarity,
optimization, and several related problems. As evidenced from previous works on the
subject [17], [22], [28], [30], [31], [34], results from nonsmooth analysis are important
tools for the development of the Newton methods. For this reason we shall summarize
the necessary background of nonsmooth analysis and shall define some new concepts
that are useful for the Gauss-Newton method. The remaining part of the paper fo-
cuses on the study of iterative algorithms for solving the nonsmooth equations. Two
general convergence results are derived; these extend some well-known characteriza-
tions of Q-superlinear convergence for smooth equations (due to Dennis and Mor6 [5])
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to the nonsmooth context. Applications of these results to some specific Newton meth-
ods are discussed. Section 5 describes a Gauss-Newton algorithm for a certain class of
nonsmooth equations; this algorithm generalizes the NE/SQP method for the nonlinear
complementary problem proposed in [24]. The global and Q-superlinear convergence
of the Gauss-Newton method will be established.

2. Source ofnonsmooth equations. Thefocus ofthis paper is the numerical solution
on nonsmooth equations

(1) H(x) =0,

where the mapping H R’ R’ is assumed to be locally Lipschitzian. Shapiro [41]
has shown that when H is also directionally differentiable, then H must be B(ouligand)-
differentiabl in the sense ofRobinson [33]. In this paperwe take this to be the definition
of a B-differentiable function; i.e., a function that is both locally Lipschitzian and direc-
tionally differentiable on an open set is said to be B-differentiable there.

The study of solving a system of B-differentiable equations was initiated in [22], in
which a generalization of the classical Newton method for smooth equations was sug-
gested as a solution method. That paper also contains a discussion of several mathe-
matical/equilibrium programming problems to which the proposed methodology can be
applied. In what follows we shall review these and several related problems and shall
use them as the motivation for the study of the nonsmooth equation (1).

2.1. Nonlinear complementarity problem. The nonlinear complementarity prob-
lem (NCP) provides the prime candidate for illustrating the methodology of nonsmooth
equations. For this reason we start with it. Let f D R’ be a given function assumed
to be continuously differentiable on the open set D c_ Rn containing the nonnegative
orthant Rn This problem, denoted NCP (f), is to find a vector x such that+.

x_>O, f()_O, xTf() O.

There are two ways to formulate this problem as a syste_rn of nonsmooth equations; these
are obtained through two functions H D R’ and H R’ R’ defined by

H(z,) min (, f(z)), /(z) f(z+) z-.

Here "min" denotes the componentwise minimum operator and z+ and z- are, respec-
tively, the nonnegative part and the nonpositive part of the vector z. It is not difficult to
verify that x is a zero of H if and only if x solves NCP (f) and that if z is a zero of ,
then z+ solves NCP(f) and, conversely, if x solves NCP(f), then z x f(x) is a zero
of.

Both of these functions, H and H, are not F-differentiable, but they are
B-differentiable. In general, each of these two functions has intrinsic properties, such
that neither formulation dominates the other as far as the numerical methods are
concerned.

2.2. NCP with upper bounds. In mathematical/equilibrium programming it is com-
mon for the variables of a problem to have upper and lower bounds. When these are
present, it would be desirable to deal with them simultaneously and not to treat one set
of bounds implicitly and the other as explicit constraints. In the case of the NCP this is
indeed possible with the nonsmooth equation approach.
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Formally, the NCPwith upper bounds is defined as follows. Let a E R’ be a positive
vector and let f D R’ be a once continuously differentiable function defined on the
same open set D. This problem is to find a vector pair (z, V) R’ x R’ such that

(2)
u f(x) + y >_ O, x >_ O, uTx O,
u a-- x >_ O, y >_ O, uTy O.

Notice that in terms ofthe vectors z and V this is a standard NCP oforder 2n. Never-
theless, it is possible to turn this problem into a system of nonsmooth equations of order
n. Again, there are two such formulations. One is defined by the function H R’ R’,
with

(z) f(H[0,a](z)) + (z H[0,a](z)),

where H[0,] (z) denotes the projection of the vector z onto the n-dimensional rectangle
[0, a], i.e.,

II[0,al(Z) min (a, max (0, z)).

See 3 for a more general discussion of how a zero of this function corresponds to a
solution of the given NCP with upper bounds.

The other formulation of the NCP with upper bounds as a system of nonsmooth
equations is defined by the function H D R’, where

H(x) min (f(x)+,x) + min (f(x)-,a- x).

With this function H it can be shown that a vector z solves the problem (2) if and only if
z is a solution of the constrained equation.

(3) H(x) O, x e [0, a].

The proof of this equivalence is fairly straightforward. As we shall see later, imposing
the simple bound constraints on the variable z poses no difficulty for the global Newton
method of solving this problem (3); in fact these constraints actually are beneficial for
the numerical procedure.

2.3. Variational inequality problem over a convex set. The previous two examples
are special cases of the variational inequality problem defined over a closed convex set.
Let K be a closed convex subset of R’, and let f D - R’ be a once continuously
differentiable function defined on the open set D c_ Rn containing K. This problem,
which we denote VI(K, f), is to find a vector x* K such that

(y z*)Tf(x*) >_ 0 for all y K.

When f is the gradient mapping of the real-valued function Rn -, R, the problem
VI(K, f) becomes the stationary point problem of the following optimization problem:

minimize (x)
subject to x K.

We refer the reader to [10] for a comprehensive review of the variational inequality
problem.
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Generalizing the functions H and H, we can derive two formulations of this problem
as a system of nonsmooth equations. More specifically, define

H(z) z- II(z- f(z)) and /it(z) f(IIr(z)) + (z IIg(z)).

The equivalence between the resulting systems of equations and the problem VI(K,_f)
is well known; see, e.g., [11, Chap. 4] for a proof. Robinson [36] calls the function H a
normal map. We point out that the convexity of the defining set K is important in these
equivalent formulations.

The nonsmoothness of the functions H and is, of course, the consequence of the
projection operator IIg(.). When K is a polyhedral set, this operator possesses some
differentiability properties that can be put to use algorithmically.

2.4. Karush-Kuhn-Tueker system. Consider the problem VI(K, f) in which the set
K is represented by a system of differentiable inequalities and equalities:

K {x e Rn: g(x) < O, h(x)= 0},

where g R’ Rp and h Rn Rq are twice continuously differentiable. In
this case the aforementioned projection formulations fail to be well defined because
of the possible nonconvexity of the set K. Nevertheless, under a standard constraint
qualification, such as the polyhedrality of K or the well-known Mangasarian-Fromovitz
condition, we may derive the Karush-Kuhn-Tucker system for the problem VI(K, f).
The latter system is equivalent to a system of nonsmooth equations with the mapping
H" R’ x Rp Rq -, R’* x Rp Rq given by

(4) H(x, A, #) min (A,-g(x))
h(x)

where A Rp and # R are the Lagrange multipliers associated with the inequality and
equality constraints, respectively. Kojima [15] suggested an alternative formulation of
the same Karush-Kuhn-Tucker system as a system ofnonsmooth equations that involves
the use of A+ and A-; cf. the function i for the NCP.

2.5. Special system of piecewise-smooth equations. It is possible to generalize the
NCP in a number of ways, resulting in various forms of the generalized complementadty
problem. One such generalization leads to a system of nonsmooth equations defined by
the function

H(x) min (fl(x),. fN(x)),

where each fj R’ --. R’ is once continuously differentiable. A zero of this function H
solves the following complementarity system:

fj(x) > O, j 1,...,N,

N

H o,
j’-I

i= 1,...,n,

where fi (x) is the ith component off (x). A practical realization of this problem arises
from a mechanical engineering application; see [20].
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2.6. Inequality feasibility problem. This is the most fundamental problem in math-
ematical/equilibrium programming. Let g R’ - R’ be a locally Lipschitzian function,
and K be a polyhedral set in Rn. This problem is to find a vector x E Rn such that

g(x) >_ O, x K.

Letting H(z) min (0, g(z)), we see that a constrained zero of H, i.e., a solution of the
system

H(x) 0, x K,

corresponds precisely to a solution of the feasibility problem.

2.7. Maximal monotone operator. Let T R’ R’ be a set-valued maximal mono-
tone operator. An important problem is to find z R’ such that

(5) 0 T().

The generalized equation [32] is a special case of this problem. According to the theory
ofthe maximal monotone operator [3], [37], the resolvent ofT, namely, Px (I+AT) -1,
where I is the identity operator and ), is a positive number, is always single valued and
nonexpansive (hence globally Lipschitzian). Moreover, the solution of (5) is equivalent
to that of the nonsmooth equation (1), where

H(x) x- P),(x).

We should perhaps point out that, at present, properties for this function H that are
useful for the development of a Newton method for solving the corresponding equation
(1) are not well understood. Further research in exploring the nonsmooth nature of the
resolvent is required for this purpose.

2.8. LC optimization problem. For some optimization problem the objective func-
tion (which is real valued) is not a C2 function but is an LC function; i.e., it is once
continuously differentiable and its derivative is locally Lipschitzian but not necessarily
F-differentiable. For example, the extended linear-quadratic problem, which arises from
stochastic programming and optimal control [39], [40], is such a problem in the fully
quadratic case. The augmented Lagrangian of a C2 nonlinear program is also an LC1

function [30]. For more examples of LC functions and the corresponding optimization
problems see [29].

The problem of finding a stationary point of an unconstrained LC optimization
problem is equivalent to that of solving a system of locally Lipschitzian equations (1),
where H is the gradient mapping of the objective function of the given optimization
problem. For a constrained LC optimization problem the Karush-Kuhn-Tucker system
still leads to a system of nonsmooth equations.

3. Nonsmooth analysis. Nonsmooth analysis is an essential tool for the design of
effective numerical methods for solving the nonsmooth equation (1) and for the devel-
opment of the supporting convergence theory. Since Clarke introduced his generalized
subdifferential theory [4] nonsmooth analysis has developed into a very fruitful disci-
pline. However, a major portion of this analysis is associated with the optimization of
a real-valued function; many concepts are thus defined only for functionals. The non-
smooth equation, on the other hand, involves a vector-valued function H R’ - R’.
Some existing concepts in nonsmooth analysis, therefore, become inadequate and need
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to be modified for adaptation to the vector-valued setting. An example of such a concept
is that of semismoothness, originally introduced by Mifflin [19] for functionals. Qi and
Sun [30] extended Mifflin’s original definition to a vector-valued function and used the
generalized notion to study a Newton method for solving (1).

In this section we review the notion of semismoothness for vector-valued functions
and shall connect it with that of strong B-differentiability (introduced by Robinson [35]).
We also define a new concept, called an upper subgradient, that we shall use in 5 for
the development of the Gauss-Newton method.

3.1. Semismoothness. For all the nonsmooth equations presented in 2 the func-
tion H R’ -, Rn is locally Lipschitzian. For such a function Rademacher’s theorem
implies that H is almost everywhere F-differentiable. Let the set of points where H is
F-differentiable be denoted Dn. Then for any z R’ the generalized subdifferential of
H at z in the sense of Clarke [4] is

OH(x) conv {lim Vn(x) :x x,x OH},

which is a nonempty convex compact set. Considered as a set-valued mapping, OH is
locally bounded and upper semicontinuous.

For z, h E R’ with h # 0 we say that V tends to z in the direction h, denoted by
Y ---h x, if y -- x, y # x, and (y x)/lly xll --, h/llhll. We say that n is semisrnooth at
x if H is locally Lipschitzian there and if for any h E R’ with h 0

lim {Vh V e OH(y)}

exists. If H is semismooth at z, then H must be directionally differentiable (hence B-
differentiable at z and H’(z; h) is equal to the above limit for any h # 0. If H is semi-
smooth at all points in a given set, we say that H is semismooth in this set.

It was proved in [30] that H is semismooth at x if and only if all its component func-
tions are the same. The class of semismooth functionals is very broad; indeed, according
to [19], it includes the smooth functions, all convex functions, and the piecewise-smooth
functions. Moreover, the sums, differences, products, and composites of semismooth
functions are semismooth. In particular, if f(z) is semismooth, then so is min (z, f(z)).
Furthermore, since the projection operator IIK(V) is a piecewise linear function of V
when K is a polyhedron, it follows that IIK is a semismooth operator. As a matter of
fact, with the possible exceptions of the VI on a nonpolyhedral set and the example in-
volving the resolvent of a maximal monotone operator, all equations encountered in 2
are of the piecewise-smooth, and hence semismooth, type.

In the following proposition we state a property of a semismooth function that will
be used later.

PROPOSITION 1. IfH Rn - Rn is semismooth at x, then

lim
IIH(x + y) H(x) Vhll O.

V.OH(a+h)

Proof. Since semismooth implies B-differentiability, we have

lim
IlH(x + h) H(x) H’(x, h)ll O.
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Moreover, by Theorem 2.3 of [30] we have

lim
IIn’(x, h) Vhll O.

VeO(+h)

The desired conclusion follows easily from these two equalities. [-1

In [35] the concept of strong B-differentiability is defined. A function H R’ R’
is said to be strongly B-differentiable at x e R’ if H is B-differentiable at x and if

lim
ex(h’) ex(h)

0,
h,h’- 0 lib’--

where ex(h) H(x + h) H(x) H’(x, h) is the error of approximating H(x + h) by
the term H(x) + H’(x, h). The following result shows that the strong B-differentiability
property is stronger than that of semismoothness.

PROPOSITION 2. If H is B-differentiable in a neighborhood of x and is strongly B-
differentiable at x, then H is semismooth at x.

Proof. Fix a scalar t (0, 1). In terms of the error function e we have

H(x + (1 + t)h) e((1 + t)h) + H(x) + H’(x, (1 + t)h),
H(x + h) e(h) + H(x) + H’(x, h).

Subtracting and rearranging terms, we obtain

H(x + (1 + t)h) H(x + h) tH’(x, h) ez((1 + t)h) ex(h).

The strong B-differentiability assumption implies

ex((1 + t)h) e(h)
lim 0,
-’ Ilthllto

which yields

lim lim
H(x / (1 + t)h) H(x / h) tH’(x, h) O.

h--.O t$O

Hence we have

H’(x + h, h) H’(x, h) O.lim
h--,o Ilhll

By Theorem 2.3 of [30] it follows that H is semismooth at x. D

3.2. BD-regularity. For a given x R’ Clarke’s generalized subdifferential OH(x)
is the convex hull of the following set:

OBH(x) {lim VH(xJ) x --+ x,x 6 DH}.

We call OBH(x) the B-subdifferential of H at x. This concept was introduced in [28],
where an explanation was also given for its introduction. We say that H is BD-regular
at x if all the elements in OBH(x), which themselves are n x n matrices, are nonsingu-
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lar. This definition is slightly different from that in [28], where this condition was called
strong BD-regularity and BD-regularity referred to a weaker condition. In proving the
superlinear convergence results in 4we need the following properties of BD-regularity.

PROPOSITION 3. IfH is BD-regular at z, then there is a neighborhood N of x and a
constant c such thatfor any y N and V OsH(y), V is nonsingular and IIV-Xll _>
If, furthermore, H(x) 0 and H is semismooth at x, then there is a neighborhood N’ ofx
and a constant such thatfor any y N’

IIH(y)II >_/ IlY xll.

Proof. The first part of this proposition is the first conclusion of Lemma 2.6 in [28].
If H(x) 0 and H is semismooth at x, then

H(y) H’(x, y- x) + o(lly- xll)

for each y there is a V OsH(x) such that H’(x, y x) V(y x). The second
conclusion of the proposition now follows the first.

3.3. Upper subdifferentiability. Motivated by the development in [24], we intro-
duced the following concept. A real-valued function R’ ---, R is said to be upper
subdifferentiable on a set D c_ R’ if there exists a function a D ---, R’ such that for all
z E D and h E R’

(6) lim sup (Y + th) (y) ta(y)Th
-,eD < 0.

to t

We call a an upper subgradientfunction of on D, and we call a(z) an upper subgradient
of at z. Notice that in this definition we have not imposed any property on the function
a except for the above limit requirement.

Aswe shall see, the upper subgradient function plays an important part in the deriva-
tion of the Gauss-Newton method for solving (1). When D is an open set and is con-
tinuously differentiable on D, then clearly b is upper subdifferentiable there. Moreover,
if D is an open convex set and is concave on D (not necessarily F-differentiable), then
any subgradient of is an upper subgradient. Hence a concave function is upper sub-
differentiable. It turns out that by composing an F-differentiable function with a concave
function in a proper order the resulting function is upper subdifferentiable (see Propo-
sition 5 below). Moreover, the set of upper subdifferentiable functions forms a convex
cone in the space of real-valued functions; that is, this set is closed under addition and
positive scalar multiplication.

The upper subgradient is related to several directional derivatives. Indeed, if is
locally Lipschitzian at x, then putting z in (6) immediately yields

a(x)Th >_ CD(x, h) for all h Rn,
where cD denotes the upper Dini directional derivative

cD (x, h) lim sup(x + th) (x).
t0 t

More generally, suppose that R’ ---, R is locally Lipschitzian on the set D c_ R’. For
any z D the Clarke subdifferential [4] and the Michel-Penot subdifferential [1], [18]
of at z are defined, respectively, by

0(x) {u e R <u, h> <_ o (x, h)
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and

0O(x)-- {u e R’’<u, h> <_ CO(x, h) Vh e R’}

where o(x, h) and o(x, h) are the Clarke and Michel-Penot directional derivatives of
at x in the direction h, respectively, i.e.,

o(x, h) lim sup(Y + th) (y)

and

(x + th + th) (x + tk)CO(x, h) sup lim sup
keR tlO t

It is known that 0O(x) and 0(x) are nonempty compact convex sets and that

c_ (x, h) <_ o(x, h).

Moreover, the above definition of O(x) coincides with the one given in 3.1 when H
is a real-valued function. The following result summarizes the relationship between the
upper subgradient and these various known concepts.

PROPOSITION 4. Suppose that Rn -- R is locally Lipschitzian on the set D C_ Rn.
If is upper subdifferentiable on D with an upper subgradientfunction a(.), then for each
xD

(7) e c_

Hencefor any h E Rn

cD (X, h) <_ a(x)Th <_ o(x, h) <_ o(x, h).

Proof. Let y x in (6). Then we have for any h E R’

a(x (-h) <_ lim inf(x) (x + th)
t0 t

< lim sup(x + th th) (x + th)
to t

<_ CO(x, -h).

Since h is arbitrary, (7) follows. The last string of inequalities follows from this
inclusion.

An immediate consequence of Proposition 4 is the following.
COROLLARY 1. Let be as given in Proposition 4. Then for each x D there exist

a neighborhood N of x and a constant c > 0 such that for all y
Moreover, if {xk } c_ D converges to x and if {a(xk)} also converges, then the limit of
{a(xk)} is an element of0(x).

Proof. The first conclusion is a consequence of the local boundedness of the Clark
generalized subdifferential 0. The second conclusion follows from the upper semicon-
tinuity of the Clarke subdifferential.

Using the above corollary, we may establish the following composite property of an
upper subdifferential function.
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PROPOSITION 5. Let D be an open convex set in Rn, and let 9, where 9 D -.
Rm is a continuously differentiable function, and R’ --. R is locally Lipschitzian and
upper subdifferentiable on y(D). Then is upper subdifferentiable on D.

Proof. Let b be an upper subgradient function of on g(D). Define for all z E D,
a(x) Vg(x)Tb(g(x)). We claim that this a is a desired upper subgradient function of
on D. Let h Rn be arbitrary, let y D be sufficiently close to x, and let t > 0 be

sufficiently small. By the continuous differentiability of g we may write

o(t))g(y + th) g(y) + t Vg(y)h +

Let rh(t, h) (g(y + th) g(y))/t. Then rh(t, y) Vg(x)h as t 0 and y x. We
have

(y + th) (y) (g(y) + trh (t, y)) (g(y)),

which implies

(y + th) (y) ta(y)Th (g(y) + trh(t, y)) (g(y) + tVg(x)h)

+(g() + tVg() (g())

-tb(g(y))TVg(x)h

+tb(g(y))T(Vg(x) Vg(y))h.

As y x, g(y) --. g(x); hence Corollary 1 implies that IIb(g(Y))ll is bounded. Con-
sequently, dividing by t and taking limit t 0, y x, we deduce that the first right-
hand difference in the above expression tends to zero (by the assumed local Lipschitzian
property of and the fact that rh(t, y) Vg(x)h); from this observation and the upper
subdifferentiability of at g(x), we easily establish the desired upper subdifferentiability
of at x. [3

The upper subgradient is also related to another generalized gradient notion in the
literature. Suppose that R’ R t3 {,-oc} is an extended real-valued function.
In [25], [27] a vector u R’ is called a lower semigradient of at x if

(8) lim inf(x + h) (x) uTh > O.
h-0 Ilhll

Lower semigradients are referred to as Dini subdifferentials in [2], [13]. Comparing this
definition with Proposition 2.5 of [38], we see that lower subgradients and epi-gradients
are equivalent if is epi-differentiable at the point in question. See [38] for the concepts
of epi-gradients and epi-differentiability. By these definitions it is not difficult to prove
the following proposition.

PROPOSITION 6. Suppose that R’* --. R is locally Lipschitzian on an open set
D C_ R’. If is upper subdifferentiable on D with an upper subgradientfunction a(.), then
for each x D, -a(x) is a lower semigradient of- at x in the sense defined above.

Proof. This is straightforward. [

Clearly, the definition of an upper subgradient function requires more than that of a
lower semigradient in the case oflocally Lipschitzian functions since in (6) y is introduced
to approximate z, whereas in (8) only x is used.

Finally, we mention that Plastria [26] has used the term lower subgradient as a gen-
eralized concept of a subgradient in convex analysis. His definition is along the line of
(8) but is different from the lower semigradient concept as well as from ours.
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4. Characterization ofsuperlinear convergence. In this sectionwe consider the gen-
eralization of some well-known results due to Dennis and Mor6 [5] that characterize the
Q-superlinear convergence of the family of quasi-Newton methods for solving a system
of smooth equations. For ease of reference we quote their result as stated in [6, Thm.
8.2.4].

THEOREM 1 (Dennis-Mor6). Let H R’* - R’ be F-differentiable in the open
convex set in D in R". Assume that VH is continuous at some * D and that VH(z*)/s
nonsingular. Let {
in D the sequence {x } where

(9) k+l

remains in D and converges to x* and where x x* for all k. Then {x } converges
Q-superlinearly to * and H(z*) 0 ifand only if

(10) lim
[[B VH(x*))d[[ O,

Ila ll
where d x+ .

There are two noteworthy points about this theorem. First, the function H is as-
sumed to be continuously differentiable at the point *, and second, the result concerns
a sequence of iterates of the form defined by the quasi-Newton formula (9). Recently, Ip
and Kyparisis [14] extended the above theorem to the case of a B-differentiable function;
they still require a strong F-differentiability condition of H at *, and they confine the
discussion to iteration (9). Such a strong differentiability assumption hinders the appli-
cation of the result to a more general nonsmooth setting; also, the confinement to the
quasi-Newton iterates seems a bit too restrictive.

In what follows, we establish a generalized version of Theorem 1 that significantly
relaxes the two confinements mentioned above.

THEOREM 2. Let H ’ -- ’ be locally Lipschitzian in the open convex set D c_ .
Assume that H is semismooth and BD-regular at some x* D. Let {x } c_ D be any
sequence that converges to x* with x x* for all k. Then {k} converges Q-superlinearly
to x* and H(*) 0 ifand only if

(11) lira
IIH() / Vd[[ O,

I1  11
where V tt() and + .

Proof. Write ek xk -x*. Then dk ek+ -ek, and both sequences {ek } and {dk }
convergence to zero. We have

(12) H(x*) [H(xk) + Vkdk] -[H(xk) H(x*) Vkek] vke,k+l

The semismoothness ofH at x* implies that the term in the second set of square brackets
approaches zero as k -- oc; moreover, since {Vk } is bounded and (ek+ } - 0, the last
term in (12) also approaches zero as k . Hence if (11) holds, then H(x*) O,
furthermore, since each (Vk)- exists and the sequence { Vk)- [I } is bounded (by the
BD-regularity assumption and Proposition 3), if follows from (11), (12), and Proposition
1 that

lira
Ilet+]l

=0,

which establishes the Q-superlinear convergence of the sequence {xk } to x*.
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Conversely, suppose H(z*) 0 and {zk } converges to z* Q-superlinearly. Then
reversing the above argument easily establishes condition (11). [3

Notice that a presumption ofthe above theorem is that the sequence {z } converges
to z*. Hence this result cannot be used to demonstrate the convergence of a sequence
produced by a given method. Instead, the usefulness of the theorem is to provide a way
to establish the rate of convergence. We now give several applications of Theorem 2 to
some specific methods.

Example 1. Let d be a solution of the linear equation

H(xk) + Vkd 0,

where Vk E OBH(X). This is the generalized Jacobian-based Newton method pro-
posed in [28]. Condition (11) is clearly satisfied. Thus the Q-superlinear convergence of
the sequence produced by this method follows easily from Theorem 2 under the stated
assumptions of this result.

Example 2. Suppose that H is B-differentiable. Let dk be a solution of the (non-
linear) equation

(13) + a) o.

This is the B-derivative-based Newton method proposed in [22]. When H is semismooth
and (13) has a solution, this method becomes a special case of the one in the previous
example; see [28], [30]. Hence the Q-superlinear convergence of this B-derivative-based
method holds under the assumptions of Theorem 2 and the solvability of (13).

Example 3. Let dk be a solution of the linear equation

H(xk) + Bkd O,

where Bk is a member of a certain family of matrices. This is the quasi-Newton formula
(9). In this case condition (11) becomes

lim
II(B V )d ll

0.

Hence under this limit property and the assumptions of Theorem 2 the O-superlinear
convergence of the sequence {z*} follows. This conclusion generalizes the result ob-
tained by Ip and Kyparisis [14] under a more restrictive setting.

We consider a generalization of Theorem 1. Suppose that for any given iterate z
there is a procedure for generating a direction d. If we define the next iterate x+1

x + d, then we have the situation as in Theorem 2. More generally, we may generate
x+ by dampening the direction d, i.e.,

(14) xk+ xk + Akdk,

where A is a step length satisfying 0 < A <_ 1. (Do not confuse the d in (14) with that
in Theorem 2; in particular, the former d z+ zk unless A 1.) It turns out
that under the conditions of Theorem 2 if the sequence of directions {d } satisfies the
limit condition (11), then the sequence {z } generated by (14) converges Q-superlin-
early to z* if and only if the steplength A tends to 1. This result generalizes Corollary
2.3 of [51.

COROLLARY 2. Let H R’ --. Rn satisfy the assumptions of Theorem 2 on the set D.
Suppose that {z }, generated by (14), remains in D and converges to z*. If (11) holds for
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the sequence ofdirections {dk }, then H x*) 0 and {x } converges Q-superlinearly to x*
ifand only if {Ak } converges to unity.

Proof. Assume that {xk} converges to Q-superlinearly to x* and H(x*) 0. By
Theorem 2 we must have

(15) lim
IlA-lH(xk) + Vdll O.

k-o Ildkll
Since (11) holds for {dk }, it follows that

lim
II( 1)H(k)ll

0,
-o IIdkll

lim
(1 )IIH()II

0,- IIsll
where sk xk+l xk. Since H(x) 0, Proposition 3 implies that there is a constant
/3 > 0 such that IIn(z)ll _>/llell Since {z } converges Q-superlinearly to z*, we have

Consequently, we obtain ) 1. The reverse direction of the corollary follows directly
from Theorem 2.

5. Gauss-Newton method. In the context of solving smooth equations the Gauss-
Newton method [6] is a well-known numerical procedure that is often used as a globaliza-
tion scheme of the basic Newton method. The Gauss-Newton method is generalized to
a system of locally Lipschitzian equations in [9]. Nevertheless, the direction-generation
step in this generalized Gauss-Newton method calls for the solution of a nonlinear pro-
gram that in general is neither smooth nor convex. Because solving a nonsmooth non-
convex problem is generally quite difficult, the algorithm described in this reference is
not likely to be an effective solution procedure in practice. In what follows we pro-
pose a variant of this method in which the direction-generation subproblems are convex
quadratic programs that are always solvable. Since solving a convex quadratic program
is nowadays relatively easy, the new algorithm is more promising.

In essence, the method developed below for the nonsmooth equation (1) is a gener-
alization of the NE/SQP method for the NCP. The reader may want to consult reference
[24] for some preliminary discussion of the principal ideas involved and for the omitted
details in some of the proofs given here.

Beforewe beginwe remind the reader that the locally Lipschitzian assumption ofthe
function H is still in force. Consider the following constrained nonsmooth least-squares
problem:

minimize 1/2H(x)TH(x)(16)
subject to x X,

where X is a certain polyhedral set in R’. A question immediately arises: the original
equation (1) is unconstrained, and so why do we suddenly introduce the set X, and how
is it related to this question? As we shall see shortly, the presence of the set X actually
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facilitates the design of the desired algorithm; for several special problems, such as the
standard NCP and the NCP with upper bounds, it is very natural to associate an appro-
priate set X with equation (1); see, e.g., (3). For our purpose here suffice it to consider
X an abstract set useful for the construction of the algorithm. Let 0 X R denote
the objective function of (16).

5.1. Special assumption. The function 0 serves as a merit function for the Gauss-
Newton method. Suppose we are given a vector that is not a zero of H; we wish to
generate a descent direction at this point along which the value of 0 can be decreased.
In general, there are several ways to accomplish this; see [9], [12], [22], [23]. In the
following we describe a general approach that relies on the following assumption.

Assumption 1. For each i the function [Hi R’ R+ is upper subdifferentiable on
the set

(17) s # o} n x.

We call (17) the nonzero set of Hi. Similarly, we call

(18) {z > 0} X

thepositive set of Hi, and we call

(19) e < 0} n x

the negative set of H.
It is useful to point out that if z belongs to the positive set (18), then there exists

an open neighborhood V of z such that V X is a subset of this positive set. A similar
statement holds for the negative set. Hence it follows that IHI is upper subdifferentiable
on the nonzero set if and only if Hi is upper subdifferentiable on the positive set and -Hi
is upper subdifferentiable on the negative set. The following proposition, which shows
that Assumption 1 is satisfied by most of the functions H appearing in the problems
presented in 2, makes use of this observation. In various parts of the proposition the
continuous differentiability of certain functions should be interpreted as being valid on
an open set containing the set X in question.

PROPOSITION 7. All the functions H given below satisfy Assumption 1 with the set X
as indicated:

(i) H(z) min(x, f(z)) X R provided that f is continuously differentiable;
(ii) H(z) min(z, f(z)+) + min(a z, f(z)-),X [0, a],provided that a > 0 and

that f is continuously differentiable;
(iii) H is given by (4) and X Rn x R x Rq provided that f is once continuously

differentiable and y, h are twice continuously differentiable;
(iv) H(z) min(f(z),..., fN(z)), X C_ Rn, provided that each fj X - Rn

is continuously differentiable and that for each i 1,..., n and each z X such that
Hi(z) < 0 the minimum is attained at a unique index j;

(v) H(z) min(0, y(z)), X c_ Rn, provided that y X -- Rn is continuous and that
each -yi is upper subdifferentiable on the set {z X" yi(z) < 0}.

Proof. Before giving the proofwe observe that the function H in each part is locally
Lipschitzian.

(i) The ith component function Hi is the composition of two functions R - R
and g" X --, R2, where (a, b) min(a, b) for (a, b) R2 and g(x) (xi, fi(x)). Since
the rain function is concave in its two arguments, the upper subdifferenfiability of IHil
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on the positive set (18) follows from Proposition 5. It is easy to see that on the negative
set (19), Hi(z) fi(z) < zi, which implies IH ( )l This observation and the
assumed differentiability property of fi easily establish the upper subdifferentiability of
[Hi on the nonzero set.

(ii) Notice that on the set X both summands of Hi are nonnegative; hence the neg-
ative set of Hi is empty. Also, both f- and ff are continuously differentiable on the
open set {z fi(z) 0}, which contains the positive set of Hi. Hence both summands
of Hi are upper subdifferentiable on the positive set; thus so is

(iii) Each component of this function H is either itself continuously differentiable
or is defined in terms of the min function. Hence the conclusion follows.

(iv) The assumption implies that IHil is F-differentiable on its negative set; hence
so is IHI. On the positive set IHI is the composition of the min function (with N argu-
ments) and a continuously differentiable vector-valued function; hence the upper sub-
differentiability of IHil again follows from Proposition 5. Notice that part (i) is a special
case of this result.

(v) Clearly, the function H is nonpositive. Hence the positive set of Hi is empty. On
the negative set we have IHi(x)l -gi(x) > 0. Hence the upper subdifferentiability
Inl follows from the assumption of-gi.

Regrettably, Assumption 1 does not appear to hold for the functions H and/ given
in 2.3. Although in Proposition 7 we have not explicitly exhibited the upper subdiffer-
ential function for each In l on the indicated set, from the proofwe can easily construct
the required subdifferential function; see also Proposition 5.

5.2. Regularity condition. Because we have associated the minimization problem
(16) with (1), it is natural to ask when a stationary point of the former problem is a so-
lution of the latter. To answer this question we recall that the cone of feasible directions
of a set X at a point z E X is defined to be the set

x(x) {d x + ed X for all sufficiently small > 0}.
WhenX is polyhedral (as in our analysis), ’x (x) is easily identified. The following result
provides a necessary and sufficient condition for a stationary point of (16) to solve (1).

PROPOSITION 8. Let H R" R be B-differentiable and satisfy Assumption 1. Ifx
is a stationarypoint of (16), i.e., if x* X and

0’(x*, y x*) > 0 for all y X,

then H(x*) 0 if and only iffor every a(x*) (ai(x*)) II=xoInl(x*) there exists a
vector d x x such thatfor each i such that Hi x* 0

(20)

Proof. Clearly, if H(x*) 0, then there is nothing to prove. For the converse we
first note that we have

d) d).
i=1

Let a(x*) HilOlHil(x* be such that for each i with Hi(x*) # O, ai(x*) is an upper
subgradient of IH at x*; with this a(x) let d x(x*) satisfy condition (20) for each i
such that H(x*) # O. Then we have for all i

>_ IHi(x*)lai(x*)Td >_ IH ( *)IIH, I’(x*,d).
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With this vector d, substituting y z* + ed X, where e > 0 is a small enough scalar,
into the stationarity condition for 0 yields

0 <_ cO’ (x*, d) <_ -eH(x*)TH(x*),
which implies H(x*) O.

A slightly different version of the above necessary and sufficient condition was in-
troduced in [24] for the NCP. Following the terminology used there, we say that a given
vector x* E X is s-regular if this condition holds at x*. Note that inequality (20) in
this condition is required to hold only for those indices i satisfying Hi(x*) # O. Hence
the vectors ai(x*) corresponding to Hi(x*) 0 actually have no role in this regularity
property.

5.3. Generation of descent direction. In the rest of this section we further assume
that H is B-differentiable and satisfies Assumption 1. For each i let a be an upper
subgradient function of In l on the nonzero set of Hi. Suppose we have a vector x X
such that O(x) > O. Let ai(x) be an arbitrary vector in the B-subdifferential OnHi(x) of
H at x if Hi(x) 0. Then we have

In(x)llnl’(x,d) < In(x)la,(x)Td
for all x, d R’ and all i. Define the functions f" X x R’ --+ R+ and z X x R --+ R+ by

I n
1

n

(x, d) l(In(x)l.= + ai(x)Td)2 and z(x, d) - E(ai(x)Ti=ld)2"
The proposition below summarizes three important properties of these two functions.

PROPOSITION 9. Thefollowingproperties hold:
(a) (x, 0) O(x) for all x e X,
(b) (x, d) (x, 0) z(x, d) >_ O’ (x, d) for all (x, d) X x Rn,
(c) lim(=,d)-(,0)(u, d) (x, 0).
Proof. The first two assertions are fairly straightforward to prove. We prove

only part (c). In turn, it suffices to show that all vectors in the collection {ai(u)} are
bounded in norm by a constant for all u sufficiently close to x. But this follows from
Corollary 1.

For a given vector x e X consider the following convex quadratic programming
problem in d, which we denote by (QP):

minimize (x, d)
subject to x + d X.

The proposition below summarizes the main properties of this quadratic program.
PROPOSITION 10. Let x X be given. The followingproperties holdfor the problem

(QP,)
(a) d 0 is feasible and an optimal solution, say, d, that satisfies (x, ) < O(x),

always exists,
(b) d) _<
(c) $(z, d) O(z) ifand only if z(x, a-) 0; if,(, d) 0() and if z is an s-regular

vector, then O(x) 0;
(d) if (x, d) < 0(x), then for any a (0, 1) there exists a scalar e > 0 such thatfor

all T [0, ]

+
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Proof. That d 0 is feasible for (QPx) is obvious. The existence of an optimal
solution is a consequence of the well-known Frank-Wolfe theorem for quadratic pro-
gramming [7]. The last conclusion of this part is trivial. To prove part (b), we note that
by the minimum principle

n

o < xza(x, d)T(d- d)  (IH (z)I + a,(x)Td)a,(x)T(d- )
i=1

for every d feasible to (QPx). In particular, substituting d 0 and rearranging terms,
we obtain

(21)

n

2z( , d-)
i=1

1< - ’(H(:r,)2 +
i=1

which easily yields part (b).
To prove part (c) suppose (z, t) 0(z). Then we have

n

where the last inequality has just been proved. Since z(x, d) is nonnegative, we must
have z(z, d) 0. Co_nversely, if z(z, d-) 0, then we have~ ai(z)rd 0 for all i, which
clearly implies (z, d) 0(). Now suppose that (z, d) O(z) and that z is s-regular.
Let d E x(z) be such that (20) holds for each i with Hi(x) # 0. Then for all e > 0
sufficiently small we have z + ed E X. Hence ed is feasible for (QPx) and

0(x) _< (x,d) (IHi(x)l + eai(x)Td)2

(a,(x)Td)2

i:Hi(x)=O

For an index i such that Hi(x) # 0 we have for e > 0 small enough

0 In ( )l + a(x)Td <_ (1

Consequently, it follows that

E.2
O(z) < (1 e)Z0(x) + - (a(x)Td)2.

i:H(x)=O

Since this inequality must hold for all e > 0 sufficiently small, it follows that O(x) O, as
desired.

Fo_r part (d) it follows from Assumption 1 and part (b) ofProposition 9 that 0’ (x, d) <
-z(x, d) < O. From this the desired conclusion is immediate.
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5.4. The method and its convergence. We now describe the Gauss-Newton method
for solving the nonsmooth equation (1) under the setting given above.

Let p, a (0, 1) be given scalars. Let z X be arbitrary. In general, given z X,
solve the quadratic program (QP) and let d be any optimal solution. If (x, d)
O(z), terminate. Otherwise, let the step length T p’, where m is the smallest
nonnegative integer rn for which

O(x + p’d) O(x) <_ -ap’z(x, d).

Set xk+l xk + Tkdk, and repeat the general step.
We refer the reader to [24] for a more detailed explanation of the individual steps

of the algorithm. In the following we assume that the algorithm generates an infinite
sequence of iterates {xk } and a corresponding sequence of descent directions {dk }. We
wish to investigate the limiting behavior of {x }. For this purpose we assume that this
sequence is bounded; thus it has at least one accumulation point, which we denote x*.
Clearly, x* E X. Our goal is to show that if certain regularity conditions hold at x*, then
H(x*) 0. Let {xk k E } be the subsequence whose limit is x*.

Our first step in the convergence analysis to derive some properties of the sequence
{dk k n}. We say that x* satisfies the generalized b-regularityproperty if there exist a
neighborhood V of x* and a positive scalar c > 0 such that for any upper subgradient
function a(.) of Inl on the nonzero set of Hi and for any vector a(z) OBH(z)
if Hi(z) 0, the matrix a(x) whose rows are the vectors (ai(x)T) is nonsingular and
satisfies Ila(x)- II <- c for all x e V.

In principle, the results to be derived below will all remain valid if we restrict the
vectors ai(x) in the generalized b-regularity property to the particular one used in the
above-formulated Gauss-Newton method. With such a restriction this regularity prop-
erty reduces essentially to the b-regularity property defined in [24] for the NCP.

With the generalized b-regularity condition we prove the following result.
LEMMA 1. Suppose that x* is the limit of the subsequence {xk k e;} and that x*

satisfies the generalized b-regularityproperty. Then
(i) there exists a constant A > 0 such thatfor all k sufficiently large

AIIdll 2 <_ z(x, dk) < O(xk);

(ii) limke,ko Z(Xk, dk) 0 limke,,k-oo IIdll
Proof. The generalized b-regularity property implies that for some constant c > 0

and all k E sufficiently large we have Ila(xk)-ll <_ a. Consequently, the left-hand
inequality in part (i) follows easily with ) c-. The right-hand inequality is part (b) of
Proposition 10.

To prove part (ii) it suffices to show the first equality. We follow the argument used
in Lemmas 4 and 5 in [24]. We note that part (i) implies that the sequences {dk k }
and {z(x, d) k } are bounded. Without loss of generality, we may assume that
the latter sequence converges. As in [24, Lemma 4], we show that for any sequence of
positive scalars {Ak k } converging to zero

(22) limsup O(xk + "kkdk) O(Xk) < lim z(xk, dk).
k cx kEn )k k c k

If i is an index such that Hi (x*) 0, then we have

lim Hi(xk) lim Hi(xk + Akdk) O.
k,k--(: k,k--,(:
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Since

IHI( + Ad) -]Hil2(xk) (IHI( + Akd)
(IHil(xk + A:d) +

by the local Lipschitz continuity of Hi we deduce

limsup Inl( + kdk)- Inl() 0.
k---o,k.

On the other hand, if the index i is such that Hi(x*) 0, then Hi(x) 0 for all k E a
sufficiently large. For such an index i we may write

where

T, (Inl( + :a) -Inl() )kai(xk)Tdk)
(Inl( + Adk) + Inl()),

T2,i 2)klHil(xk)ai(xk)Tdk,
T3,i ,kk(IHil(xk + ,kkdk) -IHil(xk))ai(xk)Tdk.

By the boundedness of {ai(x) k E a} and {d" k a} and the local Lipschitz conti-
nuity of H it follows that

T3,ilim sup < O.
k--’cxa,kE )k

In addition, by the upper subdifferentiability of IHil on the nonzero set of Hi we deduce

lim sup

By the first inequality in (21) we deduce

limsup -i= T2,i < -4 lim z(xk, dk) < -2 lim z(xk, dk),
k--o,k )k k--o, k--,o,E

where the last inequality follows since z(x, d) is nonnegative. Consequently, we obtain
the desired inequality (22) readily.

To complete the proof of part (ii) we use a standard argument related to the Armijo
step-length procedure. Since this is rather routine, we omit it and refer the reader to
[24, Lemma 5] for more details. (Inequality (22) is key to the omitted argument.) D

The next result asserts a technical property of the cone of feasible directions associ-
ated with a polyhedron.

LEMMA 2. Let X be a polyhedron, and let x X. If d x(x), then there exist
positive scalars , 6 such that y + ed X for every e [0, g] and every y X such that
Ily xll _< .

Proof. Write X {x" Ax > b, Cx d}. Then

.T’x(x) N {d Aid >_ O, ca 0},
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where I(z) is the index set ofthe binding (inequality) constraints at x. For avector V E X
that is sufficiently close to z we must have I(v) c_ I(z). Using this fact, we can easily
deduce the existence of the positive scalars and 6 with the desired properties.

Remark. eproofofmma2 shows that x(z) x(y)for all y X suciently
close to z. e important point of this lemma is that for each direction d x(z) there
ests a constant g > 0 that applies unifoly to all such y.

Combining the above results, we may establish the desired zero proper of the limit
point z*.

EOREM 3. Suppose that z* the limit ofthe subsequence {z k } and that
is s-relar and satisfies the generalized b-reladprope. en H(*) O.

Proof. e sequence of matrices {a(z) k n} is bounded. Without loss of
generali, we may assume that it converges to some matr A. By Corolla 1, Ai
OlHi[(x*) for each i with Hi(x*) # O. Associated with this matr A let d x(x*)
be a vector involved in the s-regulari of x*. By mma 2 there efists an g > 0 such
that for all [0, g] and all k a sufficiently large we have xk + d X; hence
(x, d) (x, d). By following the proof of eorem 1 in [24] it suffices to prove
the inequali

(23) limsup (xk d) < (1- e)2(x*, 0)+ O(2)
k,k

for all e > 0 suciently small. We may write

e(x,d) (IH(x)I + eai(xk)Td)2
L’: ’(*)

i:Hi(x*)=O

Notice that if H(x*) 0, then lim., Hi(x) 0. Hence in the limit the second
summand in the square brackets becomes O(e2). For the first summand note that we
have

lime(IHi(xk)l + eai(xk)Td) [Hi(x*)I + eAd (1 e)lH(x*).
k,k

So if Hi (x*) 0, then for all e > 0 sufficiently small

which implies

0 < IHi(x*)l + ATd,

lim (In (xk)l + eai(xk)Td)2 < (1

The desired inequality (23) now follows easily. To complete the proofwe note that since
{d k } 0 as k , parts (a) and (c) of Proposition 9 imply that

O(x*) limsup (xk dk) < (1- a)20(x*)+ O(e2),
k x kE

which easily yields O(x*) 0 since e > 0 is arbitrary.
Remark. It is worthwhile to mention that the limit point x* is actually a constrained

zero of H; that is, we also have x* E X. For several problems presented in 2 this is quite
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natural because by its construction the set X must contain all zeroes ofH (see parts (i),
(ii), and (iii) in Proposition 7).

Having established the zero property of z*, we proceed to establish a stronger con-
vergence property ofthe sequence {z* }. For this purposewe need to make the additional
assumption that H is semismooth at z*. Again, our strategy is to extend the argument in
[24] to the present more general framework. We first establish a lemma that generalizes
Lemma 8 in this reference.

LEMMA 3. Let 5: E X be a solution of (1). Suppose that 5: satisfies the generalized b-
regulaityproperty and that H is semismooth at 5:. Then ]’or every e > 0 there exists a > 0
such that whenever z

(24) IIz /
where d is any optimal solution oftheproblem (QPz ).

Proof. By proceeding as in Lemma 8 of [24] and by letting v z d, we may
deduce

Ila(z)vll <_ Inl()- Inl(z)- a(z)(- z)ll

for every z X. By assumption, H is semismooth at 5:; hence so are Inl and every
component function [H ]. Hence by a variant of Proposition 1 we have

lim
Inl() -Inl(z) a,(z)T( z)ll

0.
,X,,- I1- zll

By the generalized b-regularity of 5: there exists a constant c > 0 such that for every
vector z X sufficiently close to 5: we have

Ila(z)vll >_ allvll.
Combining the last three expressions, we easily derive the desired conclusion of the
lemma.

By using Lemma 3 and part (a) of Proposition 9, one can show (cf. the proof of
Lemma 9 in [24]) that under the stated assumptions of the lemma, there exists a constant
c > 0 such that if L > 0 is the Lipschitzian modulus of H at 5:, then for e (0, 1), if z
and d are as stated in this lemma,

O(z + d) <
1-el

O(z).

Using this inequality and the subsequential convergence of {xk }, one can easily establish
the following additional convergence properties of the Gauss-Newton method.

THEOREM 4. Let H R --. R be B-differentiable and satisfyAssumption 1. Suppose
that x* is a limitpoint ofa sequence {xk } produced by the Gauss-Newton method. Ifx* is
s-regularand satisfies the generalized b-regulatyproperty, then H x*) O. Moreover, ifin
addition H is semismooth at x*, then

(i) there exists an integer K > 0 such thatfor all k > K the step length Tk 1; hence
Xk+ Xk .+. dk;

(ii) the sequence {xk } converges to x* Q-superlinearly.
Proof. Part (i) follows from the argument sketched above with a choice of e (0, 1)

satisfying

1-
1-el

>a.
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Part (ii) follows from the proof of Lemma 3 and part (i). rl
It is natural to wonder how Corollary 2 is related to Theorem 4. In essence, the

proof of the theorem consists of a direct verification of the conditions stipulated by this
corollary applied to the absolute value function IHI. Leaving out the details, we mention
that by using the semismoothness property of H at z* and the fact that

II xk / dk x*ll O(11 Inl(x*) -Inl(xk) a(xk)(x* xk)ll)
(as established in the proof of Lemma 3), one can verify that condition (11), with H re-
placed by IHI, holds for the sequence of directions {dk } generated by the Gauss-Newton
method. Moreover, that the entire sequence {xk } converges to x* and that the sequence
of step lengths {Tk } 1 also follow from the above expression.

In conclusion, we mention that computational results for the method described
herein can be found in [8] and [24]. In particular, [8] reports some computational expe-
rience with the Gauss-Newton method applied to solve the NCP with upper bounds by
using the function H described in 2.2.

Acknowledgments. The authors are grateful to the Editor, Michael L. Overton, for
his efficient handling of this paper and to the referees for their incisive comments, which
helped to improve the presentation of the paper and to simplify some proofs. One ref-
eree recommended the use ofthe word upper to describe the subdifferentiability concept
defined in 3.3.
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A NEWTON METHOD FOR CONVEX REGRESSION, DATA SMOOTHING, AND
QUADRATIC PROGRAMMING WITH BOUNDED CONSTRMNTS*
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Abstract. This paper formulates systems of piecewise linear equations, derived from the Karush-Kuhn-
Tucker conditions for constrained convex optimization problems, as unconstrained minimization problems
in which the objective function is a multivariate quadratic spline. Such formulations provide new ways of
developing efficient algorithms for many optimization problems, such as the convex regression problem, the
least-distance problem, the symmetric monotone linear complementarity problem, and the convex quadratic
programming problem with bounded constraints. Theoretical results, a description of an algorithm and its
implementation, and numerical results are presented along with a stability analysis.

Key words, data smoothing, Newton methods, convex regression, convex quadratic programs, uncon-
strained minimization of convex quadratic spline function
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1. Introduction. In this paperwe reformulate systems ofpiecewise linear equations,
derived from the Karush-Kuhn-Tucker conditions of constrained convex optimization
problems, as unconstrained minimization problems. Such reformulations provide new
ways of developing efficient algorithms for many optimization problems, such as the
convex regression problem, the least-distance problem, the symmetric monotone lin-
ear complementarity problem, and the convex quadratic programming problem with
bounded constraints. Our computational effort is focused on the least-distance prob-
lem with k-convex constraints:

_.1 2(1.1) 2 II - min =
Vkx_>0

where c, z, are vectors in the (n + k)-dimensional Euclidean space S,+k, Vk is the kth
order divided difference matrix defined by

k

i (--1)k-*zJ+i
i--O

forj 1,...,n,

VkS > 0, and I[" denotes the 2-norm or the Euclidean norm on R’+k.
Some special cases of (1.1) are the monotone regression problem (for k 1) [2],

[38] and the convex regression problem (for k 2) in statistics [38]. Equation (1.1) can
also be considered as a data smoothing problem [5], [6] and is known as the best k-convex
approximation problem in approximation theory (see [40], [45], [46], [49]).

For k 1, (1.1) has been extensively studied by statisticians interested in statistical
inferences under order restrictions [2], [38], a research area that has exploded with new
developments and was included as a new AMS classification recently. There are many
special algorithms that take advantage of the simple structure of (1.1) for k 1. The
most widely used algorithm is the pool-adjacent-violators algorithm by Ayer, Brunk, Ew-
ing, and Reid [1]. The procedure first finds the greatest convex minorant of c and then
computes the solution. There are only a few papers on the convex regression problem
[38]. The motivation for studying the convex regression problem was to model utility

Received by the editors May 28, 1991; accepted for publication (in revised form) April 6, 1992.
?Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529.
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functions and functions representing productivity (etc.) in economics [13], [14]. The
well-known Hildreth algorithm was originally invented to solve such a problem [15].
(Now the Hildreth algorithm and its variations are called row-action algorithms [3], [17],
[18], which are special cases of the matrix splitting methods (see [22]).) In general, one
could treat (1.1) as a special case of separable strictly convex quadratic programming
problems and could solve the problem by using algorithms for convex quadratic pro-
gramming problems and the associated linear complementary problem. For relevant
results the reader is referred to [22], [30], [35].

Cullinan has used (1.1) as a model for data smoothing problems in applied numerical
analysis [5]. The computation is done by an active set method, which takes advantage
of the banded structure ofV in its implementation. Numerical results were presented
for various k < 16 and n 51, 101, 400. The c are values of a function with small
perturbations by a noisy random vector that satisfies a normal distribution. A detailed
analysis of Cullinan’s experiments is given in 8. The evaluation of the performance of
his method is not conclusive. The methodworked in some cases and failed in other cases.
To our knowledge there have been no satisfactory algorithms for solving (1.1) with k > 2.

In general, the Karush-Kuhn-Tucker conditions can be reformulated as a system of
piecewise linear equations. For many (strictly) convex optimization problems we shall
show that the solution(s) of such a system are the solution(s) of the unconstrained min-
imization of a (strictly) convex multivariate quadratic spline function. Such a reformu-
lation of (1.1) allows one to develop accurate and efficient algorithms for finding a solu-
tion of (1.1). We shall use the classical Newton method with exact line search for solving
(1.1). Partially because of the special structure of (1.1), there are three features of our
algorithm and its implementation:

(1) It is a descent method and is able to solve (1.1) with large n (e.g., n 2000).
(2) It finds the solution in a finite number of iterations in exact arithmetic.
(3) An apriori estimate of the error between the approximate solution and the exact

solution is given as a stopping criterion for the algorithm.
The method is also applicable to strictly convex quadratic programming problems with
bounded constraints and the classical linear complementarity problem with a symmetric
positive definite matrix. The efficiency of our algorithm also makes it useful as a tool for
solving symmetric subproblems of the matrix splitting method [4], [20], [22]-[27].

Numerical experiments are done for various k and n: (1) 1 < k < 6, n 50, 100;
(2) 1 < k < 3, n 200, 400; (3) k 1, 2, n 1000, 2000. The vector c is generated by
one of the following elementary functions:

x/, t2, exp(t), sin(Trt), sin(27rt), sin(47rt),

t, t, exp(-t), cos(Trt), cos(2rt), cos(47rt),
perturbed by a random vector of magnitude 0.1. In the cases for which n < 109 the
algorithm performs very well and we have a very small a priori error estimate for all
approximate solutions. The algorithm’s capability of handling a large amount of data
for k 1, 2 makes it computationally feasible to compute the best approximation of a
given function by the monotone (or convex) functions. This has been studied for shape-
preserving (or constrained) approximation problems [41]-[44], [49].

However, when n is large the algorithm fails to find a good approximate solution.
We have to be very cautious in our interpretation of numerical results. Lin and Pang [22]
recognized that the equivalent linear complementarity problem of (1.1) for k 2 is an
ill-conditioned problem and reported an unsuccessful attempt to apply matrix splitting
methods to solve it (with n 50). We shall give a rigorous stability analysis of (1.1)
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that explains mathematically why (1.1) itself is also an ill-conditioned problem. Despite
the ill conditioning, we are convinced that the k-convex approximation is a good data
smoothing technique.

The contents of this paper are organized as follows. In 2 we reformulate as uncon-
strained minimization problems the least-distance problem, the symmetric monotone
linear complementarity problem, and the convex quadratic programming problem with
bounded constraints. In 3 we outline the Newton method with exact line search for the
reformulated unconstrained minimization problems. In 4 we estimate the condition
numbers of kth divided difference matrices Vk. Section 5 is devoted to a stability analy-
sis of the least-distance problem, including (1.1), and 6 contains implementation details
of the algorithm for solving (1.1). In 7 we evaluate the performance of our algorithm,
and in 8 we present our argument that (1.1) is an effective data smoothing technique.
A summary is given in 9. Extensive numerical results are included in the Appendix.

2. Equivalent unconstrained minimization problem. In this section we show that
systems of piecewise linear equations, derived from the Karush-Kuhn-Tucker condi-
tions for constrained optimization problems, can be reformulated as an unconstrained
minimization problem. In particular, we can transform the convex quadratic program-
ming problem with bounded constraints, the symmetric monotone linear complementar-
ity problem, and the least-distance problem to equivalent unconstrained minimization
problems.

Consider the convex quadratic programming problem with bounded constraints (see
[29] and the references therein):

(2.1) min 1/2xTMx + qTx
l<x<u

where M is a symmetric positive semidefinite n n matrix, q 1’, vectors l, u spec-
ify ounds on x, and some components of l, u can be +o. The Karush-Kuhn-Tucker
conditions of (2.1) form the following special affine variational problem:

(2.2) find a w satisfying < w < u and (x w) (Mw + q) > 0 for < x < u.

It is not difficult to verify that w is a solution of (2.2) if and only ifw satisfies the following
system of piecewise linear equations:

(2.3) w (w a(Mw + q)),

where a > 0 is any constant and (x) (or (x),) is the lower (or upper) truncation of x
lay (or u) whose ith component is max{/, x} (or min{u, x}). Define the multivariate
quadratic spline function

f(w) :-- 1/2wT(I aM)w 1/211(w a(Mw + q))?ll =
(2.4)

--1T(w a(Mw + q))t uT(w a(Mw + q))u,

with the convention -cx(.)- o(.) 0. Then, by straightforward computation
one can verify that the gradient f’ has the following form:

(2.5) f’(w) (I aM)(w (w a(Mw + q))[).

Before the proof of the equivalence of (2.3) and the unconstrained minimization of
f we need a few results about monotone mappings. Amapping qo from I’ to ]’ is called
a monotone mapping if

(x y)T(qo(x) p(y)) > 0 for x, y e I’.
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The mapping qo is said to be uniformly monotone if there exists a constant 7 > 0 such
that

(x y)T@(x) (y)) . IIx Yll 2 for x, y e R’.

We say that o is a piecewise linear mapping if qo(x) QT((Ax + b)+ + (Cx + d)), where
Q is an n x m matrix, A, C are m x n matrices, b, d /R’, and y+ denotes a vector whose
ith component is max{y, 0}. Thenwe can identify the monotonicity of a piecewise linear
mapping by its gradient.

LEMMA 2.1. Suppose that qo is a piecewise linear mapping from 1 to ’ and the
gradient qo (if it exists) is a positive semidefinite (orpositive definite) matrix. Then qo is a
monotone (or uniformly monotone) mapping.

Proof. Since o is piecewise linear, there are finitely many polyhedral sets Di such
that IR’ [.J D and o is an affine mapping on each D (i.e., there exist a matrix Q
and a vector q such that o(x) Qx + q for x e D). For any x, y R’ there exist
0 00 < 01 < < 08 1 and indices {aj}= c {i}=1 such that wj-l, w E Dj for
j 1,..., s, where w := y + O(x y). Let o’(w) be the gradient of o on Dj. Then

(2.6)

( )(() (v)) ( )((o) (o-))
j=l

( )’(o)(o o-1)
j.=.l

(o o_( o’(( .
j=l

Obviously, if o’ is positive semidefinite (or positive definite), then o is monotone (or
uniformly monotone). U

Remark. The proof is included for easy reference. We assume the result is well
known. Fujisawa and Kuh [11] and Rheinboldt and Vandergraft [37, p. 685] also had the
same prooffor the positive definite case. Note that if o is monotone (or uniformly mono-
tone), then the gradient of o is positive semidefinite (or positive definite) [32, p. 72].

LEMMA 2.2 [34]. Let #p be a differentiable function defined on 1’. Then the gradient
of ib is a monotone mapping ifand only if is a convexfunction. If the gradient of is a
uniformly monotone mapping, then (p is a strictly convexfunction.

LEMMA 2.3. Suppose that 0 < a < 1/IIMll. Then the function f defined by (2.4) is a
convexfunction. IfM is symmetric positive definite, then f is a strictly convexfunction.

Proof. Let o(w) := (I aM)(w (w a(Mw + q))). Then it is not difficult to
verify that, if o’ (w) exists,

qo’(w) (I aM) (I aM)a(I aM),

where a is a diagonal matrix diag(a11, a22,..., a,,) and ai 0 or 1. If M is positive
semidefinite, then I aM is positive semidefinite with eigenvalues between 0 and 1.
(Note that IIMII is the 2-norm of the matrix M, which is the largest eigenvalue of M.)
Therefore, (I aM) (I aM)(I aM) is also positive semidefinite. We have

xTqo (W)X xT (I aM)x xT(I aM)a(I aM)x
> xT(I aM)x xT(I aM)(I aM)x >_ O.
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Thus ’ is positive semidefinite. It follows from Lemmas 2.1 and 2.2 that f is a convex
function. The proof for the positive definite case is the same.

It follows from Lemmas 2.1, 2.2, and 2.3, and from equation (2.5) that w is a mini-
mizer of f(w) if and only if w is a solution of (2.3). This proves the following theorem.

THEOREM 2.4. Suppose that 0 < a < 1/llmll. Then w is a solution of(2.3) ifand only
ifw is a solution ofthe unconstrainedproblem minoer- f(w).

Consider the classical symmetric positive semidefinite linear complementarity prob-
lem [22], [30]

(2.7) Mx + q > O, x >_ O, xT(Mz + q) O,

which is a special case of (2.3) with l 0 and u + for i 1,..., n. Thus as an
immediate consequence of Theorem 2.4 we have the following corollary.

COROLLARY 2.5. Suppose that 0 < c < 1/IIMII. Then y is a solution (2.7) ifand only
if y is a solution ofthe unconstrained minimization problem

(2.8) min 1/2wT(I oM)w 1/211w o(Mw + q))/ll 2,

where (x+)i := max{0, x}.
Now consider the least-distance problem [7], [21], [28], [47], [48]

(2.9) min 1/21Ix -cll 2

Ax>b

where A is anmxn matrix, b E R’, and x, c E Rn. The Karush-Kuhn-Tucker conditions
for (2.9) are the following [30]"

x c + ATw, w > O,
(2.10)

Ax >_ b, ’03T(Ax b) O.

It is not difficult to verify that x, w satisfy (2.10) if and only if x c + ATw and w solves
the following linear complementarity problem:

(2.11) (AAT)w + (Ac- b) >_ O, w >_ O, wT((AAT)w + (Ac- b)) O.

Therefore, we have the following corollary of Corollary 2.5.
COROLLARY 2.6. Suppose that 0 < c < 1/IIAII. Then x is a solution of (2.9) ifand

only if x c + ATw, where w is the solution ofthe unconstrained minimization problem

(2.12) min 1/2wT(I ozAA)w 1/211(w a(AATw + Ac- 5))+112.

Remark. Li, Pardalos, and Han [21] give a different but similar reformulation of
(2.9) as an unconstrained minimization problem with a convex quadratic spline as the
objective function, when the constraints are Ax b, x > 0. Avery simple linear Gauss-
Seidel algorithm with linear convergence rate is proposed and tested there.

3. Newton method for piecewise linear equations. Consider a piecewise linear map-
ping qo n _.0 Rn; i.e., qo(x) QT((Ax + b)+ + (Cx + d)), where Q, A, C are m x n
matrices and b, d R’. Suppose that the gradient ’ of is nonsingular (if it exists)
and that there exists a nonsingular matrix B such that B. (x) is the gradient of a strictly
convex function f on ]R’. Since is piecewise linear, there are finitely many polyhedral
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sets {Di}i such that the interiors (intDi) of Di are mutually disjoint, o is an affine
mapping on Di (i.e., o’(x) is a constant matrix for x E int Di), and [.Ji=t Di IR’. We
use o’(x) to denote one of the o’(x)[D, if x is in more that one Di. The following al-
gorithm shows how to apply the Newton method to solve the system of piecewise linear
equations o(x) 0.

ALGORITHM 3.1
Newton method with line minimization

Given an initialpoint x IR", generate a sequence xi+t, i 0, 1,..., by thefollowing
iterative scheme:
Step 1. If o(xi) O, then stop.
Step 2. Compute pi (qot(xi))-I. (xi).
Step 3. Find t such that (pi)T B qo(z tipi) O.
Step 4. Set xi+ x tipi.

We can solve three classes ofproblems by the Newton method with exact line search:
(1) the strictly convex quadratic programming problem with bounded constraints,

i.e., (2.1) with M symmetric positive definite;
(2) the linear complementarity problem associated with a symmetric positive defi-

nite matrix M, i.e., (2.7) with a symmetric positive definite matrix M;
(3) the least-distance problem associated with a polyhedral set generated by linearly

independent inequalities, i.e., (2.9) with a matrix A with full row rank.
Note that (qo’(xi))-p(xi) (f"(xi))-Lf’(x) and f’(xi-tp) =--(p’)T.Bp(xi--tpi).

Thus the iterative scheme is almost the same as the standard Newton method with line
minimization for a strictly convex function with nonsingular Hessian matrix [10]. The
difference is that f’ (x) B. qo(x) is a piecewise linear mapping that has only Gteaux
derivatives but no Fr6chet derivatives at some points.

The behavior of the above algorithm is very similar to that of the standard New-
ton method for solving the unconstrained minimization of a strictly convex quadratic
function. Instead of finding the solution in one iteration, the above algorithm termi-
nates (theoretically) in a finite number of steps. The key idea is the following. If x* is
the unique solution of (x) 0 and if x is sufficiently close to x*, then both x* and x
are in the same polyhedral set where is an aftine mapping. Then the above algorithm
is actually the standard Newton method, and one more iteration of the algorithm pro-
duces x*.

THEOREM 3.2. The Newton method with line minimization terminates in a finite num-
ber ofiterations in exact arithmetic.

Proof. Since f(x) < f(x) for i > 0 and f is strictly convex, {x} is a bounded
sequence. If the algorithm does not terminate in a finite number of iterations, let {x" }
be a subsequence of {x } that converges to a point x*. Since there are only finitely many
polyhedral sets {D}, at least one D contains infinitely many xi. such that ’(x.) is
the gradient of (x) on D. So we may assume {x } c D such that ’(x,) is :=
gt(X)lD. Let p* := (j)-x(x*). Then

t=O
--{f’(x* tp*)}Tp*lt=O

(3.1) _(f’(x*))Tp

--(f’(x*))T((Bj))-(f’(x*)).
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SinceB is the Hessian of f on D and f is a strictly convex quadratic function on D,
(B)-1 is symmetric positive definite, as well as Bo. Thus there exists a scalar 7 > 0
such that

(3.2) xT(Bqoj)-Ix > 7" Ilxll 2 for x e ’.

If f’ (x*) 0, then it follows from (3.1) and (3.2) that

t--O

By the continuity of :’(x) and (j)-(x) there exist e > 0 and so > 0 such that

d 7 2d--f(x’8 -tp") < -- IIf’(x*)ll < 0 fors>_so, O_<t<_e.

By the mean value theorem there exist 0 < ts < e such that

-y. IIf’(x*)ll 2 < 0 for 8 80,

which implies

(3.3) f(xi8+1) f(xi8) --. Ilf’(x*)[I 2 < 0 for s >_ so.

Since y(zi) is a monotonically decreasing sequence, limi__. f(x) lim__.o y(xi’)
f(x*), which contradicts (3.3). The contradiction proves f’(x*) 0 (i.e., (x*) 0).

Now let f be the strictly convex quadratic function such that f(z) f(z) for
x E Dj. Then f (x*) 0; i.e.,

fj(x*) min fj(x).

It is well known that the Newton method (with or without line minimization) produces
the solution in one iteration for a strictly convex quadratic function. For z, D we
have

Therefore,

f(xi,,+l) < f(xi,, _pi.)__ f(x*)-- min f(x),
xR

which implies x x* and (xi) 0 for i > i. So the algorithm should stop when
i il / 1. This proves the finite termination of the Newton method with line minimiza-
tion.

Remark. The convergence ofthe above algorithm actually follows from more general
results in [34, Chap. 14]. In particular, the reader is referred to [34, Problem 1, p. 507].
For convenience, we include the complete proof here.

Even though we cannot use the Newton Method to solve the unconstrained min-
imization of convex functions with singular Hessians, there are many so-called quasi-
Newton methods that can handle singular Hessians [10].
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Systems ofpiecewise linear equations have been the object ofextensive research (see
[8] and the references therein). In particular, Katzenelson’s algorithm [16] and its gen-
eralizations are the favored methods for solving piecewise linear equations associated
with resistor networks in electrical engineering (see [32] and the references therein),
whereas the fixed point and complementarity pivoting algorithms are widely used meth-
ods for solving piecewise linear equations associated with optimization problems (see [9]
and the references therein).

4. Condition numbers ofthe kth divided difference matrices. In this sectionwe give
estimates of the condition numbers [12] of the kth divided difference matrix and show
that the order of [IVkll" IIVk+ll increases to at least nk as n - oo. Here A+ denotes the
pseudoinverse of A [12], [31]. This makes the k-convex approximation problem a very
difficult computational problem even if n is moderate. We will discuss the computational
aspect of the k-convex in 5. The ill conditioning ofV is crucial to understanding some
numerical phenomena in 7 and 8.

First note that IlV ll -IlV ll --IlVkV ll and V+ V(VkVkT)-1. Therefore,

Thus the condition number ofV is the square root of the condition number ofA :=

VVT. It is not difficult to see that Ak is (2k + 1)-banded symmetric positive definite
Toeplitz matrix. We use band(#1, #2,..., #2/1) to denote such an n x n matrix. It is
not difficult to verify that

A band(#o, #1,..., #k),

where

(4.1) #/k (--1)k-1 (2/k), i 0, 1,...,2k.

It is well known that A1 band(-1,2,-1) is the so-called stiffness matrix de-
rived from a difference scheme for the second-order ordinary differential equation with
boundary conditions:

y" g(t), a <_ t <_ b, y(a) a, y(b) ,
where g is a function defined on the interval [a, b] and a, fl are given real numbers. The
eigenvalues of Ax are A := 4. sin2(iTr/2(n + 1)), i 1,..., n, and the corresponding
eigenvectors are [33]

v := (sin iTr 2i7r niTr )
T

n + 1’
sin sin for i 1,..., n.

n+l""’ n+l

LEMMA 4.1. Ax Akx if xi Ofor 1 <_ i <_ 2k and n 2k + 1 <_ i <_ n.

Proof. Obviously, if x 0 for 1 <_ i <_ 2k, n 2k + 1 _< i _< n, then

k

j=0

fork+ 1 < i < n-k,

(V"x) 0 for 1 _< i <_ 2k, n- 2k + 1 <_ i _< n.
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Thus

(VVTz)i 0 for 1 < i < k, n- k + 1 <_ i _< n,

and for k+ 1 < i < n-k

k

8=0

8=0 j=0

k k

s=0 j=0

2k

(2if) (-1)-jzi-+j"
"=

Also, we have

2k

j=0

(AlZ)=0 forl<i<k,n-k<i<n.

In fact, we can use induction to prove that

28

(Az)i=0 forl<i<2k-s,n-2k+s+l<i<n.

This completes the proof of Lemma 4.1. F1
LEMMA 4.2. For n > 4k + I and k 1, 2,...,

4k sin2k (n 4k)r 4
( + 11 -< IlzXll _<

Proof. Since [IA II is symmetric and positive definite, it is well known that

IIAII-- Amx _< IIAlloo,

where ,kmx is the largest eigenvalue ofA and IIAk IIoo denotes the/oo-norm of Ak [12].
From (4.1) we know that

2k

i----0

Therefore, IIAkll 4.
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On the other hand, let G := span{v’, v’-l,..., v’-4k}, where v is the ith eigen-
vector of Ax corresponding to A. Then dim G 4k + I and

.,Avl, > (4sin2 (n- 4k)Tr)
k

2(n + 1) Ilvll for v e G.

It follows from Lemma 4.1 that the range of (A A) is at most dimension 4k. There-
fore, there is a vector v G, v 0, such that Av Akv. Hence

IIAkvll- IIAvll > (4sin2 (n-4k)Tr)
k

2(n + 1) Ilvll,

Remark. Ifwe take G := span{v1, v2,..., v4k+ }, then dim G 4k + I and

I]Akv]l < (4sin2 (4k+ 1)7r)
k

2(n + 1) Ilvll forv G.

Also, there is v E G, v 0, such that AkV Av. Hence

(4k + 1)r)IIAvll IIAkvll < 4sin2
2(n + 1)

which implies

IIA_ ii >_ (4 sin2 (4k+2(n+l)Tr)-kl)
This proves the following lemma.

LEMMA 4.3. For n > 4k + 1 and k 1, 2,...,

(4k+1)Tr ( n+l )
2k

IlzXlll >- 4-ksin-2k 2(n + 1)
>

(4k + 1)Tr

As a consequence of Lemmas 4.2 and 4.3 we have the following estimates of
and

COROLLARY 4.4. For n > 4k + I and k 1, 2,...,

n+lIIv+11 _>
(4k + 1)Tr

and

-< IIv II -< 2k.
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It is not difficult to verify that

0 0 0

0 0 0

\00... 0

Thus

i.e., the minimum eigenvalue/min of A2 is at least 16sin4(Tr/2(n + 1)) >_ 16(n + 1)-4
Since [IAII[ 1/Amin [12], we have the following corollary.

COROLLARY 4.5. For n > 9, ((n + 1)/9rr)2 < IIV=+ll <_ (n / 1)2/4.
Remark. It follows from Lemma 4.2 and Corollary 4.4 that

=1

and

Unfortunately, we do not have an upper bound for IlV+ll with k > 3. Such an up-
per bound is very important for obtaining a stable estimate (see 8) of the accuracy
ofapproximate solutions generated by the Newton method for solving (1.1) implemented
in 6.

5. Stability of the least-distance problem. Consider the constrained least-solved
problem

(5.1) min 1/2llz -cll 2

Ax>b

where A is an m x n matrix with rank m, b E 1R’ and c E ]R’. We have the following
perturbed version of (5.1):

(5.2) min. 1/211m 11 =
Ax>b

Let a:* and : be the solutions of (5.1) and (5.2), respectively. Since a metric pro-
jection from a Hilbert space to its closed convex set is nonexpansive [39], we have the
following result.

LEMMA 5.1. If b , then [[z* ll < IIc ll..
LEMMA 5.2. A(c / A+ (b )) > b and

I1* -( + A+(b- ))11 < II A+(b -)ll + lie- ell.
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Proof. Let y + A+( b). Since AA+ I is the identity matrix, Az >_ if and
only if Ay _> b. Thus is a solution of (5.2) if and only if / A/( b), where is
a solution of the following least-distance problem:

(5.3) min 1/2[[y (t3 + A+(b- ))112.
Ay>_b

So ) "= + A+ (b ) is the solution of (5.3). It follows from Lemma 5.1 that

IIx* ll <- IIc- ( + A/(b ’))11 -< IIc 11 + IIA/(b

Obviously, A) > b. This completes the proof of Lemma 5.2 [:1

Remark. Note that Lemma 5.2 implies that

(5.4) x* 11 -< 211A/II b 11 + c 11.
Let F(b) := {x R’ Ax > b}. It was proved by Li [19] that IIA/II is a Lipschitz
constant of F, i.e.,

H(F(b),F()) <_ IIA/II b- 11,
where H(., .) denotes the Hausdorff metric defined as

H(X, Y)’= max ( sup inf IIx yll, sup inf IIx yll for X, Y C ’.
xXyY yYa:X

In general, if A is not of full row rank, then [19]

n(F(b) F()) < (ma IIa0+ll). lib-
\AoA

where A is the collection of all matrices consisting of rank(A) linearly independent of
rows of A. We conjecture that one could replace A+ by maXAoet IIA0+ for general A in
(5.4).

Lemma 5.1 tells us that (5.1) is a stable problem with respect to perturbations of the
data c. However, (5.1) is not stable with respect to perturbations of constraints if IIA/
is large. For example, if A Vk, then IIV+ll is at least of order nk. This makes the
well-posed problem (1.1) difficult to handle computationally, as can be seen from the
following a priori error estimate of the approximate solution generated by the Newton
method outlined in 3.

Consider the system ofpiecewise linear equations associated with the Lagrange mul-
tiplier w with respect to (5.1):

(5.5) w (w a(AATw + Ac- b))+.

Suppose that we use the Newton method proposed in 3 to solve the above equation and
that w > 0 is an approximate solution of (5.5). Then

(5.6) w (w a(AATw + Ac- b))+ + 6,

where 6 is the error vector. Let

O, if (w a(AATw + Ac- b)), > O,
(5.7) , :=

w,, if (w a(AATw + Ac- b)), < O,
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and b := zo . Then one can verify that

(5.8)

v (w a(AATw + Ac b))+ +
(w a(AATw + Ac b) + )+
(do o(AATb + A- ))+,

where c+AT and g b+ (1/c0& Therefore, (5.8) is the system of piecewise linear
equations associated with the Lagrange multiplier w with respect to (5.2). Let

(5.9) := ATw + c AT + .
Then : is the solution of (5.2). By Lemma 5.2 we have the following a priori error esti-
mate for :.

THEOREM 5.3. Let w, , and c be given by (5.6) and (5.9). Then

2
II x* 11 < [I ATII" I111 + -IIA+II,

where x* is the solution of (5.1).
Remark. Errors caused by approximate solutions of (5.5) actually have the same

effect on the solution as perturbations of c and b. Thus if A is ill conditioned, we have to
be very careful in claiming how good the approximate solution is.

Consider the k-convex approximation problem now. Suppose that

+ + > O,

Tand that := Vk w + c. Then we have the following a priori error estimate.
COROLLARY 5.4. Let z* be the solution of (1.1). Then

6. Implementation of the Newton method for k-convex approximation. We use the
Newton method with exact line search to solve the following system of piecewise linear
equations associated with the Lagrange multiplier w of the solution of (1.1):

(6.1) := .(zx  o + o.

We recover the solution of (1.1) by the formula x* TVw + c. There are many ways
to implement the four steps of the Newton method with exact line search outlined in 3.
Here is our implementation.

First, we can afford to do an exact line search because of the simple structure of the
function g(t) := --(pi)T(I oAk)p(x tpi). The function g(t) is a monotone linear
spline function with n nodes!

Suppose g(t) 7 + t + vT(d tv)+ is a monotone nondecreasing linear spline
function with d, v llU and 7,/3 IR. Then we have the following simple algorithm to
solve g(t) 0. (Here we implicitly assume a certain data structure on d, c that facilitates
the deletion of components of d, v).
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ALGORITHM 6.1
Algorithm forfinding a zero ofmonotone linear spline functions

Step 1. Predetermine a set T := {tl,..., tin} ofestimates ofthezero(s) ore(t), orsimply
let ra O. Set 1.

Step 2. Delete all zero components ofv and the corresponding components of&
Step 3. Ill < ra, then t := h; otherwise, t := d/v (one ofthe undeleted nodes).
Step 4. Considerfour cases:

case (1) g(t) > O, vi > O, and di/vi > t;
case (2) g(t) < O, vi < O, and di/v < t;
case (3) g(t) > O, v < O, and di/vi > t;
case (4) g(t) < 0, v > 0, and di/vi < t;
case (5) g(t) O.

Do the following for all remaining components of d, v: if case (1) or case (2)
holds, then 7 := 7 + vd, "= v2 and delete di, vi from d, v, respectively;
ifcase (3) or case (4) holds, then delete d, v from d, v, respectively; ifcase (5)
holds, then t is a zero ofg and stop.

Step 5. If v(or d) has some undeleted components, set := + I and return to Step 3.
Step 6. If O, then t := -// is a zero ofg; otherwise, g(t) has no zero.

Remark. Ifwe choose t to be the median of {d/vi}, then at least half of the compo-
nents of d, v will be deleted after Step 4. Since there is a linear time algorithm for finding
the median, the above algorithm could be implemented as a linear time algorithm. For
implementation details see [36]. In general, if one knows that g(t) has a zero between a
and b, then, by setting T {a, b}, all nodes {di/vi} lying outside the interval (a, b) will
be eliminated after the first two iterations.

THEOREM 6.2. Ire(t) 7 + " t + vT(d- tv)+ is a monotone linearsplinefunction
with d, v E ]’, then g(t) 0 can be solved by O(n) flops.

ALGORITHM 6.3
Algorithmfor k-convex approximations

Step 1. B I aAk, b --aAkc, and w O.
Step 2. Compute the residual e := qo(w) of (6.1).
Step 3. If Ilell is less than a given error tolerance e > 0, then compute z (w+) and

a pdori error estimate # (2/a)(zTA-iz)/2 + IlVkll" Ilzll; if# is less than a
given error tolerance p > o or if the number of iterations is larger than a given

Tlimit, then output x c + Vk w/ and stop.
Step 4. Compute the Jacobian qo’ (w) asfollows: ifthe jth component ofw (w) is 0,

the jth row of q’(w) is the jth row ofthe identity matrix; otherwise, the jth row
of q’(w) is the jth row ofaAk.

Step 5. Compute the descent direction p := (’(w))-e by band Gauss elimination
withoutpivoting.

Step 6. Express thefunction g(t) := --pTB(w tp) as

a(t) + t +

where ., , d, and v can be computed asfollows:

V :--" Bp, --vTw, vTp, d Bw + b.
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Step 7. Find the solution t ofthe equation O(t) 0 byAlgorithm 6.1 with T {0, 1, 2}.
Step 8. If t < 0 or t > 2, replace t by 1.
Step 9. Set w "= w tp, and return to Step Z

We regard the line minimization procedure as a means of finding the locally optimal
overrelaxation parameter. That is the reason that we modify the step size when it is not
in the open interval (0,2). Note that Step 8 is very important since the ill conditioning
of Ak may cause some computational problems here. For example, in exact arithmetic
p should be a descent direction, but in practice we are not sure whether this is the case
since implemented algorithm sometimes produces a step size t < 0. There are two
explanations for this numerical phenomenon: (1) the inaccurate solution of p might be
an ascent direction; (2) the effect of ill conditioning of A on g is that the graph of g
might be very flat, which would cause the solution of the equation g(t) 0 to be highly
unstable. A step size t < 0 indicates the failure of the exact line search. Therefore, a
modification is necessary. On the other hand, in our numerical experiments it seems
that the correct step size should be less than two, but we cannot say that t > 2 is also an
indication of the failure of the exact line search. Nevertheless, our modification should
not hurt the performance of the algorithm since the next iterate moves along p at least
one unit, which we believe is sufficient. Since the zero of g(t) is positive, we include zero
in T. The other two estimates t 1, 2 are heuristic. Our choice of the set T dramatically
reduces the number of iterations in Algorithm 6.1 for our numerical experiments.

To justify the stability of Gauss elimination without pivoting to compute the solution
p (o’(w))-le in Step 5 of Algorithm 6.3, we need the following standard notation for
submatrices. For any two index sets J and K, (o’ (w))a,K denotes the matrix obtained by
deleting the rows and columns of qo’ (w) whose indices are not in J and K, respectively.
Let I be the set of indices j such that the jth row of qo’ (w) is the jth row of the identity
matrix, and let J := {j" 1 _< j _< n, j I} be the complement of I. Then qo’(w)p e is
equivalent to the following system:

pz ez and (’(w))a,a,pa ea (o’(w))a,lez.

wSuch aA is positive definite and (o’(w))a,a is a principal submatrix of aA, (o ))a,a
is positive definite. Therefore, Gauss elimination without pivoting is stable.

7. Evaluation of Newton method for k-convex approximation problems. We have
performed numerical tests for various k and n" (1) 1 < k < 6, n 50, lOG; (2) 1 < k <
3, n 200, 400; (3) k 1, 2, n 1000, 2000. The vector c is generated according to k
and n by one of the following elementary functions:

(7.1)
v, t2, exp(t), sin(Trt), sin(27rt), sin(47rt),

t, t3, exp(-t), cos(Trt), cos(27rt), cos(47rt),

perturbed by a random vector of magnitude 0.1. First we define the random generator
as follows:

(7.2) random := 0.1-(-1)|rand(O) drand(O),

where irand, which generates a positive integer, and drand, which generates a real num-
ber between 0 and 1, are the standard random number generators for FORTRAN 77.
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The expression in (7.2) randomly generates a real number between -0.1 and 0.1. For
given k and n let t "= (i 1)/(n + k 1), i 1,..., n + k. (Note that tl 0 and
t,+l 1.) Then we generate the data c as follows:

(7.3) c 9(t) + random for i 1,..., n + k,

where g(t) is one of the functions listed in (7.1).
Suppose that zb > 0 is the approximate solution generated by our algorithm for

k-convex approximation and that TVk w + c. Then

where

+
The parameters used in the tables in the appendix have the following meaning:

g(t) is the function used in (7.3);
N "= the total number of Newton iterations involved;

No := the average number of iterations involved in exact line search;
CPU denotes the CPU time (in seconds) used by the algorithm to find ;
err -= the maximum negative components ofV;
err2 "= max{l&i g(t)l 1 < i < n + k};
M denotes the number of failures of exact line search;
M0 denotes the first index of indicators with failed exact line search.
Note that the key parameters are N, No, err0, and err, which are indicators of the

efficiency and accuracy of the algorithm. From the eight tables included in the Appendix
we can see that if nk < 109, our algorithm is very efficient and produces a very accurate
solution. But if nk is too large, then the algorithm deteriorates. One can see this in
Table 4 for n 100, k 6. Also notice that our algorithm is superb when k 1 (see
Table 7). This suggests an alternativeway ofcomputing solutions ofmonotone regression
problems when n is large.

It is very important to pay attention to M and M0. Usually, false step size occurs
only when err0 is very small; i.e., when b is very close to the solution. However, we
might have a poor a priori estimate due to the ill conditioning of A-1 while b is a good
approximate solution. So false step size occurs frequently in the following iterations (see
Table 4 in the Appendix). The first occurrence of false step size is an indication of a good
approximate solution b. When M is large, N and CPU are misleading since we might
well find a good approximate solution with smaller N and CPU if we do not insist on a
small a priori error estimate. Also, if II/X lll is too large, then the a priori error estimate
is not reliable.

The error tolerance e 10-9, and/9 10-3. The parameter a 4- (see Lemma
4.2). Only about one third ofour numerical results (for n 100, 3 < k < 6; n 400, 2 <
k < 3; n 2000, 1 < k < 2) are included in the Appendix because of limited space. In
general, for fixed k and g our numerical tests indicate a consistently better performance
of the algorithm for smaller n. The experiments were performed on a SPARC station in
double precision.
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8. k-convex approximation as a data smoothing technique. In this section we give
our opinion as to why the k-convex approximation is a good method for data smoothing
despite its ill-conditioned nature. First, we give a mathematical explanation of some
performance parameters used by Cullinan for evaluation of k-convex approximation as
a data smoothing technique [5].

Cullinan used an active set method to compute the Karush-Kuhn-Tucker points z,
satisfying the following equation:

(8.1) b x- c- V’w.
Let I be the set of indices of active constraints of Vkx >_ O. Then, of 13 performance
parameters, he used the following three quantities:

(8.2) Ilbll / := max I(XT) 7 := max Iol.
iI if[I

Obviously,

(8.3) w (w- Vz)+ + 5,

where ll6lloo := maxl<i<n 16l <_ max{/3, 7}. Substituting (8.1) into (8.3), we have

(8.4) w (w (Akw + Vt(c + b))+ + 6.

Let x* be the best k-convex approximation of c, and let be the best k-convex approxi-
mation of c + b. By our a priori estimate (see Lemma 5.2),

IIx x*ll < IIx 11 / I1 x*ll <_ 2(TA-lt)1/2 + IlVkll" IIll / Ilbll.
Therefore, if [IA-t is not too large, small [[b[[,/, 7 imply that the approximate solution
is quite accurate. In his numerical reports, for n 51 and k <_ 6, lib[I,/, 7 are at most
10-6, where c is generated by exp(x) with small perturbations. For n 51 and k _< 6
we contend that IIA- might be not very large. Therefore, Cullinan’s method produces
quite satisfactory approximate solutions in these cases. However, for n 51 and k 7,
8, 9, max{llbll, , 7} are about 10-4"8, 10-4"6, 10-2"7, respectively. If IlZX- is taken into
consideration, the approximate solutions are not so satisfactory. For n 101, IlZX-Xll
might be significant and it is difficult to tell how good the approximate solutions are,
even though max {llbll, , 7) are quite small for k < 4 in Cullinan’s reports.

An interesting case is when k 2, 3, n 101, and ci sin((/- 1)7r/50) with small
random perturbations, i 1,..., 101. The approximate solutions seem quite satisfac-
tory since max {llbll, , 7} _< 10-10"6. More interesting is that for k 3 the approximate
solution is very close to the graph ofthe function g(t) sin(27rt) for t in the interval [0,1],
which is confirmed by our numerical experiments (see Table 1 in the Appendix). Since
ci g((i 1)/50), the approximate solution serves as a smoothing of g(t) contaminated
by noisy data.

Because of the ill conditioning of Vk, we must exercise caution in drawing conclu-
sions from numerical experiments. There are some traps in the interpretation of numer-
ical results. Here are some observations.

Given any smooth function g(t) for 0 < t < 1, let ci := g((i 1)/(n 1)), i
1,..., n. Then

g(k) (i) n_k.(Vkc)i (n- 1)k
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For n 100 and k _> 5, Vc is almost a zero vector. For w 0 the error of (6.1) is very
small and the approximate solution z c, but z might be far away from the actual best
k-convex approximation.

Now consider k 1, the monotone regression problem. Let w be an eigenvector of
A corresponding to the smallest eigenvalue:

w := sin
7r 27r nTr

n + 1’
sin sin

n+l""’ n+l

Then w > 0 and Aw (4sinZ(Tr/2(n + 1)))w. Suppose that n is very large. Then
II/Xxwll, IlVxall, and IlXZ rwll are very small. Therefore, w is a very good approximate
solution of (6.1) for k 1, and the corresponding approximate solution of (1.1) is c +
VTw, which is a very good approximation of g(t). But, again, x might be far away from
the actual best monotone approximation.

The above observations tell us that it is extremely important to have the a priori
error estimate of the approximate solution since other information about the accuracy
of the approximate solution might be false.

Now suppose that c g + d, where g is a smooth vector and d is a small noisy vec-
tor. Cullinan [5] observed from his numerical experiments that, whereas an approximate
solution may not be the k-convex best approximation of c, it could be smooth and suffi-
ciently close to g to give an acceptable result for recovering g from c. Here is an intuitive
way to view (1.1) as a reasonable scheme for data smoothing.

Since Vkg is very small, (6.1) is computationally equivalent to

(8.5) w (w o(Akw + Vkd))+ 0.

Thus d+ TVk w is the best k-convex approximation ofd and is a smooth vector. Therefore,
the approximate solution x g + d+VW is a smooth vector that approximates g well.
Note that x might not be k-convex and might have nothing to do with the best k-convex
approximation of c, but it achieves the purpose of smoothing c g + d. From this point
of view, (1.1) is a reasonable device for filtering out noisy data. For example, consider
Table 4 for k 6 and n 100 in the Appendix. Even though we have very poor a priori
estimate, which means that the approximation solution may be far away from the exact
solution, the approximate solution is very close to the original unperturbed smooth data
g and we achieve the objective of smoothing c. This supports the point ofview that (1.1)
is a good data smoothing technique.

9. Summary. In this paperwe reformulate the Karush-Kuhn-Tucker conditions for
convex optimization problems as unconstrained convex minimization problems. Such
reformulations provide new ways to develop efficient algorithms for solving many con-
vex optimization problems, such as the least-distance problem, the symmetric monotone
linear complementarity problem, and the convex quadratic programming problem with
bounded constraints. The Newton method with exact line search is used to solve such a
reformulation ofthe so-called k-convex approximation problem, the least-distance prob-
lem with k-convex constraints. The problem itself is ill conditioned, but our numerical
results are very promising. We test the algorithm with respect to 12 standard elemen-
taD’ functions and various k, n. The performance of our algorithm is quite satisfactory.
Because of the variety of the data tested, we believe that our algorithm should perform
very well in general cases. However, the true challenge to our algorithm is to efficiently
solve more general problems, such as the symmetric subproblems of the matrix splitting
method [4], [20], [22]-[27] and the strictly convex quadratic programming problem with
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bounded constraints (see [29] and the references therein). It would be interesting to see
how well our algorithm performs when applied to the following four classes of practi-
cal problems (mentioned in [29])" contact and friction in rigid-body mechanics, journal
bearing lubrication, flow through a porous medium, and elastic torsion.

Some ad hoc tests have also been performed, and the algorithm has never failed if
nk < 109. There are some interesting phenomena in our ad hoc tests: if c is generated
by a convex function with small random perturbations, the algorithm finds a very accu-
rate solution in an extremely short time; if c is generated by sin(jTrt) with small random
perturbations, then the algorithm is slow to find the best convex approximation (i.e., the
solution of (1.1) for k 2) in general. A possible explanation for the difficulty of finding
the best convex approximation of sin(jTrt), j 2, 3,..., is that it generates the eigen-
vectors of A1 corresponding to )j (see 4); thus the ill conditioning affects the accuracy
of the descent direction.

As noted by Cullinan [5], it is very difficult to predict which K to use to filter out the
noisy data from a set of contaminated smooth data (see Tables 1-8 in the Appendix). We
also do not know whether the step size t in our algorithm should be in the open interval
(0,2) (with exact arithmetic) or not.

Our algorithm seems very attractive if the matrices involved in the system of piece-
wise linear equations are banded. Otherwise, approximations to the descent direction
might be necessary, by using the conjugate gradient method, for example. Further re-
search in this direction is needed to determine that the reformulation does provide ways
to develop efficient algorithms for general problems without the banded structure.

Appendix.

Group 1: n 100, 3 _< k _< 6.

g(t) N

x/ 64
76

2 61
t3 37

exp(t) 47
exp(-t) 59
sin(Trt) 91
sin(27rt) 46
sin(47rt) 129
cos(Trt) 44
cos(27rt) 116
cos(4rt) 133

TABLE 1
n= 100, k 3.

e eo
0.55E-07
0.19E-06
0.27E-08
0.88E-06
0.19E-07
0.37E-07
0.31E-05
0.21E-06
0.20E-06
0.37E-08
0.54E-05
0.20E-04

0.16E-11
0.21E-11
0.68E-13
0.65E-11
0.15E-10
0.15E-11
0.39E-10
0.17E-11
0.25E-11
0.45E-13
0.29E-09
0.46E-09

No CPU

6.03 1.47 0.39E-12
6.68 1.76 0.14E-09
5.95 1.39 0.70E-12
6.41 0.84 0.14E-12
6.21 1.07 0.55E-12
6.37 1.36 0.98E-10
5.79 2.09 0.23E-10
7.02 1.06 0.28E-12
6.79 2.98 0.54E-10
7.05 1.03 0.29E-11
6.84 2.67 0.41E-09
6.43 3.03 0.40E-09

el e2 M M0
0.31E-01 0 0
0.51E-01 0 0
0.10E-01 0 0
0.10E+00 0 0
0.50E-01 0 0
0.23E-01 0 0
0.80E-01 0 0
0.73E-01 0 0
0.12E+01 1 128
0.48E-01 0 0
0.58E/00 0 0
0.11E+01 0 0
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TABLE 2
100, k 4.

g(t) N err

x/ 166 0.19E-04
114 0.59E-03

t2 116 0.49E-05
a 110

exp(t) 119
exp(-t) 100
sin(rt) 83
sin(27rt) 160
sin(47rt) 220
cos(Trt) 78
cos(27rt) 202
cos(4rt) 300

0.21E-04
0.64E-05
0.28E-04
0.21E-03
0.72E-06
0.37E-03
0.86E-05
0.68E-05
0.41E-02

erro No CPU errx
0.26E-09 6.83 4.93 0.88E-09
0.32E-09 6.52 3.39 0.12E-10
0.59E-11 7.16 3.46 0.75E-11
0.77E-11 6.77 3.24 0.20E-08
0.22E-09 6.86 3.50 0.21E-09
0.14E-10 6.75 2.96 0.19E-11
0.70E-10 6.42 2.46 0.88E-11
0.16E-11 6.70 4.68 0.11E-09
0.87E-09 6.57 6.50 0.10E-08
0.27E-10 6.32 2.30 0.17E-10
0.91E-11 6.34 5.92 0.54E-09
0.10E-08 3.05 8.07 0.13E-09

err2 M M0
0.13E+00 1 134
0.36E-01 0 0
0.33E-01 0 0
0.35E-01 0 0
0.47E-01 0 0
0.80E-01 0 0
0.36E-01 0 0
0.20E+00 2 153
0.14E+01 0 0
0.25E-01 0 0
0.53E+00 1 201
0.87E+00 0 0

a(t)

t
2

t3

exp(t)
exp(-t)
sin(Trt)
sin(27rt)
sin(47rt)
cos(Trt)
cos(27rt)
cos(47rt)

TABLE 3
n 100, k 5.

N err

114 0.99E-04
172 0.23E-04
233 0.13E-03
198 0.16E-04
223 0.12E-03
300 0.23E-02
189 0.11E-03
288 0.42E-03
201 0.92E-04
158 0.65E-03
170 0.10E-03
300 0.17E-02

0.10E-11 6.61 7.31
0.21E-11 7.04 8.25
0.71E-10 3.73 10.39
0.17E-11 6.65 6.96
0.26E-10 7.40 10.61
0.58E-11 6.75 7.41
0.45E-11 6.43 5.83
0.30E- 11 6.51 6.24
0.47E-10 6.08 10.83

erro No CPU err1

0.27E-11 6.34 4.19 0.66E-09
0.14E-11 7.01 6.37 0.29E-09
0.18E-11 7.23 8.69 0.40E-09

0.34E-09
0.31E-09
0.68E-07
0.72E-09
0.61E-08
0.93E-09
0.83E-09
0.93E-09
0.16E-07

errg. M Mo
0.80E-01 1 113
0.39E-01 1 171
0.36E-01 1 232
0.52E-01 1 197
0.96E-01 1 222
0.21E-01 0 0
0.28E-01 1 188
0.20E+00 1 287
0.44E+00 1 200
0.27E-01 1 157
0.86E-01 1 169
0.11E+01 1 263

TABLE 4
n-- 100, k 6.

g(t) N err

Vr 300
300

t2 300
3 300

exp(t) 300
exp(-t) 300
sin(rt) 300
sin(27rt) 300
sin(47rt) 300
cos(Trt) 300
cos(27rt) 300
eos(4rt) 300

0.48E+01
0.91E+00
0.48E+00
0.23E+00
0.36E-02
0.97E+00
0.17E-01
0.19E+00
0.66E+04
0.50E-02
0.27E-01
0.19E+00

0.57E-09 5.43 13.09
0.44E-09 4.53 12.96
0.20E-09 4.24 12.83
0.53E-11 6.22 13.40
0.71E-09 6.17 13.33
0.31E-10 6.21 13.27
0.56E-09 4.91 13.03
0.27E-03 7.17 13.50
0.20E-10 3.81 12.79
0.17E-09 5.72 13.20
0.71E-09 6.63 13.47

erro No CPU errl

0.70E-08 6.88 13.55 0.28E-04
0.19E-05
0.18E-05
0.81E-06
0.55E-08
0.22E-05
0.13E-06
0.23E-05
0.86E+00
0.74E-07
0.17E-06
0.68E-06

err2 M Mo
0.42E-01 15 187
0.71E-01 1 209
0.88E-01 2 184
0.61E-01 0 0
0.62E-01 10 231
0.36E-01 7 220
0.53E-01 1 245
0.73E-01 8 174
0.57E+00 1 293
0.48E-01 0 0
0.56E-01 0 0
0.82E+00 5 250
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Group 2: n 400, 2 _< k <_ 3.

TABLE 5
n 400, k 2.

Vr/ 417
t 78
t2 36
tz 29

exp(t) 26
exp(-t) 29
sin(rt) 423
sin(2rt) 304
sin(4rt) 428
cos(rt) 356
cos(2rt) 92
cos(47rt) 276

0.44E-07
0.42E-07
0.18E-10
0.12E-07
0.69E-09
0.70E-08
0.93E-07
0.57E-06
0.92E-08
0.39E-05
0.26E-08
0.80E-07

0.15E-09
0.36E-11
0.37E-14
0.70E-12
0.61E-12
0.58E-12
0.53E-11
0.10E-09
0.37E-11
0.38E-09
0.20E-12
0.40E-11

No CPU
6.35
6.85
8.14
7.41
7.12
7.45
6.73
6.64
6.83
6.20
6.84
7.12

27.92
5.19
2.43
1.94
1.74
1.95

28.17
20.11
28.85
23.80
6.09
18.40

err1 err2 M
0.51E-10
0.58E-10
0.98E-14
0.34E-13
0.21E-13
0.62E-11
0.10E-10
0.17E-08
0.10E-10
0.38E-10
0.45E-12
0.95E-11

Mo
0.27E+00 0 0
0.42E-01 0 0
0.83E-01 1 35
0.67E-01 0 0
0.17E-01 0 0
0.72E-01 0 0
0.63E+00 1 422
0.11E+01 0 0
0.12E+01 1 427
0.25E+00 0 0
0.27E+00 1 91
0.12E+01 1 275

,g(t) N

V 192
412

2 302
tz 206

exp(t) 309
exp(-t) 370
sin(rt) 630
sin(2rt) 1200
sin(4rt) 756
cos(rt) 234
cos(27rt) 973
cos(4rt) 758

TABLE 6
n 400, k 3.

err

0.98E’04
0.13E-04
0.13E-05
0.41E-04
0.36E-06
0.47E-03
0.18E-04
0.16E-02
0.82E-03
0.31E-04
0.34E-03
0.36E-03

erro No CPU
0.64E-10 7.81 17.21
0.55E-11 7.04 36.84
0.18E-11 8.44 27.30
0.25E- 10 8.54 18.52
0.56E-12 7.94 27.84
0.86E-09 7.59 33.19
0.56E-11 8.69 56.66
0.60E-09 2.88 96.46
0.29E-09 7.72 68.21
0.10E-09 8.40 21.04
0.69E-10 8.57 87.88
0.21E-09 8.10 68.36

err
0.16E-11
0.52E-10
0.18E-10
0.16E-08
0.44E-11
0.53E-07
0.50E-10
0.38E-07
0.29E-08
0.65E-08
0.66E-09
0.30E-08

err2
0.57E-01
0.60E-01
0.19E-01
0.81E-01
0.96E-01
0.31E-01
0.57E-01
0.85E-01
0.11E+01
0.24E-01
0.62E+00
0.11E+01

0 0
2 409
1 301
0 0
1 308
0 0

629
0 0
2 753
0 0
1 972
1 757

Group 3" n 2000, 1 _< k _< 2.

g(t) N

v lO
t 9
t2 8
3 11

exp(t) 9
exp(-t) 10
sin@t) 37
sin(27rt) 74
sin(4rt) 49
cos(vrt) 10
cos(2rt) 50
cos(47rt) 54

err elT0

0.13E-12
0.10E-12
0.21E-06
0.74E-13
0.50E-13
0.14E-07
0.10E-07
0.40E-08
0.75E-07
0.37E-08
0.18E-07
0.51E-10

TABLE 7
n 2000, k 1.

No CPU
0.83E-15 6.30 2.36
0.78E-15 7.22 2.13
0.81E-09 7.00 1.92
0.11E-14 6.45 2.61
0.73E-15 6.78 2.11
0.83E-10 5.90 2.29
0.64E-10 3.11 7.99
0.15E-09 2.72 16.28
0.49E-09 3.00 10.84
0.23E-09 4.90 2.33
0.11E-09 2.74 10.68
0.66E-12 3.19 11.91

efT1 err2
0.44E-i5
0.22E-15
0.23E-08
0.44E-15
0.89E-15
0.41E-10
0.40E-11
0.23E-10
0.18E-08
0.20E-11
0.46E-09
0.17E-12

0.44E-01 1 9
0.57E-01 8
0.87E-01 0 0
0.96E-01 1 10
0.35E-01 8
0.37E+00 0 0
0.72E+00 0 0
0.10E+01 0 0
0.10E+01 0 0
0.10E+01 0 0
0.12E+01 0 0
0.12E+01 53
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(t) N

x/r/ 2436
t 222
t2 149
ta 120

exp(t) 118
exp(-t) 135
sin(rt) 2579
sin(2rt) 2756
sin(47rt) 1951
cos(rt) 1920
cos(27rt) 1100
cos(47rt) 1672

TABLE 8
2000, k 2.

e eo
0.94E-05
0.22E-04
0.22E-07
0.41E-06
0.18E-04
0.11E-07
0.40E-04
0.35E-04
0.11E-04
0.44E-05
0.10E-05
0.55E-04

No CPU
0.42E-10 8.15 828.61
0.12E-09 8.84 75.05
0.92E-13 9.39 50.41
0.46E-11 9.23 40.65
0.18E-09 9.92 39.80
0.18E-12 8.27 45.75
0.34E-09 7.48 859.29
0.21E-09 8.83 929.21
0.22E-09 9.10 651.84
0.39E-10 7.30 642.33
0.96E-11 8.78 367.35
0.25E-09 8.04 562.73

el e2

0.49E-10
0.68E-12
0.20E-12
0.78E-13
0.33E-11
0.33E-12
0.36E-09
0.33E-09
0.33E-09
0.40E-10
0.12E-10
0.38E-09

M Mo
0.26E+00 2 1762
0.11E+00 0 0
0.99E-01 1 148
0.34E-01 0 0
0.32E-01 0 0
0.96E-01 1 134
0.63E+00 1 2578
0.11E+01 1 2755
0.12E/01 1 1950
0.25E+00 1 1919
0.26E+00 1 1099
0.12E+01 1 1671
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SECOND-ORDER MULTIPLIER UPDATE CALCULATIONS FOR
OPTIMAL CONTROL PROBLEMS AND RELATED LARGE SCALE

NONLINEAR PROGRAMS*

J. C. DUNNt
Abstract. A second-order multiplier update rule is applied to K-stage discrete-time optimal

control problems with control and state variable constraints. Each update entails the assembly and
solution of sparse block-banded equilibrium equations. Several direct elimination solution techniques
are considered, and it is shown that the updates can always be calculated in O(K) flops. Part of
the analysis applies not only to control problems, but also to other similarly structured large scale
nonlinear programs with equality and inequality constraints.

Key words. Newtonian multiplier updates, Newtonian projection methods, banded equilibrium
equations, efficient solution methods

AMS subject classifications. 49M29, 65K10, 90C06

1. Introduction. This note examines the cost of implementing a superlinearly
convergent Newtonian multiplier update rule for K-stage discrete-time optimal control
problems

K+I
(1A) min J(x, u) E/(x, u)

i--1

subject to state and control variable constraints

(1B) O(x, u) <_ O, i {1,... ,K + 1},

dynamic equations

(lC) Xi+l fi(xi, ui), i= 1,... ,K,

and separated end conditions

(1D) 1(xl) 0, Cg+(xg+) O.

Our objective is to show that the update rule in question can be calculated for (1) by
solving any of four different systems of sparse block-banded equilibrium equations, and
that each of these sparse linear systems can in turn be assembled and solved in O(K)
flops by one or more direct elimination algorithms. Finer numerical distinctions among
the various O(K) computational approaches are likely to be problem-dependent within
the class (1), and are not attempted here.

The O(K) cost estimates obtained in the present study actually apply to the
somewhat larger class of structured nonlinear programs

K+I

(2A) min J(z) E f(zi)
i--1
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subject to

(2B) g(z) <_ 0

and

(2C) h(z) 0

with

(2D) z (z1,... ZKq-1),

(2E) g(z) (gl(Z),.-., gK+l (Z)),

(2F) h(z) (hi (z), hK(z)),

(2G) zi E Ra’

(2H)

(2I) hi(z) ri(zi, zi+) RP,

and

K+I K+I K

(2J) Z di =d, Z qi =q, Pi =P,
i-1 i--1 i-1

where di, pi, and qi are positive integers, and fo and the scalar components Oi, and
ri,j are twice continuously differentiable real-valued functions on ]d. For such prob-
lems, J, g, and h are twice continuously differentiable functions from Rd to ]R, ]Rq,
and ]P; the differentials gP, gi,j’, and J" have block-diagonal matrix representations;
and h and hi,j" have block-echelon and block-tridiagonal matrix representations. In
particular, the constraints (1C)-(1D) can be expressed in (2F) with separable func-
tions

(3) I(Zi+I).,(Z,, ., +

in which case hi,i" has a block-diagonal matrix representor. These special features
can be exploited in the numerical solution of (2), and hence (1).

When the scalar components of 0i are simple affine or convex functions (a common
occurrence in the control problem setting), it may be easier to deal with (2) indirectly
by embedding J and h in an augmented Lagrangian

(#, z) J(z) / (#, h(z)) + !c] Ih(z)]l,
and addressing the relaxed problems,

(4) min (#, z)
g(z)<O



MULTIPLIER CALCULATIONS FOR CONTROL PROBLEMS 491

for a sequence of multiplier vectors

generated by update rules

(5A) # --. # + A#,

(5B) B(#, z(#))A# h(z(#)),

where z(#) is a solution of (4), B(#, z) is a suitably constructed p p matrix, and
t, A#, and h(z) are written in column matrix form (see [1] for an exposition of
the general multiplier method). In practice, z(#) is replaced by an approximate
stationary point $(#) for (4), obtained with a truncated iteration of some algorithm
that capitalizes on the special structure of g and : for (2). If each iteration of
this inner algorithm for (4) can be done cheaply, then the overall effectiveness of
the computational scheme will depend on the convergence properties of the inner
solver for (4) and the outer update loop (5), and on the cost of solving (5B). The
present investigation deals with the last question for problem (2) and the second-order
Newtonian update scheme described in 2. Local superlinear convergence theorems
are proved in [2] for multiplier methods that employ this scheme in conjunction with a
Newtonian projection method for general finite-dimensional nonlinear programs with
equality and inequality constraints. Analogous convergence results are also proved in

[2] for asymptotically exact multiplier methods based on a related modified second-
order update rule that incorporates an additional term on the right side of (5); the
new term is generated by the inner Newtonian projection algorithm for (4), and
computational cost estimates qualitatively similar to those obtained in 2 can also be
established for the modified second-order rule.

The update rule in 2 has been applied previously in a different way to control
problems with no intermediate state variable restrictions [3], [4]. In such cases, it
is possible to treat x as a function of u determined by the dynamic equations, com-
pute multiplier updates for the remaining end condition in O(K) flops with dynamic
programming [3]-[6] or other comparably efficient methods [7], [8], and still retain
simplicity in the inequality constraints for the counterpart of the relaxed problem
(4); however, this approach seems ill suited to problems with general intermediate
state/control variable constraints, where the elimination of x converts the simple sep-
arable conditions (1B) into nonseparable inequality constraints on u, and makes the
inner relaxed problem correspondingly more difficult (particularly for the gradient
projection algorithms used in [2]-[4]). On the other hand, while the formulation in-
vestigated here preserves simplicity in (1B) at the cost of dealing with a potentially
large number of new multipliers for the dynamic equations, the resulting linear system
(5B) can be rearranged and solved in O(K) flops, provided that di, pi, and q remain
bounded as i --. x3 (this provision is tacitly enforced from here onward).

Alternative differential dynamic programming, sequential quadratic programming,
and augmented Lagrangian algorithms for control problems and other large sparse
nonlinear programs are described in [9]-[14]. The slack variable multiplier schemes
for nonlinear programs described in [1] and [21] are also potentially valuable for op-
timal control problems, and lead to similar second-order update calculations. For
example, in Chap. 3 of [1], inequality constraints are converted to equality constraints
with squared slack variables , all of the constraints are incorporated in an augmented
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Lagrangian, and (4) is replaced by an unconstrained minimization problem in the ex-
panded independent variable vector (z, ); moreover, as shown in [1], [22], and [23], the
inner minimization with respect to can be done explicitly for each fixed z, leaving
a reduced unconstrained minimization problem of the form

1 1
min J(z) + (it, h(z)) + -c[Ih(z)[[ 2 + czIR

where

(s, t) [max(O, s + ct)] z s.
For problem (2), the corresponding o.a-oa update rule for (, a) in [1] entails
the solution of sparse block-banded equilibrium equations like those considered here,
with attendant O(K) cost estimates. Finally, it should be noted that the slack variable
approach and the dynamic programming technique in [5] provide another alternative
multiplier method for control problems with intermediate stage-wise inequality con-
straints on control variables only; however, complications arise here once again when
intermediate constraints are imposed on control and state variables.

2. The second-order multiplier update rule. In principle, the update scheme
described in this section determines A# by solving the p p linear system (hB) with
coefficient matrix

(6A) B(#, z) (QtTVh)t(QtTLQT)-I(QtTVh),

where the columns of the dx T matrix QT supply an orthonormal basis for the subspace
T orthogonal to selected "e-active" (i.e., almost active) g-constraint gradients at (#, z),
the columns of the d x p matrix Vh are the gradients of the h-constraints at z, and
the d x d matrix L is formed from the z-Hessians of/2 and the e-active g-constraints,
and from a related "least squares" estimate ,(tt, z) of the g-multiplier for the relaxed
problem (4). More precisely

(6B)
K+I qi

V zC(.. +
i=

where ) E Rq satisfies the linear equations

(6c)
K+I qi

E E ,k,,jVg,,j -(I QTQtT)V,,
i=1 j=l

(6D) ,i,j 0, j hi(#, z), i 1,..., K + 1,

with

(6E) ci(#, z)= {j e {1,...,qi} gi,j(z) >

With some minor abuse of notation, let Vg denote the d x u matrix with columns
formed from the gradients of the e-active constraints at (#, z). The general analysis
in [2] shows that if e(#, .) is a suitably defined nonnegative continuous measure of
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nonstationarity for problem (4), and if the penalty constant c in is sufficiently
large, then null [Vh Vg] (0, and L is positive-definite on null Vg T uniformly
in (#, z) near (#*, z*), provided that

I. The gradients of the h-constraints and the active g-constraints at z* are lin-
early independent.

II. The Kuhn-Tucker first-order necessary conditions and the strict complemen-
tarity condition for problem (2) hold at z*, with h-multiplier #* (and g-multiplier ,*).

III. The second-order Kuhn-Tucker sufficient condition for (2) holds at z*.
Under these circumstances, it is not difficult to see that null QVh (0, and the

matrices QLQT and B in (6) are positive-definite uniformly in (#, z) near (#*, z*);
moreover, near (#*, z*) each of the following linear systems has an invertible coefficient
matrix and A# may be obtained by solving either set of equations:

QLQT

(Q,Vh)

or

(8)

L Vh Vg ’ 0

Vh 0 0 A# -h

Vg 0 0 0

(see [1] and [2], and also the proof of Theorem 2.1 in this section). These systems
belong to the class of equilibrium equations associated with Lagrangian formulations
for other constrained optimization algorithms (cf. [11], [13], and [15]), and with vari-
ational principles for structural mechanics, electrical networks, and fluid dynamics
[16], [17].

In the present context, some of the claims made above for (7) and (8) continue
to hold if L is replaced by

(9)

K

v J + +
i=1 j=l

K+I qi

+ E E "i,jV2gi,J’
i--1 j=l

and A# is replaced by A#-ch (cf. [1, pp. 134-135]). There are immediate advantages
to be gained by doing this since the computation of Vh Vh is thereby avoided, and
since D is block-diagonal when condition (3) holds (as it does for control problems).
On the other hand, conditions I-III do not insure that D is positive-definite on null
[Vgt] or even that QtTDQT is invertible near (#*,z*). Nevertheless, the following
theorem shows that the resulting modifications of (7) and (8) are worth considering.

THEOREM 2.1. Suppose that null [Vh Vg] {0} and that L D + cVh Vh is
positive-definite on null Vgt. Then:

(i) The coefficient matrix in each of the systems below is invertible:

(10)
QDQT

(Q,Vh) 0 -h
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(11)

D Vh Vg ’ 0

Vh 0 0 Vl -h

Vg 0 0 0

(ii) The following statements are equivalent:
a. A# is the unique solution of (5B)-(6);
b. For some , (,A#- ch) is the unique solution of (10);
c. For some ’ and , (’, A# ch, ) is the unique solution of (11).

(iii) If the columns of g supply a basis .for null (Q,Vh) then HtQDQTH is
positive-definite.

Proof. First note that if QVh 0 then Vh? E (null Vg)+/- cogTg and
therefore Vh ? + Vg 0 for some . By hypothesis, this implies that r/= 0 and
hence

null QtTVh {0}.

Second, note that if (QTVh)t 0 then QTDQT Q,LQT.
(, v/) is in the null space of the coefficient matrix in (11) then

QTDQT + QTVh 1 0

Consequently, if

and

TQTLQT O.

By hypothesis, the last equation implies that 0, and the previous two equations
then imply that v] 0. This proves that the coefficient matrix in (10) is invertible.
With a similar argument, it can be shown that the coefficient matrix in (11) is also
nonsingular.

Now observe that QtTL QT is positive-definite by hypothesis, and therefore A#
satisfies (5B)-(6) if and only if for some ,

(Q,Vh) -h, QLQT -Q.VhA#.

Furthermore, the latter equations are satisfied if and only if

(QtTVh)t -h, QtTD QT -QVh (Art ch).

Hence (iia) and (iib) are equivalent statements. To prove that (iib) and (iic) are also
equivalent, let ’ QT and note that

Vg 0

and that (, ) solves (10) if and only if

Vht -h, Tk % +Vh?) O.

Moreover, the last equation holds if and only if D’ + Vh E cog Vg, i.e., if for
some ,

D’ + Vhy + Vg 0.
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Finally, observe that HQTLQTH is positive-definite and that

HQTLQTH= HQDQTH / cH(QVh)(QVh)H

HQDQTH.

When no g-constraints are e-active, the matrix Vg is absent in (8) and (11),
the d x d identity matrix will serve for QT in (6), (7), and (10), and the resulting
equations characterize the standard second-order update rule for equality-constrained
minimization [1].

3. Implementation costs. Equations (5B)-(8), (10), and (11) supply alterna-
tive descriptions of a second-order multiplier update rule that actually applies to a
general class of nonlinear programs with equality and inequality constraints in Rd.
The costs associated with assembling and solving these equations for problem (2) are
now considered in more detail. In this analysis, it is assumed that null [Vh Vg]
and that L D + cVhVh is positive-definite on T null Vg (see conditions I-III
and the related discussion in 2).

For problem (2), Vh is a d x p-sparse "block-echelon form" matrix

(Vh)l,1 (Vh)l,g 1(Vh)g+l,1 (Vh)g+l,g

with di x pj-dimensional submatrices

0, i.{j,j+l},
(12) (Vh)ij

Vzrj(zj, zj+l), i e {j, j + 1}

for 1 _< i _< K + 1 and 1 _< j _< K. Furthermore, if there are vi e-active g-constraint
indices in the set ai(#, z) and if

l] Yl J- + I]K+I

with

for all i, then Vg is a sparse d x v matrix with di x Vp-dimensional submatrices

0, #p,
(13) (Vg)ij

V0i(zi), i-- pj

for 1 _< i _< K + 1 and 1 _< j _< K. Accordingly, the subspace T is a direct sum

(14A) T1 T1 TK+
with

(14B)
nullVO C Rd’,

T
d,

i E {Pl,..-,Pk},

i {pl,...,ph},
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(14C)

(14D) T dimT T1 + + TK+I.

Since null [Vh Vg] {0} it follows that Ti > 0 for some i E {1,... ,K + 1}. Assume
that

Ti>O, i E {ox <... < o} # O.

Then QT is a sparse d T matrix with di T-dimensional submatrices

(15) (Qr),
0, i # ,

( QT, aj

for 1 < i <_ K + 1 and 1 _< j < g, where the columns of QT,, provide an orthonormal
basis for T. It can now be seen that Vh Vht, L, and D are d d-dimensional block-
tridiagonal matrices with di dj-dimensional blocks, D is block-diagonal if condition
(3) holds, QTLQT and QDQT are T T-dimensional block-tridiagonal matrices with
T, T-dimensional blocks, QDQT is block-diagonal if (3) holds, and QVh is a
T p block-echelon form matrix with T, pj-dimensional blocks

0, J fg {hi- 1, hi},
(16) (Q,Vh)i,j

QT,,,Vz,,rj, j e {hi- 1, hi}

for 1 <_ i _< and 1 _< j <_ K. In the proof of Theorem 2.1, it was shown that
null QVh {0}, hence QVh cannot have a column of zero blocks and so

(17A) K _< 2g <_ 2(K + 1)

and

(17B) hi-1 + 1 < ai < ai_l + 2

for 1 < i < g, with

(17C) ao =0.

Finally, for problem (2), equations (6D) decompose into K + 1 uncoupled linear sys-
tems

(18A) Ai,j 0, j ci(#, z),

qi

(18B) E Ai,jV0i,
j--1

with

(18C)
f I QT,Q

Q
I,

if t, < d,

if r, di.
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In general, the nonzero blocks in QT can be obtained from k QR decompositions
of the dp, dye-dimensional matrices VO,,(z,,), and the nonzero components of A
can be formed by solving k associated vp vp-dimensional upper triangular linear
systems in place of (18). If derivative evaluation costs for f’, Oi, and ri remain
bounded as i --. oc, it then follows that the overall cost of assembling the coefficient
matrix in each of the equations (7), (8), (10), and (11) is o(g). Further significant
simplifications are possible in important special cases. For example, if g is affine the
Hessians V2gi,j vanish and the multipliers A are not required in L and D. More
specifically, if g is affine and the constraint g <_ 0 expresses upper and lower bounds
on the components of z, then the columns of VO are a subset of the columns of the
d di identity matrix I, and the remaining columns of I produce the nonzero block
QT in QT; under these circumstances, QVh is obtained by merely deleting selected
rows of Vh, and QLQT and QDQT are obtained by deleting rows and columns of
L and D. As noted earlier, the matrix D (and hence QDQT) is block-diagonal if
condition (3) holds. In particular, if h is affine then (3) holds, D is block-diagonal,
and the Hessians V2hi,j vanish in L and D. Finally, since A(#,z) is nonnegative
near (#*, z*) satisfying conditions I-III in 2 [2], it follows that D and QDQT are
block-diagonal and positive-definite near (#*, z*) when h is affine, gi, is convex, and
V2f’(z) is positive-definite.

With reference to 2, the systems (7), (8), (10), and (11) can now be seen as
equilibrium equations

with nonsingular sparse block-banded coefficient matrices. In principle, (19) can be
solved by Gaussian elimination with partial pivoting; however, the systems of interest
here have block dimensions and bandwidths of order O(K), and in such cases pivot-
ing can produce extensive fill-in in the lower right coefficient block with potentially
prohibitive attendant computational costs [18], [19]. For instance, even if Q,DQT is
diagonal in (10), the initial pivoting operations can place a lower Hessenberg matrix
in the lower right block, and the overall cost of solving (19) for y is then O(K2). The
situation is still less favorable for (7), (8), and (11), where operation counts for stan-
dard elimination algorithms may reach O(K3). Fortunately, it is possible to achieve
much better results with other methods that exploit the structure in (7), (8), (10),
and (11).

When A is invertible and null E {0}, the so-called "displacement method" for
nonsingular systems (19) uses block-elimination to replace the lower left block with
0 and the lower right block with -EA-1E. Since (19) is nonsingular, the matrix
EA-IE must be invertible and the next stages of block elimination will produce y
as the unique solution of

(20) EA-iE y A-ia b

(cf. [131, [16], and [17]). This method is applicable and efficient for (10) in those cases
where QDQT is invertible and block-diagonal, since the corresponding system (20)
reduces to

(21A) CA# (I + cC)h

with a block-tridiagonal invertible p p coefficient matrix

(21B) C-- (QVh)(QDQT)-(QTVh),
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and Z# can be computed at a total cost of O(K) flops; however, the invertibility
of QDQT near (#*, z*) does not follow from the standard regularity conditions I-
III in 2. On the other hand, the displacement method is universally applicable but
inefficient for (7) near (#*, z*) (where (20) is precisely (5B)-(6)), since A is now block-
tridiagonal, EA-1E is dense, and the cost of computing A# increases to O(K3) (this
is also true for (10) when D is invertible but tridiagonal). Similarly, when L and
D are invertible in (8) and (11), the bandwidth of the coefficient matrix in (20) is
O(K) and the cost of solving for A# by elimination may again increase to O(K3).
For present purposes, the displacement method is therefore limited to systems (10)
with block-diagonal invertible QDQT.

A second approach, known as the "force method," may be useful for (10) when
QDQT is not invertible or block-diagonal. This scheme first computes a particular
solution xp for

(22) Ex b

and a matrix H whose columns supply a basis for null Et. The associated formula

(23) x xp 4- Hf
then yields the complete solution of the lower half of (19) with free parameters , and
when this expression is substituted in the upper half of (19) it is seen that must
satisfy

(24) AH + Ey a- Axp

and therefore

(25) HAH H (a Axp)

(cf. [13], [16], and [17]). For the system (10), A is QDQT, E is QVh, and HAH
is positive-definite according to Theorem 2.1. In this case, (25) can be solved for ,
(23) produces x, and y can be obtained by solving a corresponding block-tridiagonal
positive-definite system of normal equations.

(26) E E y E (a Ax).

The effectiveness of this approach turns on the existence of sparse bases for null E
that are easily computed and yield block-banded matrices HAH with fixed small
block-bandwidths. Such bases are readily constructed for special instances of (10);
however, the "force method" will not be pursued further here.

A third approach to (7), (8), (10), and (11) rests on the following basic obser-
vation: by permuting the equations and unknowns in a sparse system, it may be
possible to concentrate all nonzero coefficients nearer the main diagonal; if this is
so, the transformed system can be solved more efficiently by Gaussian elimination
because of reduced fill-in [18], [19]. This technique has been used in the treatment
of linear systems related to (8) [11], [13], [20], and Chapter 5 in [18] supplies another
illustration for equilibrium systems (19) with block-diagonal A and block-tridiagonal
E. The permutation schemes described in [11], [18] are modified here to suit the
special structure of the coefficient matrix in (10), i.e.,

(27A) M--- E 0
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where

(27B) A Q,DQT

and

(27c) E

With reference to (15)-(17), the matrix A has block-rows and block-columns,
E has block-rows and K block-columns, and thus M has /+K block-rows and g+K
block-columns, with K / 1 <_ 2g _< 2(K / 1); moreover, A is either block-tridiagonal
or block-diagonal, and

(28A) Ei,j = 0 = max{1, ai 1} _< j _< min(K, ai}

for 1 _<: i _< and 1 _< j <_ K, with

(28B) O=ao < < at <_ K+ 1

and

ri-1 T 1 _< ai <_ ai-1 -{- 2.

Note that the integers l + r < < @ rt_ appear in sequence in the ordered
K-tuple

(29) (g + 1,..., g + K),

that + at also appears in (29) if ae K, and that all remaining entries in (29) are
integers of the form g / a 1 with 1 _< i _< g and ai ai-1 + 2. Now construct the
ordered (g + K)-tuple

(30A) {1,..., Ce+g}

by inserting the integers 1,... , 1 immediately before g + al,... ,g + ae_l in (29),
and inserting either before or after / K according to whether ae K or K / 1;
equivalently, construct the entries in (30A) with the following recursion:

(30B)

set i=l, j=l, k=l
do while i E {1,...,g+K}

ifi=aj+j-1 then
j

j=j+l
else

k=k+l
end if

i---i+1

In the special case g K + 1, ai i, the rule (30) produces the permutation

(31) = (1, + 1, 2, + 2,...,+ K, )
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employed in Chapter 5 of [18]. In general, the O(K) block-bandwidth of M is com-
pressed to a fixed block-bandwidth between 3 and 7 when the block-rows and block-
columns of M are permuted in accordance with (30).

THEOREM 3.1. Let M and be defined by (27) and (30). Construct the corre-
sponding partitioned matrix

A____ I (M)1,1 (M)I,+K

(M’)+K,1 ()t+K,t+K
with

(M)i,j (M),,

for l <_ i <_ g + K and l <_ j <_ g + K. Then:
(i) M is block-tridiagonal if QDQT is block-diagonal.
(ii) r is block-septadiagonal if QtTDQT is block-tridiagonal.
(iii) M is block-pentadiagonal if QDQT is block-tridiagonal and is given by

Proof. By definition, M is block-tridiagonal if and only if for 1

_
i

_
-t- K,

I<_j<_+K,

(32) (M),, 0 = IJ il < 1.

Since M is symmetric, it suffices to prove (32) for all i, j such that i

_
Cj. Suppose

that QDQT is block-diagonal and (M),, 0 with _< Cj. Then by (27), (28)
and (30),

(33) i E {1,...,e} and
( or max{ + 1, + he, 1}

_ _
min{ + K, + he, }).

Ifi 1 and he, 1, then (30) and (33)imply that i= 1, Cj e {i,e+l}
{, +1}, and therefore IJ- il - 1. If 1

_ _
and 2

_
a

_
K, then (30) and

(33) imply that 1 < i < + K, Cj e {i, + he, 1, + he,} {i, i_1, i+1},
and therefore [j i

_
1. Finally, if i g and he, g + 1 then (30) and (33) imply

that i + K, Cj {, + K} {i, i-}, and therefore [j i[

_
1. This proves

assertion (i).
When QtTDQT is block-tridiagonal and (M), # 0 with _< , condition

(33) is replaced by

i (1,...,/?} and

Moreover, consecutive integers in the sequence 1,..., g are spaced no more than three
entries apart in , in general, and no more than two entries apart when (31) holds.
Assertions (ii) and (iii) follow at once from these observations and minor adjustments
of the proof for (i). 0

When the permutation (30) is applied to the coefficient matrix in (7), parts (ii)
and (iii) of Theorem 3.1 hold with D replaced by L. Bandwidth compression schemes
similar to (30) can also be formulated for the coefficient matrices in (8) and (11).
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Thus, each of the o(g) bandwidth systems (7), (8), (10), and (11) is similar under
permutations to a fixed bandwidth system

(34) M3

that can be solved in O(K) flops by Gaussian elimination, and the required permu-
tations and their inverses are readily assembled at the cost of O(K) comparisons.
More precise solution cost estimates can be obtained from a closer inspection of M.
For example, when QDQT is block-diagonal, it can be seen that the matrix M in
Theorem 3.1 is a sum,

(35A) () /... / (t),
of g symmetric block-tridiagonal matrices with

(35B) ((’))i,j (M(m)),,,

(3 c)
(M),j,

(M(m))i5
O,

i--m, i <_j <_g+K,

i#m, i <_j <_g+K,

and specified by (30). For 1 _< m _< g and 2 _< am <_ K, the nonzero blocks in r(m)
are confined to a cruciform pattern

0 (E)m,a,_i 0

(36) (E)m,a.-I (A)m,m (E).,.

o o

with center in block-row 1 and block-column 1, and 2 _< (/)n _( -}- K- 1. For
m 1, al 1 (respectively, m =/, at K + 1), the matrix (A)m,m appears as the
first (respectively, last) diagonal block in r(m) and the rest of the pattern in (36) is
truncated in the obvious way. Moreover, for 2 <_ m <_ g,

(37) tl --1era--1 gym gYm--1 - 1.

It is now evident that the half-bandwidth of the symmetric matrix M does not exceed

w max (T. + max {P.-I,P.}) 1,
l<m<

and hence the flop count for solving the corresponding permutation (34) of (10) by
row elimination with pivots on a sequential machine does not exceed

2(+v) + 3(+V)
(38)

(factor) (solve)

(f. [19]). In view of (35)-(37), it is also apparent that if gYm-gYm-i 2 for one or more
values of m, then (34) decomposes into two or more block-tridiagonal subsystems that
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can be solved in parallel; however, it is less obvious and more significant that in all
cases, block-tridiagonal systems (34) can be solved on multiprocessor machines with
significant speedups [8]. Similar .gains have been achieved in parallel implementations
of the displacement and force methods for equilibrium equations as well [17].
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A NONINTERIOR CONTINUATION METHOD FOR
QUADRATIC AND LINEAR PROGRAMMING*

BINTONG CHENt AND PATRICK T. HARKER

Abstract. The noninterior point path-following algorithm presented by the authors in 1990 is
specialized to the mixed linear complementarity problem and its special cases (quadratic and linear
programming). The new algorithm is related to, but has several advantages over, the interior point
path-following algorithms.

Key words, linear complementarity, quadratic programming, linear programming, continua-
tion, interior point algorithms
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1. Introduction. In a series of papers [1], [2] Chen and Harker have developed
a new continuation method for monotone variational inequality, linear, and nonlinear
complementarity problems. The new algorithm is closely related to, but has several
advantages over, the existing interior point path-following algorithms. Although it
follows the same interior path, called the path of centers in the literature, the new
algorithm possesses the following advantages:

it can start from an infeasible point, and each of the intermediate iterates
does not have to remain interior;
it generates more efficient Newton directions at each iteration;
it can reduce the continuation parameter with more flexibility;
at each iteration the resulting equation can be solved inexactly, and line search
procedures can be easily incorporated.

Preliminary numerical experiments [2] for the linear complementarity problem (LCP)
demonstrate that the new algorithm is more efficient than the interior point algorithm
of Koijma, Mizuno, and Yoshie Ill] and is competitive with Lemke’s method. The
purpose of this paper is to extend the new continuation method to the mixed LCP
(MLCP) and to quadratic and linear programs.

Many interior point algorithms have been developed following the revolutionary
paper by Karmarkar [8]. Depending on the main mathematical tools used, these
interior point algorithms are often called

potential reduction algorithms,
path-following algorithms,
affine scaling algorithms,
projective scaling algorithms.

A comprehensive survey of the interior point algorithms was given by Todd [24]. The
algorithms that are most closely related to this paper are the path-following methods.

The interior point path-following algorithms for linear programming (LP) have
been studied by Gonzaga [5]; Kojima, Mizuno, and Yoshie [10]; Monterio and Adler
[19]; Nazareth [21], [22]; Renegar [23]; Vaidya [26]; and Ye [27]. The interior point
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path-following algorithms for convex quadratic programs (QPs) have been studied by
Goldfarb and Liu [4], Mehrotra and Sun [17], Monterio and Adler [20], and Ye [27].
These path-following algorithms were extended to solve LCPs by Kojima et al. [9];
Kojima, Mizuno, and Yoshie [11]; and Tseng [25], and to quadratic programming with
quadratic constraints by Mehrotra and Sun [18].

Although they are theoretically very attractive, most path-following algorithms
require each intermediate iterate to follow the path of centers very closely and, there-
fore, to take small step lengths. The success of the practical versions of the path-
following algorithms [15], [12] relies on longer step sizes to reduce the number of iter-
ations. However, all the interior point algorithms, as implied by their name, require
that all the intermediate iterates stay interior, which sometimes restricts the choice
of a longer step length. It is precisely this need to stay interior that the method
proposed herein will overcome.

The paper is organized as follows. In 2 the continuation method developed in
[1], [2] is extended to the MLCP defined by a P0-matrix. Sections 3 and 4 specialize
the MLCP algorithm for solving QP and LP, respectively. Several formulations of QP
and LP as an MLCP or LCP are considered, and the advantages and disadvantages
of each formulation are discussed; conclusions are drawn in 5.

2. Mixed linear complementarity problems. Let M E nn, i2 E nxm,
M3 e mxn, M4 e mxm, ql n, and q2 e , be matrices and vectors of
appropriate dimensions. Define q (ql, q2)T and

(1) M= M3 M4

Consider the MLCP, denoted by MLCP(M, q), which is the problem of finding an

(x, y) E n x m such that

w-Mlx-bM2y-bql >_0, x>_0, wTx--0,
M3x q- Mdy -k q2 0.

It is well known that both QP and LP are special cases of the above MLCP. Given a

# > 0, define the perturbed MLCP (PMLCP), denoted by PMLCP(M, q, #), as that
of finding an (x, y) n x m such that

(2) w Mix -b M2y + ql > 0, x > 0, w{x , i 1,...,n,

(3) M3x + Mdy + q2 0.

The following result is a straightforward extension of Theorem 1 in [1]"
THEOREM 2.1. Assume that M has a positive diagonal. Then (x, y) is a solution

of MLCP(M, q) if and only if it solves the .following system of nonlinear equations,
denoted by J(x, y, #) 0:

V/[(ix i2y q) mix] 4mip 0 /i,(Mx + M2y + q)i + mixi + + +
M3x -b Mdy / q2 0.

Let (x(#), y(#)) be a solution of J (x, y, #) 0. Define the set of paths or trajec-
tories generated by the continuation method as

T {(x(#), y(#), #)" 0 < #

_
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where # > 0 is some positive number. For notational simplicity, if T consists of a
single path, we call T the path or trajectory. The following theorem characterizes the
set T.

THEOREM 2.2. /f VJ(x(/z),y(#),/) is nonsingular for all 0 < tz < #, then T
consists solely of continuously differentiable paths. If, in addition, T is bounded, then
(x(#), y(/)) approaches a limit point (x(0), y(0)) e S as # approaches zero, where S
is the solution set of the original MLCP.

Proof. The first part of the theorem is a direct application of the Path Theorem
in [3]; the proof of the second part of the theorem is similar to that of Theorem 5 in
[1].

Therefore, if the conditions of Theorem 2.2 are satisfied and T is nonempty,
various path-following algorithms (see [3] for details) can be used to trace the path
to a solution of the original MLCP.

To explore the implications of the above theorem in more detail, let us define

ri (x, y, #) 1
(Mix + M2y + q)i

V/[(Mix + M2y + q)i mixi]2 + 4mi#
and let D diag{mi} and It(x, y, ]z) diag{ri(x, y,/)}. Then, after some algebraic
manipulation, we obtain

(4) VJ(x,y #)--(R(x,y,/) 0) (Mr(x,y,/) M2 )0 I M3 Ma

where

Mr(x, y, #) M1 + D (2R-1 (X, y, #) I).

We now establish the condition for VJ(x, y, #) to be nonsingular. Let

lI M M2(M4)-IM3 and l q (M4)-lq2.

To establish the nonsingularity result, we need the following lemma.
LEMMA 2.3. Suppose that M defined in (1) is a positive semidefinite (Po-)

matrix and that Ma is nonsingular. Then is a positive semidefinite (Po-) matrix.

Proof. We shall first prove this result for the case in which M is positive semidef-
inite. Let x be an arbitrary vector in n, and let y be a vector in m such that

M3x q- M4y 0

or, equivalently,

y -(M4)-M3x.

Then,

xTIIx- xT(M M2(M4)-IM3)x
xTMlx + xTM2y
xTMlx q- xTM2y q- yTMax q- yTMay
(xT, yT)M(xT yT)T

>0.
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The first equality is from the definition of M. The second and third equalities are
from the definition of y and the nonsingularity of Ma. The last inequality is true
because M is positive semidefinite by assumption.

To establish this result for the case in which M is a P0-matrix, we only have to
show that the determinants of all the principal minors of M are nonnegative. Denote

N={1,...,n} and M={1,...,m}.

Let I C N, and let MII be the associated principal minor of M. Let J I U M, and
let Mjj be the associated principal minor of M. Then

I1QIHI IMii M.(Ma)-M.3I
IMjJI > 0.
ilVi

The first equality is true by definition. The second equality is true by matrix identity.
The inequality holds because by assumption Ma is nonsingular and M is a P0-matrix
and thus so are Mjj and Ma. [l

On the basis of the above lemma we have the following theorem.
THEOREM 2.4. Suppose that M defined in (1) is a Po-matrix, mii > O, i

1,..., n, and that Ma is nonsingular. Then VJ(x, y, #) is nonsingular for all # > 0
and (x, y) E n m.

Proof. One can verify that 0 < ri(x, y, #) < 2 for all # > 0 and 1,..., n. As a
result, both R(x, y, ) and (2R-1 (x, y, ) I)D are positive diagonal matrices since
D > 0 by assumption. Thus it suffices to show that the matrix on the right-hand
side of (4) is nonsingular. Let (x, y) be a vector such that

Mlr(x,y,)

M3 MaM2 ) (x)-0.y
Using the assumption that Ma is nonsingular and eliminating the variable y from the
above equation, we obtain

[Mlr(x, y, #) M2(M4)-IM3Ix--- 0,

or

[lI + DI(2R-(x, y, #) I)]x 0.

Since M is a P0-matrix by Lemma 2.3, the matrix in front of x is a P-matrix and
therefore is nonsingular. Hence x 0 and y -(M4)-IM3x 0. This implies
that the matrix on the right-hand side of (4) and thus the Jacobian VJ(x, y, #) are
nonsingular. [1

For the monotone LCP the existence and other properties of T have been shown
by Megiddo [16]. The corollary below is a simple extension of Megiddo’s result.

COROLLARY 2.5. Suppose that M is positive semidefinite and that M4 is non-
singular. Then PMLCP(u) has a unique and uniformly bounded solution for all
0 < # < p < oo if there exists an (x, y) such that

Mix -1- M2y -t--ql > O,
M3x .+. M4y q_ q2 O.

x>0,



NONINTERIOR CONTINUATION METHODS 507

Corollary 2.5 provides a condition under which the path T exists and satisfies the
condition of Theorem 2.2. Therefore, a solution of the MLCP can be obtained by a
path-following algorithm. When M is a P0-matrix, we can establish a similar result,
which is an extension of Theorem 9 in [2]:

COROLLAIY 2.6. Suppose that the assumptions of Theorem 2.4 are satisfied and
that, in addition, there exists an (x, y0) such that the set

Xj {(x, y)" IlJ(x, y, )11 IlJ(x, yO, )11}

is uniformly bounded for all 0 < # <_ # and some # > O. Then PMLCP(#) and thus
J(x, y, #) 0 have unique and uniformly bounded solutions for all 0 < # <_ ft.

Proof. The proof is similar to that of Theorem 9 in [2].
The above two corollaries provide the conditions under which T is well behaved

and leads to a solution of the MLCP. We now present the continuation method for
the MLCP with a P0-matrix.
Initiation Step Let be a given stopping tolerance. Choose an initial point
(x0, y0) E n m and sequences #k > 0 and ek > O, k 1, 2,..., such that

#k<_#-I and lim #k=0,

k < k-1 and limek O.

Set k 1 and go to the Main Step.
Main Step

1. Starting with (xk-l, yk-), find (xk, yk) by solving J(x, y, #k) 0 such that
I1, (x yk, <--

2. If [Imin{xk,wk}l <_ e, where w Mx + M2y + q and "min" is taken
componentwise, terminate; otherwise, go to Step 1.

3. Convex quadratic programming. This section specializes the algorithm
for the MLCP to the case of convex QPs. Two types of QPs are considered: the
strictly convex QP with general constraints and the convex QP in standard form.

Consider the following strictly convex QP with general constraints:

1
minimize xTQx -+- cTx
subject to Ax >_ b, Ex -d,

where Q E n n is a symmetric positive definite matrix and A, E, c, b, d are matrices
and vectors of proper dimensions. Let y and z be the dual variables associated with
constraints Ax >_ b and Ex d, respectively. The Karush-Kuhn-Tucker (K-K-T)
conditions for the QP are

Qx- ATy ETz + c 0,
w=Ax-b_>0, y>_0, wTy=0,

Ex-d=0.

Notice that the above MLCP does not satisfy the assumptions of Theorem 2.1 since the
diagonal of the corresponding matrix is not strictly positive. To avoid this difficulty
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we solve for x from (5) and substitute it into (6) and (7) to obtain

w AQ-1ATy + AQ-1ETz- AQ-lc- b > 0, y > 0,
EQ-1ATy + EQ-1ETz EQ-lc d 0,

wTy O

which is the MLCP defined by

-1ATM EQ_IAT
b )q _EQ-lc d

The above transformation is described in [7]. The following proposition shows that
the above MLCP satisfies the requirements of the continuation method for the MLCP
described in the previous section.

PROPOSITION 3.1. Suppose that Q is a symmetric and positive definite matrix.
Then M is positive semidefinite. If, in addition, A has no row identically equal to
zero and E has full row rank, then M has a positive diagonal and EQ-1ET is positive
definite.

Proof. Let x (xl, x2)T be any vector. Then

xTMx (AXl + Ex2)TQ-I(AXl + Ex2) _> 0.

The inequality is true because the inverse of a symmetric positive definite matrix is
also a positive definite matrix. Therefore, M is positive semidefinite. Now, suppose
x2 # 0. Then ETx2 # 0 since E has full row rank. Therefore,

x2TEQ-1ETx2 (ETx2)TQ-I(ETx2) > O,

which implies that EQ-1ET is positive definite. It remains to be shown that AQ-1AT
has a positive diagonal. Notice that the iith element of AQ-1AT equals As. Q-1A.i,T
which is positive since A has no row identically equal to zero. El

Therefore, the algorithm for the MLCP can be applied to the above MLCP for-
mulation of the QP immediately. However, the above formulation has a major disad-
vantage, namely, the matrix Q needs to be inverted. For large-scale problems with
sparse data, the inversion not only is time consuming but also destroys the sparse
structure of the problem. Therefore, the above formulation is more suitable for a
QP with a separable objective function. We now describe an alternative formulation
suitable for a nonseparable QP, proposed by Han and Mangasarian [6].

Let 7 be a number such that -yQ- I is positive definite. One can verify that the
K-K-T conditions of the QP are equivalent to

w /AATy A(TQ I)x + 7AETz /Ac b >_ 0, y _> 0, wTy 0,
(TQ I)Qx- (TQ I)ATy- (TQ I)ETz + (TQ I)c 0,

/EATy E(TQ I)x + 7EETz /Ec d 0,

which are an MLCP defined by

/AAT -A(-Q I) AET

M -(/Q I)AT (/Q I)Q -(Q I)ET q
yEAT -E(Q- I) /EET

-7Ac- b )(/Q I)c
-TEc d

The above MLCP also satisfies the requirements of the continuation method for the
MLCP, as shown by the following proposition.
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PROPOSITION 3.2. Suppose that Q is symmetric and positive definite. Then M
is positive semidefinite. If, in addition, A has no row identically equal to zero and E
has full row rank, then M has a positive diagonal and the following submatrix of M
is positive definite:

Ms=( (/Q-I)Q -(Q-I)ET )-E(Q I) EET

Proof. That M is positive semidefinite and has a positive diagonal can be proved
in a manner similar to the proof of Proposition 3.1. It remains to be shown that M8
is positive definite. Let x (xl,x2)T 0 be any vector. Then

xTMsx xT(Q I)Qxl 2xT(’Q I)ETx2 + x2T(’)’EET)x2
lll(’TQ I)Xl -?ETx2112 + xlT(?Q I)Qxl

1 xT(’Q I)2x1
1>_ -Xl

T(Q I)Xl

The last inequality follows from the definition of
Therefore, the algorithm for the MLCP can also be readily applied to this for-

mulation of the QP. However, both MLCP formulations of the QP have a common
disadvantage, namely, the dimensions of the resulting MLCPs are larger than that of
the QP. As a result, a matrix of larger dimension must be inverted at each iteration
of the continuation method. To avoid this difficulty we now restrict our study to the
convex QP in standard form, where the algorithm is simplified by taking advantage
of the special structure of this problem. The resulting algorithm is closely related to
the interior point path-following algorithm for the QP [20]. However, it possesses all
the advantages mentioned in 1.

Consider the following convex QP in standard form:

minimize xTQx -t- cTx
subject to Ax--b, x_>0,

where Q E n, is a symmetric and positive semidefinite matrix, A E mn, C ,
and b m are the matrix and vectors of appropriate dimensions. Let y m be
the dual variable of constraint Ax b. The K-K-T conditions of the above QP are

w Qx ATy + c _> 0, x

_
0, wTx 0,

which are an MLCP defined by

Ax b,

_AT

Assume that Q has no row identically equal to zero and that A has full row
rank. Then Qii > 0 for all i since Q is symmetric and positive semidefinite. By
Theorem 2.1 the corresponding PMLCP(#) is equivalent to the following system of
nonlinear equations, denoted by JQ(x,y, p) 0:

(Qx ATy + c) + Qx /[(Qx ATy + c) Qx]2 -t- 4Qp 0

Ax-b- 0.
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Denote

(8) ri(x, y, #) 1
(Qx ATy + c)i Qx

v/[(Qx ATy + c)i Qiixi]2 + 4Q
and let D- diag(Qii} and R--diag(ri(x, y, #)}. Then, after some algebraic manip-
ulation, we obtain

(9) VJQ(x, y, #) (R 0) (Qr -AT )0 I A 0

where

Qr Q + D(2R-1 I).

We have the following theorem, which is similar to Theorem 2.4.
THEOREM 3.3. Suppose that Q is symmetric and positive semidefinite and that

A has full row rank. Then VJQ(x,y,/) is nonsingular for all

Proof. One can verify that R is a positive diagonal matrix and that Qr is a
positive definite matrix for all x E n, y E m, and # > 0. Thus the matrix on
the right-hand side of (9) is positive definite because of its special skew symmetric
structure and the assumption that A has full row rank.

Define the strictly feasible primal and dual region of the QP by

+={(x,y)’’x_>0, w_>0, w=Qx-ATy+c, Ax=b}.

It has been shown [16], [19] that PMLCP(#) associated with the QP or JQ(x, y, #) 0
has a unique and uniformly bounded solution for all 0 < #u <_ # if + is nonempty.
This property together with Theorem 3.3 assures that the continuation method for
the MLCP is well defined when applied to the above MLCP formulation of the QP.

The most time-consuming step in the continuation method for the QP is to solve
the system of nonlinear equations JQ(x, y, #) 0 at each iteration. Let (Ax, Ay)
be the Newton direction associated with the current point (x, y) such that Ax b.
Straightforward algebraic calculation yields

(10) Ax (Qr)-I{AT[A(Qr)-IAT]-IA(Qr)-I I}(R)-IJ-Q,
(11) Ay--

where J-Q is a vector consisting of JQi(x,y,/), i 1,... ,n. Therefore, the
matrix to be inverted at each iteration is

(12) A[Q + D(2R-1 I)]-IAT,
which is positive definite for all # > 0. We now present the continuation method for
the convex QP in standard form:

Initiation Step Let be a given stopping tolerance. Choose an initial continuation
parameter #1 > 0 and an (x, y0) n x m such that Ax b. Set k- 1, and go
to the Main Step.
Main Step

1. Starting with (xk-l,yk-1), calculate the Newton direction (Axk, Ayk) by
(10) and (11).
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2. xk xk-1 + akAxk; yk yk-1 _+. akAyk, where ak is a scalar obtained by
some line search procedure based on IIJQ (x, y, #k)ll.

3. If II min{:x, w}ll --< e, where w Qx ATy + c and "min" is taken com-
ponentwise, terminate; otherwise, choose an #k+l _< #k based on the scale of
IIJQ(xk,yk,#k)l and II min(x,wk}ll. Set k k + 1 and go to Step 1.

Notice that the new continuation method is very flexible in choosing the parameters
of the algorithm. In particular,

(x0, y0) need not be either primal or dual feasible--in practice, it could be
any good approximate solution;
#1 can be very small (except for numerical considerations), and #k can be
reduced faster than it can in interior point algorithms;
ck is selected by a line search procedure, which will tend to accelerate con-
vergence.

Both the interior point algorithm and the continuation method introduced above
are penalty function methods by nature. As # approaches zero, the matrices to be
inverted in both methods become more and more ill conditioned. Recall that the
matrix inverted at each iteration in the primal and dual interior point algorithm [20]
is

(13) A(Q / X-IW)-IAT

where X, W are positive diagonal matrices with entries xi and wi, respectively. It is
clear that (12) and (13) have the same structure. Actually, the following result shows
that these two matrices are identical on the path of centers.

PROPOSITION 3.4. Let (x(#), y(#)) be the solution ofPMLCP(#) or, equivalently,
of equation JQ(x, y, #) O. Then

Q / D(2R-I(x(#), y(#), #) I) Q + X-l()W().

Proof. The proof is similar to that of Proposition 2 in [2]. D
Proposition 3.4 roughly demonstrates that the continuation method proposed

here has the same degree of ill conditioning as does the interior point path-following
algorithm as # approaches zero. However, the continuation method possesses all the
advantages mentioned in 1.

4. Linear program. This section specializes the algorithms discussed in the
previous two sections to the case of LP. Two types of LPs are considered: the LP
with inequality constraints only and the LP in standard form.

Consider the LP with general constraints, called LPg:

minimize cTx
subject to Ax _> b, Ex d.

Also consider the associated QP denoted by QP()"

T (Tminimize x x + x

subject to Ax >_ b, Ex d,

where e > 0. The following theorem due to Mangasarian and Meyer [14] enables us
to transform the LP to a QP so that the continuation method developed for the QP
can be readily applied.
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THEOttEM 4.1. Suppose LPg has a solution. Then there exists a real positive
number > 0 such that for each in the interval (0, g] the unique solution of QP()
is independent of and is also a solution of LPg.

Although the value of g cannot be predetermined, numerical experiments [13]
show that it has a magnitude of O(m) or O(n), where m and n are number of con-
straints and number of variables, respectively.

Consider the LP with only inequality constraints, called LPI:

minimize bTy
subject to ATy > c,

where A E mxrt, b m, and c n are the matrix and vectors of appropriate
dimensions. This LP formulation is not very restrictive since, by setting Yl -Y, we
have

maximize bTyl
subject to ATyl _< --c,

which is the dual of the following LP in standard form:

minimize (--12Tx)
subject to Ax b, x>0.

By Theorem 4.1, if LP1 has a solution, there exists an g such that the solution of the
following QP, denoted by QP1 (), is a solution of LP1 for all 0 <_ e <_ g:

minimize yTy / bTy

subject to ATy > c.

Let z n be the dual variables of the constraint. The K-K-T conditions of QP1 (e)
are

(14) y Az + b 0

(15) w ATy c > 0, z _> 0, wTz 0.

Solving for y in (14) and substituting into (15), we obtain the following LCP"

(16) w ATAz ATb c > 0, z > 0, wTx 0.

PROPOSITION 4.2. If AT has no row identically equal to zero, then ATA is a
positive semidefinite matrix with a positive diagonal.

Therefore, the continuation algorithm for the monotone LCP [2] applies here. Let
z() be the solution of (16). The primal solution of QPI(e) is calculated by

_1 (Az(e) b),y(e)
e

which is also a solution of LP1 if 0 < _< .
Now let us consider the LP in standard form, denoted by LP2"

minimize cTx
subject to Ax=b, x>0,
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where A E mx, b E m, and c n are the matrix and vectors of appropriate
dimensions. By Theorem 4.1, if LP2 has a solution, then the solution of the following
QP, denoted by QP2(), is a solution of LP2 for all 0 _< _< g:

Tminimize .x X -" cTx
subject to Ax-b, x_>0.

Notice that QP2() satisfies all the requirements of the continuation method for the
QP described in 3 and therefore can be solved directly by the algorithm. Let y be the
dual variable of constraint Ax b. The equation JQ(x, y, #) 0 is now simplified
to JL (x, y, , #) 0, defined as follows:

exi+ (c ATy)i (c T 2-A y)+#-0,
Ax-b=0.

i= 1,...,n,

Denote

r(y, , #) 1
(c- ATy)i

2v/(c- ATy) -{- 2#

and denote R diag{r(y, , #)}. Then, the corresponding Newton direction at (x, y)
becomes

1 [ARAT]-AJ-LAy-- -where JL n is a vector consisting of JL(X, y, #), i 1,..., n. The matrix inverted
at each iteration is ARAT, which is positive definite if A has full row rank since
0 < r(y,, #) < 2 for all y m. Notice that this matrix has the same dimension
and structure as that in the primal-dual interior point algorithm [19]. Therefore, the
computation time at each iteration of the new continuation method should be similar
to that of the interior point algorithm. However, the new method possesses all the
advantages discussed in 1 and 3.

We now compare the continuation methods for the LP based on the above two
different formulations. The computationally intensive part of both formulations is the
inversion of matrices at each iteration. For the LP with only inequality constraints,
the matrix inverted in the LCP formulation is of the following form (see [2]):

(ATA -{- D),

where D nx is a positive diagonal matrix that is updated at each iteration. If
A is dense, it takes only n arithmetic operations at each iteration to form the above
matrix since ATA must be calculated only once. It takes an additional -n3 to invert
the matrix. Therefore, the total number of arithmetic operations at each iteration for
the first formulation is n3 if the lower-order operations are ignored. In the second
formulation the matrix to be inverted is

ARAT
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It takes m2n arithmetic operations to form the matrix and an additional m3 arith-
metic operations to invert the matrix. Therefore, the total number of operations is

m3m2n + at each iteration if the lower-order operations are ignored. As a conse-
quence, if n

_
2.5m, the first formulation requires fewer operations at each iteration.

Otherwise, the second formulation takes fewer operations. Both formulations dis-
cussed here have advantages, as discussed in 1, over the primal-dual interior point
algorithm. However, they also share a common disadvantage, namely, the parameter
g must be estimated beforehand.

5. Conclusion and future research. The paper extends the continuation
method for the LCP to the MLCP and then specializes the algorithm to both the
QP and LP. Various formulations of a QP and LP as an MLCP are considered, and
advantages and disadvantages of each formulation are discussed. The new contin-
uation methods are similar to the interior point algorithms in terms of arithmetic
operations at each iteration. However, they are more flexible in choosing the initial
point and in reducing the continuation parameters.

Future research will be directed toward establishing the computational complexity
of the new methods and toward finding an optimal way of reducing the continuation
parameters. Extensive computational tests of the LP against the primal-dual interior
point algorithm will be performed in the future.
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AN IMPLEMENTATION OF THE DUAL AFFINE SCALING
ALGORITHM FOR MINIMUM-COST FLOW ON BIPARTITE

UNCAPACITATED NETWORKS*

MAUI:tICIO G. C. I=tESENDEt AND GERALDO VEIGA:

Abstract. This paper describes an implementation of the dual affine scaling algorithm for
linear programming specialized to solve minimum-cost flow problems on bipartite uncapacitated
networks. This implementation uses a preconditioned conjugate gradient algorithm to solve the
system of linear equations that determines the search direction at each iteration of the interior point
algorithm. Two preconditioners are considered: a diagonal preconditioner and a preconditioner based
on the incidence matrix of an approximate maximum weighted spanning tree of the network. Under
dual nondegeneracy this spanning tree allows for early identification of the optimal solution. By
applying an e-perturbation to the cost vector, an optimal extreme-point primal solution is produced
in the presence of dual degeneracy. The implementation is tested by solving several large instances of
randomly generated assignment problems, comparing solution times with the network simplex code
NETFLO and the relaxation algorithm code RELAX. This interior point algorithm greatly benefits
from implementation in a parallel architecture. For the largest instances tested the interior point
code was competitive with both the simplex and relaxation codes.

Key words, linear programming, interior point algorithm, network flows, assignment problem,
conjugate gradient, preconditioning

AM$ subject classifications. 65-05, 65F10, 65K05, 65Y05, 90C05, 90C06, 90C35

1. Introduction. Consider a directed graph G (V, E), where V is the set of
vertices and E is the set of edges, with (i, j) denoting a directed edge from vertex
to vertex j. On the basis of this underlying graph we define a network by attaching
certain numerical quantities to the vertices and edges. Let bi >_ 0 represent the units of
flow produced or consumed at each vertex i E V. Associated with each edge (i, j) E E
we define the quantities cij, lj, and u representing, respectively, the unit cost, lower
bound, and upper bound. The solution of a network flow problem, often referred to
as the flow, is represented by the IEI-dimensional vector x, where each component xj
stands for the flow in each edge. The minimum-cost network flow (MCNF) problem
consists of finding a flow of minimum cost, subject to flow conservation constraints for
all vertices, bounding for the flow on all edges. Often it is required that the optimal
flow consist of only integer quantities.

The implementation we describe is restricted to problems for which G is bipartite
with a vertex partition S, T and lj 0 and uij o. An edge (i, j) has vertex i S
and vertex j e T. All the techniques described in this paper can be applied to the
more general MCNF problem described in the previous paragraph. We limit our focus
to this subclass because of implementation considerations. The following is an integer
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programming formulation for this MCNF problem:

minimize

subject to Z xik bi, i E S,
(1.1) ikeE

We assume that

xkj--bj, jET,
kjeE

xiy _> 0 integer, (i, j) E E.

b b.
iCS jeT

Furthermore, if we assume that G is connected, (1.1) has a single redundant constraint
that we remove from the formulation. In the resulting constraint matrix there is one-
to-one correspondence between basic sequences and spanning trees of G. Finally, we
assume that the data in b and c is integer. Since the constraint matrix in (1.1) is
totally unimodular, all basic solutions of (1.1) are integer, the integrality constraint
in (1.1) can be dropped, and the problem can be solved with a linear programming
algorithm that produces a vertex solution.

Variations of the simplex method [11] can be customized to solve the MCNF
problem. Mature implementations of these algorithms are widely used to solve large-
scale problems. However, the combinatorial nature of the simplex method variants
results in a rapid growth of the number of iterations as the problem dimensions grow.
Instances with a few thousand vertices often require several million simplex iterations.
Furthermore, primal degeneracy is often present in certain classes of network flow
problems, causing most simplex iterations to be degenerate.

The main motivation of this study is that in practice the number of iterations in
interior point algorithms for linear programming appears to grow slowly with prob-
lem size. Most direct comparisons between interior point algorithms and the simplex
method (e.g., [1], [27]) conclude that as problem size increases the advantage increas-
ingly tilts toward interior point methods. One may conjecture, then, that for large
enough problems, interior point algorithms will also outperform simplex-based meth-
ods for network flow problems despite the fact that the interior point algorithms are
implemented in double-precision arithmetic whereas network simplex codes are im-
plemented in integer arithmetic. Furthermore, interior point methods do not appear
to be affected by degeneracy as much as is the simplex method [29].

The dual affine scaling (DAS) algorithm [12] was among the first of the interior
point methods to be shown to be a competitive alternative to the simplex method.
Adler, Karmarkar, Resende, and Veiga [1] described an implementation of the DAS
algorithm and compared their implementation with the simplex code MINOS 4.1
[28]. Data structures and programming techniques used in that implementation are
described in [2]. Let A be an m n matrix, let c and x be n-dimensional vectors, and
let b be an m-dimensional vector. The DAS algorithm solves the linear program

minimize c-x(1.2)
subject to Ax b, x >_ O,
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indirectly by solving its dual

maximize b-y(1.)
subject to ATy + s c, s_>0,

where s is an n-dimensional vector of slacks and y is an m-dimensional vector. The
algorithm starts with an initial interior solution

yO E {Y s c- A-r-y > 0}

and obtains iterate yk+l from yk according to

yk+l yk + a (ADAT)-lb,

where

Dk diag(1/sl,..., 1/sn)

and a is such that sk+l c- A-yk+l > O.
solution [30] is given by

At each iteration a tentative primal

(1.4) xk DA-(ADA-)-b.
It is easy to verify that Axk b. However, xk can only be guaranteed feasible (i.e.,
xk _> 0) at an optimal dual solution if dual nondegeneracy is assumed [12], [15]. Adler
and Monteiro [3] have shown that for the continuous version of the DAS algorithm
no nondegeneracy assumption is needed for the convergence of both the iterates and
the primal estimates.

The bulk of the work in the DAS algorithm is related to building and updating
the matrix ADA- and solving the system of linear equations

(1.5) (ADA-)d b

that determines the ascent direction at each iteration of the algorithm. Adler et al.
consider two approaches for solving (1.5). The first approach is Cholesky factorization,
in which the matrix 2 -I-ADkA is factored into an upper triangular matrix L- and a
lower triangular matrix L and the system

LL-dy b

is solved by first applying forward substitution to

Lz-b

and then applying back substitution to

L-r-d z.

This approach is considered satisfactory when the number of nonzero elements in the
factors is small. This may not be the case when there is large fill-in (fill-in is the
difference in number of nonzeros between ADA- and the LL- factors) or when the
problem is large and even without much fill-in when the number of nonzeros in the
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factors is large. Even though the constraint matrix of the MCNF problem is sparse,
the factorization of AD2A- can produce considerable fill-in.

In [1], [2] Adler et al. use the preconditioned conjugate gradient algorithm [16],
[25] when there are one or more dense columns in the A matrix, consequently making
L and L- dense. In this approach the dense columns of the matrix A are dropped,
resulting in , and the incomplete Cholesky factors of D2/i.- are used as precondi-
tioners. Karmarkar and Ramakrishnan [18] also use the conjugate gradient algorithm
with the DAS algorithm for solving large linear programs. In these large linear pro-
grams the number of nonzero elements in the factors is large regardless of fill-in and
direct factorization methods are too slow. They compare their implementation with
MINOS 5.1 on a class of randomly generated minimum-cost network flow problems
and suggest that it would be interesting to compare a special-purpose interior point
implementation with a special purpose network simplex code. Mehrotra [23] has de-
veloped a code based on [18] and has solved numerous netlib [13] problems.

Several studies have concluded that interior point methods are not competitive
with network simplex codes for solving network flow problems (e.g., [4], [5], [9]). In
this paper we show several examples of large-scale network flow problems for which
an interior point method is competitive with mature network flow codes. We describe
and test a special-purpose implementation of the DAS algorithm for MCNF problems
built on the general-purpose implementation of the DAS algorithm described by Adler
et al. [1], [2].

The outline of the paper is as follows. In 2 we describe our implementation of the
preconditioned conjugate gradient algorithm, including conjugate gradient stopping
criteria. In 3 we consider preconditioners used for the MCNF problem. We describe
a diagonal preconditioner and a spanning tree preconditioner. In 4 we consider early
stopping of the DAS algorithm, identifying a primal optimal basis. Early stopping
often avoids problems experienced by the conjugate gradient algorithm when the it-
erate of DAS algorithm is close to a face. In 5 we discuss another way to avoid
numerical problems by dropping dual constraints. In 6 we consider dual degeneracy
and present a perturbation scheme that allows the primal iterates of the DAS algo-
rithm to converge to a vertex. In 7 we consider a parallel implementation of our
algorithm. In 8 we test our implementation on large randomly generated assignment
problems and compare our results with the network simplex code NETFLO [19] and
the relaxation method code RELAX [8]. Concluding remarks are in 9.

2. Computing the ascent direction. The implementation of the DAS algo-
rithm for network flow problems described in this paper is based on a preconditioned
conjugate gradient algorithm for solving the direction-finding system at each iteration.
Our algorithm differs slightly from the preconditioned conjugate gradient algorithm
described by Adler et al. [1], [2]. Here, the preconditioned conjugate gradient algo-
rithm consists of solving

(2.1) M-I(ADAT)dy M-Ib,

where M is a positive definite matrix. The objective is to make the preconditioned
matrix

M-(ADA)

less ill conditioned than 2 -ADkA improving the convergence of the conjugate gradient
algorithm.
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procedure pcg(A, Dk, b, ecg)
1 dy := b;
2 ro := (ADAT) b;
3 z0 "= M-lr0;
4 P0 := z0;
5 i 0;
6 do z[ri >_ ecg --7 qi := (ADA-)pi;
S ai := zri/p: qi;

9 d+l .= d + aipi;

10 r/+l ri aiqi;

11 Zi+l M-lri+l;
12 i := zi+lri+l
13 Pi+l := Zi+l + iPi;
14 i’:i+l
15 od
end pcg;

FIG. 2.1. Preconditioned conjugate gradient algorithm.

Let (x, Y>M x-MY be the inner product of x and y with respect to M, a
positive definite matrix. Since M-I(ADA-) is symmetric with respect to M, i.e.,

(x,M-I(ADA-)y>M (M-I(ADA-r)x, y>M
we can solve (2.1) with the standard conjugate gradient algorithm (see [14]) with all
inner products (and norms) replaced by

(x, y)M XTMy,
resulting in the algorithm described by the pseudocode in Fig. 2.1.

The computationally intensive steps in the preconditioned conjugate gradient
algorithm are lines 2, 3, 7, and 11 in Fig. 2.1. These lines correspond to matrix-
vector multiplications (2 and 7) and systems of linear equations (3 and 11). Lines 2
and 3 are computed once, and lines 7 and 11 are computed once every conjugate
gradient iteration. The multiplications carried out are of the form

(ADA)zo,
where z0 is the vector d in line 2 and pi in line 7. There is some computational
advantage in decomposing this matrix-vector multiplication into three steps:

(i) Z1 A-zo,
2(ii) z2 DkZl,

(iii) Z3 Az2.
Forming ADA-r explicitly requires 31E multiplications and 2[E additions. Perform-
ing the matrix-vector multiplication requires IV[ + 21E multiplications and IYl + 21E
additions. If decomposition is performed, the matrix-vector multiplication requires
IEI multiplications and 31E additions. A further enhancement to this computation
is that it can be carried out in parallel, which is the subject of 7.

The preconditioned residual computed in lines 3 and 11 of Fig. 2.1 amounts to
solving the system of linear equations

Mzi+i ri+1
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where M is such that the system can be easily solved.
The usual stopping criterion for the conjugate gradient algorithm is to terminate

when the 2-norm of the residue IIrl12 II(ADA-r)diu -bll is less than a given
tolerance ecg. In our implementation we use the suggestion made in [18] and compute
the angle between 2(ADkA)dy and b and stop when I1- cosO <ecos, where ecos is
some small tolerance (typically, ecos- 10-s). The computation of

COS 0

has the complexity of one conjugate gradient iteration and therefore is not carried
out at each conjugate gradient iteration. In this implementation it is computed every
20 iterations of the conjugate gradient algorithm. This stopping criterion effectively
halts the conjugate gradient algorithm when a good enough direction is on hand.

3. Preconditioners. Diagonal preeonditioners were perhaps the first preeondi-
tioners used with the conjugate gradient algorithm [14]. They are simple to compute
and lead to O(IEI) multiplications in steps 3 and 11 of the preconditioned conjugate
gradient algorithm of Fig. 2.1. In practice they are effective on MCNF problems
during the initial iterations of the DAS algorithm. However, in some instances of
MCNF problems, as the DAS iterations progress they tend to lose their effectiveness.
Yeh [34] used diagonal preconditioning exclusively in her implementation of the DAS
algorithm with conjugate gradient for the assignment problem.

The diagonal preconditioner used in our implementation is

M diag(ADA).

This preeonditioner can be computed in O(]EI) additions and multiplications. The
preconditioned residue systems

Mzi+l ri+l, i 0, 1,...,

of lines 3 and 11 of the pseudocode of Fig. 2.1 can each be solved in O(IVI) divisions.
Karmarkar and Ramakrishnan [17] and Vaidya [32] have suggested using a mini-

mum weighted spanning tree preconditioner for network flow problems. Our spanning
tree preconditioner is based on those suggestions.

Let ,k be the submatrix of A corresponding to a maximum weighted spanning
tree of G with appropriately defined weights. The spanning tree preconditioner is

M S ,r2eT
k.kOk

where

Dk diag(1/ST, l/sT,.)

and T1,..., Tm are the edge indices of the spanning tree. The edge weight vector can
be the primal estimates [30]

w- DAT(ADAq-)-lb

or the reciprocal estimates [18]

(3.1) w De,
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where e is an IEI-vector of all ones. It is well known that in the absence of degeneracy
both of the above weight vectors can be used to identify a primal basic sequence of
the MCNF problem. For primal degenerate but dual nondegenerate problems only
weights (3.1) can be used to identify a primal basic sequence. As the reader will see
in 6 we use a random perturbation scheme to avoid dual degeneracy and therefore
use the reciprocal estimates (3.1) as weights for the tree preconditioner.

Instead of computing a maximum weighted spanning tree, we find an approximate
maximum weighted spanning tree. To do so we use a variant of Kruskal’s greedy
algorithm [21], in which we carry out an approximate bucket sort in place of the usual
exact sorting of the weights. Let Wmin and Wmax be the values of the minimum and
maximum weights, respectively. We partition the [Wmin, Wmax] interval into a given
number of subintervals and classify each edge into a bucket. With this approximate
scheme the time to construct a preconditioner is small compared to the time required
by the iterations of the conjugate gradient algorithm.

At each conjugate gradient iteration the preconditioned residue system

(3.2) MkZ+l r+l

must be solved. Substitution of the spanning tree preconditioner into (3.2) yields

(3.3) o )2_TzOk k’k i+1 ri+l

The matrix 8k of a spanning tree can be permuted to a triangular form k in o(IvI)
time. Consequently, (3.3) becomes

(3.4)

which can be solved in O(IV]) time, first by forward substitution,

kl ri/l,

then by solving the diagonal system

and finally by back substitution,

;Zi+ t2.

Since Gk is made up of only +1 entries, back and forward substitutions involve only
additions. In the general MCNF problem 8k corresponds to the incidence matrix of
a directed spanning tree.

We have observed that in many instances the diagonal preconditioner is effective
during the initial iterations of the DAS algorithm but that as the DAS iterations
progress it often tends to lose its effectiveness. On the other hand, during the ini-
tial iterations of the DAS algorithm the dual slacks provide little information and
consequently the spanning tree preconditioner is not as effective as the diagonal pre-
conditioner. As the DAS iterations progress the spanning tree preconditioner becomes
increasingly effective. In this implementation we use both preconditioners. We begin
with the diagonal and monitor the number of iterations required by the conjugate gra-
dient algorithm. When the number of conjugate gradient iterations surpasses some
specified limit, the code switches over to the spanning tree preconditioner. The span-
ning tree preconditioner is used from that point on and the code never returns to



NETWORK INTERIOR POINT ALGORITHM 523

250

200

150

100

CG cpu time (secs) .....
O’

1 10 15 20

DAS iterations

FIG. 3.1. Conjugate gradient (CG) iterations and CPU time for a 1000 x 1000 assignment
problem with 95,612 edges.

diagonal preconditioning (even though diagonal preconditioning may become effec-
tive again near the final iterations of the DAS algorithm). It may also be the case
that we never switch from diagonal to spanning tree preconditioner. This has been
observed in many solutions. Figure 3.1 illustrates this switch on a 1000 1000 as-
signment problem with IEI 95,612. In this example the change of preconditioner
is triggered when the conjugate gradient algorithm exceeds 200 iterations for the first
time.

4. Identifying an optimal primal basis. Practical experience with direct fac-
torization implementations of interior point methods has shown that these implemen-
tations are numerically quite stable, even toward the final iterations, when the condi-
tion number of 2 -ADkA may become very large. Iterative methods, like the conjugate
gradient method, are sensitive to ill conditioning of the matrix. The effect observed on
the conjugate gradient algorithm is a substantial increase in the number of iterations.

One remedy for this problem is not to allow the DAS iterations to proceed to the
point where ill conditioning occurs. To do this, one must be able to identify a primal
optimal basis early on in the DAS iterations to stop the iterations of the interior point
algorithm with an optimal solution at hand. In the following discussion let us assume
that there exists a unique optimal primal solution. In 6 we consider the case of dual
degenerate MCNF problems.

Under dual nondegeneracy the DAS algorithm converges to an optimal dual so-
lution with the primal solution estimate converging to the unique optimal primal
solution [15]. For early detection of the optimal primal solution, at each iteration we
attempt to build a primal basis that includes all edges with nonzero flow in the primal
optimal solution. One approach is to identify a basis from the dual solution at each
iteration. We compute an approximate maximum weight spanning tree based on the
reciprocals of the dual slacks. The reciprocals of the dual slacks are an alternative
method of estimating the primal solution in dual interior point methods.
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Let Sk be the spanning tree selected at iteration k. Let x* be the solution to

(4.1) ,Skx b.

Linear system (4.1) can be solved with integer arithmetic in O(IVI) operations. If
x* >_ 0, then x* is a primal feasible (integer) solution to the MCNF problem. If
x* 0, then the spanning tree has not correctly picked out a feasible basis and
additional DAS iterations are required.

If an initial interior dual feasible solution is assumed to be available, optimality
of a feasible flow x* can be confirmed by simply checking the dual gap between the
current interior dual iterate yk and the tentative primal basic feasible solution x*. If

cTx* b-yk < 1,

then x* is an optimal flow. One can do somewhat better by taking as the bound
b-ymax, where ymax is obtained by following the line segment that passes through
yk-1 and yk all the way to the boundary of the polytope, i.e., by taking

ymax yk

where

k
C- min(-si/(ds)i (ds)i < O, i- 1,..., IEI}.

If x* _> 0 and c-x -b-ymax < 1, then x* is an optimal (integer) primal basic solution
and DAS is halted. If an initial interior dual solution is not readily available, a big-M
scheme as described in [1] can be used.

Optimality testing is not carried out until the final few iterations of the DAS
algorithm. In this implementation we compute the primal flow x only when the dual
convergence criterion

Ibyk+l bTykl/Ibyk+ < 10-2

is satisfied.
Let cs be the cost subvector corresponding to the spanning tree basis ,k. No

guarantee can be made as to whether y* c8,- is a feasible dual solution. Hence
our implementation does not provide an optimal primal-dual pair, but rather it pro-
vides an optimal integer primal solution. One way to proceed if a dual optimal vertex
is needed is to jump to the network simplex algorithm, starting with the current
optimal primal vertex. Yeh [34] has reported that for the few instances tested, few
network simplex iterations were needed to find a primal-dual optimal pair by using
this post processing idea.

Another approach for obtaining an optimal vertex from an interior solution is de-
scribed in [26]. For a linear programming problem with a unimodular coefficient ma-
trix, under a dual nondegeneracy assumption a fractional solution x can be rounded
off to the optimal integer solution if CTX- V* < 1/2, where v* is the optimal objec-
tive value. An algorithm that generates feasible primal solutions and bounds on the
optimal objective value can use this property for early termination. For example,
primal-dual variants of interior point methods can use this result.
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5. Dropping dual constraints. As the DAS algorithm converges, the nonbind-
ing dual constraints in the optimal solution have little influence in the computation
of the search direction. Since the elements in the scaling diagonal matrix D cor-
responding to nonbinding constraints converge to zero, the coefficients in the matrix

ADAT are dominated by inner products involving columns corresponding to binding
constraints in the optimal solution. Dropping these columns from the computation of
the coefficient matrix has two advantages. First, there is an immediate reduction in
the computational effort in matrix-vector multiplications carried out in the conjugate
gradient algorithm. Second, because of primal degeneracy, matrix ADAT becomes
ill conditioned as the algorithm converges. Under this circumstance the rounding
errors associated with the matrix-vector multiplications involving very small coeffi-
cients induce a perturbation that may slow the convergence of the conjugate gradient
algorithm. In this section we describe the dual-constraint-dropping strategy used in
this implementation.

Let Ad and Dd be submatrices of A and D corresponding to the dropped columns,
and let Ad and Dd be the submatrices corresponding to the remaining columns. The
coefficient matrix in the system of linear equations can be expressed as

(5.1) ADA ADA + AaDA-.
Since the dropping strategy is such that all coefficients of AdDA- have small values,
the coefficient matrix for the linear system can be approximated by the first term of
the right-hand side of (5.1).

Under primal degeneracy, as the DAS algorithm converges, the approximate ma-
trix may be rank deficient. The conjugate gradient algorithm can still be used in
the case of singular matrices as long as the system of linear equations has a solution.
However, the computation of preconditioners requires special attention. In this im-
plementation the computation of the diagonal preconditioner is unchanged. We allow
any number of columns to be dropped, which may result in an overdetermined system.
When the spanning tree preconditioner is used, we prevent columns corresponding to
the spanning tree basis from being dropped.

At each iteration of the DAS algorithm our implementation tries to identify the
nonbinding dual constraints in the optimal solution. On the basis of the current
dual slack iterate, we partition the dual slacks into two sets: one of small slacks
and another of large slacks. To do this we follow the strategy used by Karmarkar
and Ramakrishnan in their conjugate gradient implementation [18]. We compute the
arithmetic mean of the elements of the scaling matrix

AIEI(D2)
i=1 8i

and their harmonic mean

IEI
HIEI (D2) IE[/ s

i----1

and then take the geometric mean of those two means:

a8 vIA,El (D2) HIE (D2).
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FIG. 5.1. Primal column dropping on a 35,000 35,000 assignment problem with 2,000,000
edges.

Constraint i is dropped if 1/s2 < edropas and, in the case of the spanning tree precon-
ditioner, if edge ei is not in the current spanning tree basis. drop is a small tolerance
(typically, edrop 10-3).

The above scheme allows dropped constraints to be reconsidered in later itera-
tions. In practice, we have observed that often columns that are dropped during a
given iteration of DAS are not dropped in a later iteration.

Figure 5.1 illustrates column dropping on a 35,000 35,000 assignment problem
with 2 million edges. In this problem, a few primal columns are dropped after 10
iterations and a significant number of columns begin being excluded at iteration 41.
Just before the process is halted at iteration 44, over 1 million columns are dropped.

6. Avoiding degeneracy. Dual degeneracy, i.e., the existence of multiple pri-
mal optimal solutions, is often present in MCNF problems. Affine scaling algorithms
have been shown to converge to the relative interior of the optimal face [3], [31], and
consequently the primal estimates in the DAS algorithm converge to noninteger so-
lutions in the presence of dual degeneracy. Given the integer nature of the MCNF
formulation, we would like an extreme-point optimal solution. In some classes of
MCNF problems, such as the assignment problem, the integer requirement cannot be
relaxed. The early stopping scheme described in 4 will not be effective in the presence
of dual degeneracy. Even when the DAS algorithm correctly identifies the optimal
face, the maximum spanning tree procedure can potentially produce an infeasible
primal basis.

To circumvent this problem we use a classical idea known as e-perturbation, orig-
inally due to Charnes [10]. For general-purpose linear programs, by perturbing the
primal cost vector c, Megiddo and Chandrasekaran [22] show a polynomial time algo-
rithm for finding e0 such that for any 0 < e < e0 the perturbed problem is nondegen-
erate. However, even this result is specialized for MCNF problems, their theoretical
value of e0 is too small to be used in practice. Instead of using the classical pertur-
bation vector

(, 2 ’n)T
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TABLE 6.1
Eect of degeneracy on assignment problems.

dual degenerate
iterationsproblem

200 2694
200 5041
200 10000
400 4408
400 10190
400 40000
800 16655
800 40420
800 80081
1000 13380
1000 37658
1000 74521
1500 9350
1500 27574

to opt total
13 15
10 12
9 13
1’1 1’5
13 17
28 28
12 16
14 18
20 23
I0 15
13 18
22 26
11 i6
11 16

dual nondegenerate
problem

200 2694
200 5041
200 10000
400 4408
400 10190
400 40000
800 ’8871
800 16655
800 80081

"1000 13366
1000 25523
1000 74432
150b’ 930
1500 27502

iterations
to opt total
13 ’1’5
8 12
8 11
8 13
11 15
16 19
9" 14’
10 16
20 23
10 15
12 17
22 26
1’1 1’’6
11 16

in this implementation, we perturb each cost entry randomly,

ci ci + iie,

where 5i are independently and identically distributed uniform random variables in
the interval (-1, 1) and e is a small given real parameter. In this implementation we
use e (2M]V[) -1, where M max{lull,..., [UlE][ }. Our heuristic may still lead
to suboptimal solutions, although this did not occur in the experiments described in
this paper.

Table 6.1 shows iteration counts for dual degenerate and dual nondegenerate
problems. The table identifies problems by number of vertices and edges and shows
the number of iterations required to find an optimal basic primal sequence (to opt) and
also shows the total number of iterations. The perturbation scheme was successful
in avoiding dual degeneracy in all test problems considered. The total numbers of
iterations were similar for the two problem classes. This phenomenon (i.e., that in
practice interior point methods are not sensitive to degeneracy) has been observed
in other studies [29]. However, as expected, for dual nondegenerate problems the
primal basis finding scheme of 4 requires fewer iterations than are required for dual
degenerate problems.

Recently, Mehrotra [24] described a similar approach and reported the success of
his scheme in finding vertex solutions for problems in the netlib suite.

7. Parallel implementation. The most computationally intensive steps of the
conjugate gradient algorithm are the matrix-vector multiplications (steps 2 and 7 of
Fig. 2.1). Because they are matrix-vector multiplications, they are natural candidates
for parallel implementation. We have implemented these matrix-vector multiplica-
tions in parallel on an eight-processor Alliant FX/80 parallel computer.

To accomplish this implementation let us assume that data structures similar to
those described by Adler et al. [2] are used for representing the A and Am matrices.
Let arrays {+/-a, ja, iat, jar} store the Am matrix. Consider the matrix-vector
multiplication y Amx. It can be carried out with the FORTRAN code in Fig. 7.1.
Compiler directives are given for executing the outer loop concurrently (in parallel)
and not in vector mode and for executing the inner loops with the vector processor
but not concurrently.
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cvd$1
cvd$1

cvd$1
cvd$1

concur
novector
do i 1,n

y() 0.0
noconcur
vector
do k ia(i), ia(i+l)-i

y(i) y(i) + x(ja(k))
enddo

enddo

FIG. 7.1. Parallel matrix-vector multiplication with Alliant FORTRAN.
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FIG. 7.2. CPU times for parallel implementation of the conjugate gradient (CG) and dual ajfine
scaling (DAS) algorithms on a 500 x 500 assignment problem with 37, 501 edges.

Figures 7.2 and 7.3 illustrate the effect of using I through 8 parallel processors on
a 500 500 assignment problem with 37,501 edges. Figure 7.2 gives total CPU times
(in Alliant FX/80 seconds) for both the conjugate gradient and the DAS algorithms.
The matrix-vector multiplication in the conjugate gradient algorithm is the only
computation implemented in parallel. Consequently, whereas with a single processor
the conjugate gradient is responsible for over 90% of the total CPU time, with eight
processors it takes only about 75%. Figure 7.3 shows the speedup attained for both
the DAS and conjugate gradient algorithms. When eight processors were used, a
speedup of about 5 was observed for the interior point algorithm, whereas a speedup
factor of approximately 6.5 was observed for the conjugate gradient algorithm.

8. Computational results. In this section we present experimental results for
the implementation of the DAS algorithm for the bipartite uncapacitated MCNF
problems described in this paper. We report tests on randomly generated assignment
problems for which the right-hand side of the constraints in (1.1) is a unit vector. The
DAS code used here is a general-purpose solver for bipartite uncapacitated MCNF
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FIG. 7.3. Speedup for parallel implementation of the conjugate gradinet (CG) and dual
scaling (DAS) algorithms on a 500 x 500 assignment problem with 37, 501 edges

problems, with no specific features tailored to the solution of assignment problems.
Furthermore, with little modification it can be fitted to handle general uncapacitated
problems.

All problems were generated with the random network generator NETRAND.
We used NETRAND because it allows control of dual degeneracy in the generation
process and provides, a priori, the optimal value of the objective function. We briefly
describe NETRAND in 8.1.

We compare the conjugate-gradient-based implementation of DAS with both the
network simplex code NETFLO [19] and the relaxation code RELAX [8] on larger
assignment problems. Since the DAS code is not tailored to handle assignment prob-
lems, we do not compare it with any implementation of the auction algorithm [6], a
variation of the relaxation method specific to the solution of assignment problems.
Computational results [7] indicate that the auction algorithm is substantially faster
than RELAX in the solution of randomly generated assignment problems. Recently,
the auction algorithm has been implemented on a massively parallel computer [33].

We have run the codes on problems having linear programming formulations with
up to 70,000 constraints and 2,000,000 variables. These results are described in 8.2.

All runs were carried out on an Alliant FX/80 parallel-vector computer. It is con-
figured with 8 parallel processors used for numerically intensive computations and 6
microprocessors used for less intensive tasks, 256 Mbytes of main memory, 512 Kbytes
of cache memory, and 3.1 Gbytes of disk storage. Each parallel processor has 8 vector
registers, each capable of operating on 32 double-precision numbers simultaneously.
In our experiments all code was written in FORTRAN and was compiled on the A1-
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liant FORTRAN compiler with flags -0 -DAS. No special care was taken to vectorize
the code or to implement it in parallel, except for the matrix-vector multiplication
in the conjugate gradient algorithm. All times reported are user times given by the
system call times ().

8.1. Random network generator. NETRAND is a generator of random
minimum-cost network flow problems. Unlike other generators used for the same
purpose, NETRAND generates problems with a known optimal solution and offers
control over the degree of degeneracy present at optimality. This preliminary version
of NETRAND, intended as a replacement for NETGEN [20], attempts, with some
limitations, to provide the user with the same controls over the problem structure
and parameters. Currently, NETRAND can generate uncapacitated MCNF prob-
lems, including special subclasses based on bipartite graphs, such as the assignment
and transportation problems.

The user can control the topology of the underlying graph by setting the numbers
of vertices, edges, sources, and sinks. In the context of NETRAND, sources and sinks
are nodes with zero in-degree and zero out-degree, respectively. Consistent with this
information, NETRAND generates a random spanning tree, which determines the
optimal basis for the MCNF problem. Next, the optimal flow is generated by randomly
distributing the total flow supplied by the user in such a way that at least one unit of
flow is produced or consumed by each source or sink. By supplying appropriate values
for the numbers of vertices, sources, sinks, and total supply, the user can generate
common special subclasses of the minimum-cost network flow problem such as the
assignment problem and the classical transportation problem.

Before generating the remaining edges for the underlying graph, we generate
cost coefficients for the basic edges sampled from a uniform distribution. Basic cost
coefficients are sampled from a uniform distribution over a range of values supplied
by the user. Lastly, the remaining edges are sampled from the set of all possible edges
in such a way that the necessary numbers of degenerate and nondegenerate edges
requested by the user are satisfied. For each nondegenerate edge the cost coefficient
is sampled from a uniform distribution over the range of values requested by the
user intersected with the range values preserving dual feasibility. The numbers of
potential degenerate and nondegenerate edges can be inconsistent with the user’s
request, resulting in a major limitation of the current version of NETRAND.

8.2. Large assignment problems. In this section we report testing the parallel
implementation of the network DAS algorithm on large dual nondegenerate assign-
ment problems generated with NETRAND. These problems have a cost structure
such that edges corresponding to optimal primal basic variables have costs uniformly
distributed between 0 and 10, whereas nonbasic variables have costs uniformly dis-
tributed between 0 and 100. We compare the DAS code with two mature network
optimization codes, NETFLO [19] and RELAX [8]. Forty-seven problems were gen-
erated, ranging from 1,000 to 70,000 vertices and from 20,000 to 2 million edges. The
interior point code was run on all problems. In some instances we did not run the
other codes. Many of the instances generated have the same dimensions (IYl and IEI)
but were generated by using different random number generator seeds.

Tables 8.1, 8.2, and 8.3 summarize the runs. In these tables the abbreviations
DNR and NA mean "did not record" and "not applicable," respectively.

Table 8.1 shows performance results for the interior point code. Problems are
identified by their names and dimensions (IVI and IEI). The average number of
conjugate gradient iterations and conjugate gradient CPU times per interior point
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TABLE 8.1
DAS runs.

Problem

p001 1000
p002 1000
p003 1000
p004 1000
p005 1000
p006 2000
p007 2000
p008 20O0
p008 2O00
p010 2000
p011 2500
p012 5000
p013 5000
p014 5000
p015 5000
p016 5000
p017 5000
p618 10000
p019 10000
p020 10000
p021 10000
p022 10000
p023 10000
p024 15000
p025 15000
p026 15000
p027 15000
p028 15000
p029 20000
p030’ 200’00
p031 20000
p032 20000
p033 20000
p034 20000
p035 25000
p036 25000
p037 25000
p038 25000
p039 25000

20000
20000
20000
20000
20000
30000
30000
30000
30000
30000
78126
135000
135000
135000
135000
135000
187500
272000
272000
272000
272000
272000

Conjugate gradient ]] DAS iterations DAS
ave item ave time (S) ![ total to opt time (s)

59.6
83.0
99.2
98.5
109.2
182.2
190.6
179.8
172.5
181.1
DNR
187.7
103.2
110.7
209.9
103.2
DNR

4.8
6.1
6.0
7.2
20.4
21.3
18.9
17.5
19.3
DNR
76.3
48.6
53.6
84.0
50.5
DNR
88.3
121.2
90.2
93.9
206.4

88.7
120.6
93.8
94.6
257.4

300000 DNR DNR
171.5 264.2
81.4
92.7
88.3
83.3
DNR

124.5
140.6
135.1
127.2

412000
412000
412000
412000
412000
500000 DNR
552000 100.6

499.0
579.1
115.6
99.5
93.2
130.5
102.8
80.6
158.2

552000
552000
552000
552000

207.8
596.8
957.5
235.5
199.7
242.3
338.4
271.7
214.9
419.5

692000
692000
692000
692000
692000

227.7
85.0
171.7
114.8
DNR
146’0
105.5
128.7

743.7
264.3
559.7
361.1
DNR

16 14 84.3
25 25 153.9
17 14 130.5
17 14 129.0
19 16 166.0
17 14 391.5
17 14 405.1
18 13 386.1
19 13 379.0
18 13 392.7
23 18 589.7
24 19 2090.3
33 33 1907.3
27 23 1718.4
23 18 2175.9
24 22 1460.6
26 20 1866.0
25 21 2731.6
23 20 3282.0
31 31 3392.9
25 19 2866.7
27 22 6152.3
29 22 4003.1

p040 30000 832000
p041 30000 832000
p042 30000 832000
p043 30000 832000
p644 500’00" i000000
pb45 5000’ 2000000
p046 60000 2000000
p047 70000 2000000

39- 32 11535.8
25 20 3912.3
28 22 4788.9
27 21 4339.3
24 19 3818.9
28 20 5441.8
28 23 7011.5
33 26 21069.8
54 48 54224.9
37 37 10132.6
31 31 7409.2
32 32 9319.6
34 27 13232.3
33 33 10634.0
28 24 7449.6
34 29 16053.2
47 47 37912:6
32 32 10341.3
47 47 29070.9
31 26 13141.7
35 27 15919’.3

1071.4 36 34 44020.3
803.7 36 30 34563.8
1009.0 44 35 51419.1

iteration are given, as are the total number of DAS iterations, the number of DAS
iterations needed to identify the optimal primal basic sequence (to opt), and the
total DAS CPU time. All times exclude problem input for all three codes. Table 8.2
presents results for the network simplex code NETFLO and for the code RELAX. For
each instance the table gives the number of simplex iterations, the total simplex CPU
time, and the CPU times for the code RELAX.
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TABLE 8.2
NETFLO and RELAX runs.

Problem

p001 1000 20000
p002 1000 20000
p003 1000 20000
p004 1000 20000
p005 1000 20000
p006 2000 30000
p007 2000 30000
p008 2000 30000
p009 2000 30000
p010 2000 30000
p011 2500 78126
p012 5000 135000
p013 5000 135000
p014 5000 135000
p015 5000 135000
p016 5000 135000
p017 5000 187500
p018 10000 272000
p019 10000 272000
p020 10000 272000
p021 10000 272000
p022 10000 272000
p023 10000 300000
p024 15000 412000
p025 15000 412000
p026 15000 412000
p027 15000 412000
p028 15000 412000
p029 20000 500000
p030 20000 552000
p031 20000 552000
p032 20000 552000
p033 20000 552000
p035 25000 692000
p036 25000 692000
p037 25000 692000
p038 25000 692000
p039 25000 692000
p040 30000 832000
p041 30000 832000
p042 30000 832000
p043 30000 832000
p044 50000 1000000
p045 50000 2000000
p046 60000 2000000
p047 70000 2000000

iterations time (s) time (s)
17982 16.4 8.4
18845 18.0 14.6
16906 15.7 13.5
18210 17.3 13.7
15364 15.0 15.6
49739 48.5 23.3
47144 47.1 18.4
54810 51.5 24.8
47557 45.4 21.1
55897 51.8 16.7
76437 324.8 NA

239770 331.9 305.8
205890 296.6 339.9
196564 284.7 481.2
193572 282.2 305.3
196937 284.5 495.2
228316 913.0 NA
624348 1039.3 1081.0
629039 1015.2 1477.0
702648 1105.1 1259.0
702655 1110.8 1081.2
808731 1232.3 920.3
713472 1996.8 NA
1622872 2630.6 2340.0
1306598 2245.4 2298.8
1235798 2097.0 2897.8
1569061 2544.6 2595.8
1377862 2333.9 2362.7
2335066 5449.6 NA
2067875 3868.0 4015.5
2536126 4164.5 2388.3

67294561 105950.6 4054.1
1936375
3528587
2920310
3382243
2962294
2651862
4384954
7134236

46117227
3894180
13705215
12053117
14261143

NA

3547.4
6075.5
5668.5
6222.9
5741.8
4969.7
8197.1
11744.5
76462.9
7581.7

26174.2
27398.3
30387.1

NA

5213.2
4733:8
5260.1
5344.3
5194.3
7911.1
5638.0
6697.8
10761.0
12111.0

NA
38845.0
45476.0
31986.0

Table 8.3 summarizes the runs by grouping instances with identical dimensions
and gives averages for DAS iterations (to identify a primal optimal basic sequence
and total), DAS CPU time, NETFLO iterations and CPU times, and RELAX CPU
times. NETFLO-to-DAS and RELAX-to-DAS CPU time ratios are also given.

Figures 8.1 and 8.2 illustrate the numerical results. We make the following ob-
servations regarding these results:

There exists a trend in the relative performance of the interior point code and
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TABLE 8.3
Summary of runs.

Type average iters average II
[VI IE[ [[ to opt total time (s) [[
1000 20000
2000 30000
2500 78126
5000 135000
5000 187500
10000 272000
10000 3OOOOO
15000 412000
20000 500000
2OO00 552000
25000 692000
30000 832000
50000 1000000
50000 2000000
60000 2000000
70000 2000000

NETFLO RELAX CPU RATIOS
average average average II NTF--: RLX
iters time(s)[[ time(s)II DAS DAS

16.6 18.8 132.7 17461.4 16.5
13.4 17.8 390.9 51029.4 48.9
18.0 23.0 589.7 76437.0 324.8
23.0 26.2 1870.5 206546.6 296.0
20.0 26.0 1866.0 228316.0 913.0
22.6 26.2 3685.1 693484.2 1100.5
22.0 29.0 4003.1 713472.0 1996.8
22.8 28.6 5679.0 1422438.2 2370.3
20.0 28.0 5441.8 2335066.0 5449.6
33.0 36.6 19969.6 18458734.3 29382.6
29.0 32.2 11337.7 3089059.2 5735.7
38.0 39.3 22616.7 15382649.3 25996.5
27.0 35.0 15919.3 13705215.0 26174.2
34.0 36.0 44020.3 12053117.0 27398.3
30.0 36.0 34563.8 14261143.0 30387.1
35.0 44.0 51419.1 DNR DNR

13.1
20.9
DNR
385.5
DNR
1163.7
DNR
2499.0
DNR
3917.8
5688.7
88O2.0
DNR

38845.0
45476.0
31986.0

0.124 0.099
0.125 0.053
0.551 NA
0.158 0.206
0.489 NA
0.299 0.316
0.499 NA
0.417 0.440
1.001 NA
1.471 0.196
O.5O6 O.5O2
1.149 0.389
1.644 NA
0.622 0.882
0.879 1.316
NA 0.622

the other two codes. As problem size increases the relative performance of
the interior point code improves. This behavior is similar to what has been
observed in comparisons of interior point methods and the simplex method
for general linear programming.
On problems with at least 30,000 vertices, the interior point code was faster
than NETFLO in 3 of 7 cases and was faster than RELAX in 1 of 7 cases.
On problems with at least 20,000 vertices, DAS was within a factor of two of
the solution time of NETFLO in 15 of 22 cases and of RELAX in 11 of 22
cases.
In all 47 instances the interior-point code found an optimal integer solution.
NETFLO failed to find an optimal solution after over 160 million iterations
on problem p047.
The matrix-vector multiplication of the conjugate gradient algorithm in the
DAS code was implemented in parallel. The other two codes were not imple-
mented in parallel. However, it is fair to say that the steepest edge variant of
the simplex method may also benefit from a parallel architecture. Removing
the parallel matrix-vector multiplication should slow down the interior point
code by a factor of about five. This will not affect the main observation of
this section, i.e., that the relative performance of the DAS code improves with
problem size, changing only the break-even point. With eight processors this
break-even point appears to be in the vicinity of 20,000 vertices for NETFLO
and 50,000 vertices for RELAX.
On these problems the interior point algorithm spent on average 14% of its
iterations to prove optimality, after finding the first feasible basic primal
sequence. In all instances the first feasible sequence found always turned out
to be optimal. This suggests that there may be some potential for jumping
to the network simplex algorithm with this feasible sequence as an initial
solution, as suggested by Yeh [34].
The diagonal preconditioner performed quite well on many of the problems
tested. In fact, on several of the largest problems tested there was no need to
activate the tree preconditioner. A commonly accepted criterion for goodness
of a preconditioner is that it should result in the conjugate gradient algorithm
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FIG. 8.1. Running times of DAS, NETFLO, and RELAX.

taking v/ iterations to solve an n x n linear system. In many instances the
average number of conjugate gradient iterations was below this threshold. For
example, the 70,000 x 70,000 system solved at each DAS iteration of problem
p047 took on average only 128.7 conjugate gradient iterations.
The number of iterations of the network simplex algorithm grows quickly
with problem size. For example, for the class of 15,000 x 412,000 problems
the simplex method needed, on average, over 1.4 million iterations to find
the optimal solution. Even though no factorization is needed by the network
simplex method and all computations are carried out in integer arithmetic,
as the problems grow these special characteristics of the network simplex
method are not sufficient to offset the large number of simplex iterations.
On the other hand, the number of affine scaling iterations grows slowly with
problem size (see Fig. 8.2). Furthermore, the number of conjugate gradient
iterations appears to level off at a low value. Consequently, the ratio of CPU
times between NETFLO and the DAS code increases with problem size, in
spite of the fact that the interior point code carries out most of its computa-
tion in double-precision arithmetic. The determining factor with respect to
performance in the interior point implementation is the matrix-vector mul-
tiplication. Since this can be very efficiently implemented in parallel, we
believe that much performance enhancement should be expected for DAS on
multiprocessor computer architectures.
Figure 8.1 shows that for problems with fewer than 15,000 vertices the code
RELAX is the fastest, followed by NETFLO and DAS. However, as the prob-
lems increase in size this ranking is no longer valid.
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FIG. 8.2. NETFLO and DAS iterations.

A feasible dual interior solution was found by DAS in a single iteration on all
problems tested.
In 21 of the 47 problems an optimal primal basic sequence was found the first
time a spanning tree was built.

9. Concluding remarks. In this paper we described an implementation of the
DAS algorithm for linear programming for solving bipartite uncapacitated minimum-
cost network flow problems. Because of the excessive computational demand of direct
factorization, interior point methods were previously thought not to be competitive
with other methods for solving problems in this class. Our implementation makes
use of a preconditioned conjugate gradient algorithm to compute the ascent direction.
Besides being much more efficient than direct factorization, the conjugate gradient
algorithm depends heavily on matrix-vector multiplication, which can be implemented
in parallel. We implemented a parallel conjugate gradient algorithm and observed a
speedup of over a factor of 5 in the interior point code on an eight-processor parallel
computer.

We limited our experimental study to a special class of minimum-cost network
flow problems: assignment problems. For problems in this class we performed ex-
tensive computational experiments, concluding that as problem sizes increase the
interior point method’s performance relative to other commonly used MCNF algo-
rithms improves. For the largest problems tested our code was competitive with both
the network simplex code NETFLO and the relaxation method code RELAX. If the
observed trend continues with larger problems, one should expect the interior point
method to be the method of choice for solving large-scale network flow problems.

To test our code on general minimum-cost network flow problems, we must first
implement lower and upper bounds on the flow variables and data structures to handle
directed edges in general networks.
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CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE
MINIMIZATION ALGORITHM USING BREGMAN FUNCTIONS*
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Abstract. An alternative convergence proof of a proximal-like minimization algorithm using
Bregman functions, recently proposed by Censor and Zenios, is presented. The analysis allows the
establishment of a global convergence rate of the algorithm expressed in terms of function values.
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AMS subject classification. 90C25

1. Introduction. Consider the convex optimization problem

(1) (P) min{f(x) x e

where f ][:n
__

(--(X),--(X)] is a proper, lower semicontinuous convex function. One
method of solving (P) is to regularize the objective function by using the proximal
mapping as introduced by Moreau [12]. Given a real positive number , a proximal
approximation of f is defined by

f),(x) inf{/(u)+ 1/2Allx-

As proved by Moreau [12], the function f is convex and differentiable, and when it is
minimized it possesses the same set of minimizers and the same optimal value as prob-
lem (P). Using these properties, Martinet [11] introduced the proximal minimization
algorithm for solving problem (P). The method is as follows: given an initial point
x0 E IRn, a sequence {xk } is generated by solving

(3) xk argmin{f(x) + (1/2Ak)llx xk-lll2},
where {Ak}=l is a sequence of positive numbers. A major contribution to proximal
methods has been developed by Rockafellar [15], who proved the convergence of the
proximal point algorithm for finding the zero of an arbitrary maximal monotone op-
erator and who gave applications to convex programming in [14]. For further details
and references on proximal methods we refer the reader to the excellent survey paper
of Lemaire [10].

Several researchers have considered the possibility of replacing the quadratic ker-
nel in (2)-(3) by entropylike distances; see, e.g., [5], [7], [8], [16], and [17]. In [5]
Censor and Zenios replaced method (3) by a method of the form

(4) xk argmin{f(x)+ A-lD(x, xk-)},
with D being a Bregman’s distance or D-function (see 2 for a definition), and that
is accordingly called the proximal minimization with D-functions (PMD).

This paper presents an alternative proof of the PMD algorithm proposed in [5].
Our analysis is motivated by the elegant new convergence proof results developed by
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Department of Mathematics and Statistics, University of Maryland, Baltimore County Campus,
Baltimore, Maryland 21228.

538



CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE ALGORITHM 539

Guler [9] for the classical proximal minimization algorithm (3). It allows us to obtain
a global convergence rate estimate for the residual f(xk)- f(u), where u e ]Rn is
arbitrary (Theorem 3.4 below), thus revealing that the lines of analysis of [3] and [9]
also apply to the PMD algorithm.

For a generalization of the PMD algorithm for finding the zero of a monotone
operator see [7], and for applications of nonquadratic proximal methods to convex
programming see, e.g., [7], [16], and [17]; in the latter convergence results are derived
for the exponential multiplier method [2].

2. Proximal minimization algorithm with Bregman functions. The no-
tations and definitions used in the following are as in the book by Rockafellar [13]. In
particular, dom f, ran f, ri C, and C denote the domain and range of f, the relative
interior of the set C, and the closure of the set C, respectively.

Given a differentiable function , a measure of distance based on Bregman’s
distance [1] is defined by

(5) De(x, y)

where
The function is called a Bregman function if it satisfies the properties given in the
definition below; see, e.g., [4] and [6].

DEFINITION 2.1. Let S
Bregman function with zone S if the following hold:

(i) is continuously differentiable on S.
(ii) is strictly convex and continuous on S.
(iii) For every

and n2(x, a)= {y e S’D(x, y) <_ a} are bounded for every y e S and x e S.
(iv) If {yk} e S converges to y*, then De(y*, yk)

_
O.

(v) If {xk} and {yk} are sequences such that yk __, y. e , {xk} is bounded,
and if D(xk, yk)

_
0, then xk - y*.

The class of functions satisfying the conditions of Definition 2.1 is denoted by B.
Note that assumptions (iv) and (v) are necessary only for computational purposes.

De (x, y) is not a distance (it might not be symmetric and might not satisfy the triangle
inequality), but by the strict convexity of it follows immediately that De(x, y) _> 0
and is equal to zero if and only if x y. With the special choice S lR and
(x) 1/211xl 12 one obtains De(x, y) llx Yl Another prominent example useful
in applications (see, e.g., [4], [17]) is obtained by choosing the entropy kernel.

Example 2.1. With S- JR++ {x ]Rn x > 0 i 1 m} and
(x) ’=1 x log xi xi (with the convention 0 log 0 0) we obtain the Kullback-
Liebler relative entropy distance

n

(6) De (x, y) Ex log x n
++-

i= Yi

Note that all the assumptions of Definition 2.1 are met. Other characterizations of
Bregman functions and examples can be found in [6], [7], and [16].

The PMD algorithm is as follows. Given B and a sequence of positive {Ak}
satisfying

n

(7) lim
n---o

k--1
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and starting with an initial point x0 E S, one generates a sequence {xk} by the
iterative scheme

(8) xk argmin{f(x) + A-lD(x, xk-1)}.
xEl:t

The convergence of this algorithm has been proved in [5] under the following assump-
tions:

(A) liminfk-+oo{Ak k > 0} > 0;
(B) f is bounded below, and the PMD generates a sequence {Xk } such that xk S

for all k;
(C) B is twice continuously differentiable with positive definite Hessian, and

De(., .) is jointly convex.
Observe that instead of (A), which asked the sequence {Ak} to be bounded away
from zero, we request the weaker assumption (7). However, it should be noted that in
practice (A) is not restrictive. As an alternative to (B), which is an assumption on the
objective function f, we make an assumption on the Bregman function . Following
[7], we assume that ranV lRn. This assumption needed to guarantee that the
existence of the sequence {x } produced by (8) is a relatively mild one and is satisfied
for the entropy case of Example 2.1 and for many other interesting examples; see, e.g.,
[6], [7], and [16] for other assumptions that guarantee the existence of xk. Finally, we
note that (C) seems to be a redundant assumption.

3. Convergence analysis of the PMD method. In this section we derive a
global convergence rate estimate for the PMD algorithm, from which its convergence
follows. Our analysis is different from that proposed in [5] and [7]; it follows the
more direct approach of [9]. One important element in the convergence proof is a
rather simple property satisfied by the Bregman distance that apparently has not
been observed before. This property, which we call a three-points identity, appears to
be a natural generalization of the quadratic identity valid for the Euclidean norm.

LEMMA 3.1. Let B. Then for any three points a, b S and c S the
following identity holds:

(9) Dr, (c, a) + Dw(a, b) DV,(c, b) (Vb(b) V(a), c a}.

Proof. Using the definition of De, we have

(0)

(12)

(Vb(a), c- a} (c) b(a) De(c, a),
(re(b), a b} b(a) b(b) De (a, b),
(V(b), c b) (c) (b) De (c, b).

Subtracting (10) and (11) from (12) gives the result. [:]

The next result, which is the key ingredient for the proof of our theorem, gener-
alizes for Bregman distances the result in [9, Lem. 2.2].

LEMMA 3.2. Let f(x) be a closed proper convex function on IR’. Given B
with ri(dom f) c_ S, let {Ak} be an arbitrary sequence of positive numbers and let {xk}
be the sequence generated by the PMD given in (8). Then for any u S

(13) (f(x) f(u)) < D(u,xk-l) D(u,xk) D(xk,xk-).



CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE ALGORITHM 541

Proof. From (8), xk is the minimum point of f(x) -F- D(x, xk-1). Then, since
ri(dom f) c S from [13, Whm. 27.4], this is equivalent to

(u xk, VD(x,xk-) / Akyk> >_ 0

for all u E and some yk Of(Xk), the subdifferential of f at xk. From the definition
of De the above inequality is equivalent to

(14)

Applying Lemma 3.1 at the points c u, a xk b xk-1 we obtain

(15) <u xk, V(xk) V(xk-1)> D(u,xk-l) D(u,xk) D(Xk,Xk-1).
But since f is convex and y} Of(x), we also have

(16) <

If (14), (15), and (16) are combined, the result follows.
In the following the infimum of f is denoted by f. infel f(x) and the set

of minimizers of f (possibly empty) is denoted by X. (x e lRn f(x) f.}. We
ndefine an = )k.

LEMMA 3.3. Suppose the conditions of Lemma 3.2 are met. Then
(i)
(ii) De (u, xk) is nonincreasing whenever u e X.;
(iii) rn(f(xn) f(u))

_
D(u,xO) D(u,xn) ’]=1 -lakD(xk, xk-1),

ue .
Proof. (i) Since xk satisfies (8), for all x e lRn

f(xk) -F- A-D(xk, xk-) <_ f(x) -F- A-lD(x, xk-),

and thus, in particular, with x xk- it follows that

(17) k(f(xk-l) --f(xk))
_
D,(xk, xk-l)

_
0

since D(xk-,Xk-) O.
(ii) For all u e X., f(xk) f(u) >_ O. Then, by using Lemma 3.2

0 <_ Ak(f(xk) f(u)) <_ D(u,xk-) D(u,xk) D(Xk, xk-I),

from which we obtain

D(u,xk) <_ D(u,xk-) -D(xk,xk-) <_ D(u,xk-)

since D(xk, xk-) >_ O.
(iii) Using ak Ak + a_, with a0 0, multiplying (17) by ak-1, and summing

over k- 1, ..n, one has

(18)
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Once again using Lemma 3.2 by summing (13) over k 1, ..n, we obtain

(19)
n n

anf(u) + Af(xk) <_ D(u,x) D(u,xn) D(xk,xk-1).
k=l k=l

Then subtracting (18) from (19) gives (iii). D
We are now in position to prove our main result for the PMD algorithm.
THEOREM 3.4. Let the sequence (Xk} be generated by the PMD algorithm. For

any u E S

(20) f(xn) f(u) <_ aiD(u,x).

Therefore, if an -- oc, then f(xn) --. f. inf f(x). Moreover, if X. , then xn

converges to a minimizer of f and satisfies

(21) f(xn) f* <_ alD(x*,xO) Vx* X,.

Proof. From Lemma 3.3 (iii) we immediately obtain (20). Consider the case
f, > -oc. From Lemma 3.3 (i), f(x) is nonincreasing. By the definition of f, there
exists a v such that f(v) < f, + e for any e > 0. Let u v S in (20), and take the
limit with an --+ -t-cx; we obtain limk_o f(xk) < f, + . Hence since e is arbitrary,
limk_ f(xk) f,. Similarly, one can prove the convergence in the case f, -oc.
If X, q}, there exists a x* X,. Let u x* in (20); then

(22) f(xn) f(x*) <_ aD(x*,x),
which proves (21). Now from Lemma 3.3 (iN), D(x*,z) is nonincreasing; hence
D(x*,x) <_ D(x*,x). Since /3, from Definition 2.1 (iii) it follows that {x}
is bounded. Let z be a limit point of {x} with subsequence {x } -- z. Since
f(xk) -+ f,, f(xk) -+ f,, and so f(z) <_ f, because f is lower semicontinuous. It
follows that z X,. Now from Lemma 3.3(ii), D(z,xk) is nonincreasing; hence for
any k >_ kj

(23) De(z, xk) <_ De(z, xk’ ).

Since xk - z, for any positive 6, starting from some kjo,

(24) De(z, xko <_ 6.

Therefore D(z,xk) --. O. To prove that {xk} has only one limit point let 2 E be
another limit point of {xk}. Then D(z, xkz) 0 with xkz -- 2. So from Definition
2.1 (v), z 2, and therefore xk --. z X..
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A LAGRANGIAN RELAXATION ALGORITHM FOR
MULTIDIMENSIONAL ASSIGNMENT PROBLEMS ARISING FROM

MULTITARGET TRACKING*

AUBREY B. POORE AND NENAD RIJAVEC

Abstract. The central problem in multitarget tracking is the data association problem of par-
titioning the observations into tracks in some optimal way so that an accurate estimate of the true
tracks can be recovered. This work considers what is perhaps the simplest multitarget tracking prob-
lem in a setting where the issues are easily delineated, i.e., straight lines in two-dimensional space-time
with an error component introduced into the observations. A multidimensional assignment problem
is formulated using gating techniques to introduce sparsity into the problem and filtering techniques
to generate tracks which are then used to score each assignment of a collection of observations to
a filtered track. Problem complexity is further reduced by decomposing the problem into disjoint
components, which can then be solved independently. A recursive Lagrangian relaxation algorithm
is developed to obtain high quality suboptimal solutions in real-time. The algorithms are, however,
applicable to a large class of sparse multidimensional assignment problems arising in general multi-
target and multisensor tracking. Results of extensive numerical testing are presented for a case study
to demonstrate the speed, robustness, and exceptional quality of the solutions.

Key words, multitarget tracking, multidimensional assignment problems, data association,
Lagrangian relaxation

AMS subject classification. 90C08

1. Introduction and overview. The problem of taking pictures at a discrete
set of times of a large number of objects moving in space, and then from these ob-
servations determining the past or present and predicting the future states of these
objects is fundamental to multitarget and multisensor tracking [4]-[6], [13], [26], [28],
[29], [32], [33], [39], [41]. Central to this process is the data association problem, in
which the observations are partitioned into tracks in such a way that the tracks of
the objects can be identified [5], [6], [13], [28], [32], [33], [39], [41]. (Smoothing, fil-
tering, and prediction techniques [2] can be used to obtain further information about
past, present, and future states.) Although combinatorial optimization is the natural
framework for the formulation of these problems, the corresponding techniques have
long been considered computationally too intensive for real-time applications, and for
good reason. The corresponding optimization algorithms for these problems, which
are formulated here as multidimensional assignment problems, are claimed to be NP-
hard [31]. To further appreciate the difficulties, one only has to examine the tradeoffs
between two current methods in multitarget tracking [13]: track while scan and batch.
For the former, one essentially extends tracks a scan at a time using, for example, a
two-dimensional assignment [12], [24], [27] or a greedy algorithm [13]. This method-
ology is real-time but results in a large number of partial and incorrect assignments,
and thus incorrect track identification. The fundamental difficulty with this approach
is the lack of information in single scan processing to partition the observations into
tracks. To obtain the required information, one needs to consider several scans all at
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in Boulder, Colorado and Owego, New York, and by the Air Force Office of Scientific Research through
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Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523.
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once, i.e., the batch approach, but this approach is considered computationally too
intensive for practical real-time applications. Given the ever-present need to identify
all tracks in real-time, the challenge to combinatorial optimization is to design fast
algorithms for advanced computer architectures that will solve the underlying data
association problem, and thus the track identification, in real-time.

The use of combinatorial optimization in multitarget tracking is not new and dates
back to the mid-sixties and the pioneering work of Sittler [39], who used maximum like-
lihood estimation to evaluate all possible track updates and employed track splitting
(several hypotheses were maintained for each track) and pruning (when their prob-
abilities fell below a certain threshold). Maximum likelihood estimation was further
investigated by Stein and Blackman [41], who developed a comprehensive probabil-
ity for track initiation, track length expectancy, missed detections, and false alarms.
Morefield [28] pioneered the use of integer programming to solve a set packing prob-
lem arising from a data association problem. These works are further discussed in the
books of Blackman [13], Bar-Shalom and Fortmann [6], and Bar-Shalom [5], which
also serve as excellent introductions to the field of multitarget tracking. More re-
cently, eattipati, Somnath, Bar-Shalom, and Washburn [32], [33] have formulated
multidimensional assignment problems for the passive multisensor data association
problem. For the three-dimensional problem they present a Lagrangian relaxation
algorithm and impressive numerical results, and then discuss extensions to the multi-
dimensional problem. Their three-dimensional algorithm, like ours, is essentially that
of Frieze and Yadegar [17].

The objective in this work is to begin an exploration of the data association
problem using combinatorial optimization techniques. We purposely consider what is
perhaps the simplest multitarget tracking problem in a setting where the issues are
easily delineated; however, the multidimensional assignment problems are quite close
in complexity to those for very general models [35].

The formulation of the data association problem as a K-dimensional assignment
problem (K corresponds to the number of scans) is achieved in four stages: gating,
filtering, scoring, and assignment formulation. The purpose of gating is to rule out the
most unlikely combinations of observations and thereby to introduce sparsity into the
problem. Given a combination of observations (one from each scan) from gating, the
filtering problem is to generate a track which might have produced these observations.
Given a feasible combination of observations and a filtered track, one next assigns a
score or price to the assignment of this combination of observations to its filtered track.
Finally, the K-dimensional assignment problem is formulated so that each observation
is required to belong to exactly one track.

In designing algorithms, one must be guided by the differences between the track-
ing problem and the assignment problem. These multidimensional assignment prob-
lems are NP-hard, but the tracking problem must be solved in real-time. The errors
in the observations are transferred via filtering and scoring to a certain level of noise
in the objective function, so that optimization below this noise level is meaningless.
Given these differences, the strategy employed in this work is to construct high qual-
ity, feasible, suboptimal solutions of the assignment problems in real-time. The basic
scheme is a recursive Lagrangian relaxation similar to the one developed by Frieze
and Yadegar [16], [17] for three-dimensional assignment problems. This algorithm
is recursive in that a K-dimensional assignment problem is relaxed to a (K- 1)-
dimensional one by incorporating one set of constraints into the objective function
using a Lagrangian relaxation of this set. Given a solution of the (K- 1)-dimensional
problem, a feasible solution of the K-dimensional problem is then reconstructed. The
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(K- 1)-dimensional problem is solved in a similar manner and the process is repeated
until one reaches the two-dimensional problem, which is solved exactly. The speed and
robustness of this scheme are partially due to the decomposition of the large problem
into a number of smaller disjoint components, which can be solved independently.

The remainder of the paper is organized as follows. The model problems are
explained in 2, followed by the formulation of the multidimensional assignment prob-
lem in 3. An overview of the class of recursive Lagrangian relaxation algorithms,
along with refinements, is given in 4 and 5. Results of extensive numerical testing
are presented as a case study to demonstrate the speed, robustness, and exceptional
quality of the solutions in 6.

2. Model problems and data association. The tracks are assumed to be
straight lines in two-dimensional space-time, so that the target velocity is constant. If
N denotes the number of targets and x(j, t) is the spatial coordinate of the jth target
at time t, the true tracks are given by

(2.1) x(j, t) bj + mjt forj=l,...,N.

The observed positions of these targets are given by

z(j, t) x(j, t) + e(j, t) for j 1,..., N,

where the errors e(j, t) are assumed to be independent identically distributed, zero-
t K (tl<t2<mean, Gaussian random variables. At a discrete set of scan times { k}k=

<_ tK) pictures of the objects are taken, and the spatial positions are recorded
as {zk N for each scan time tk (The relation between the observation z.k and}i=1 z
the particular target generating it is now assumed to be unknown.) The remaining
assumptions are that the probability of detection is one, i.e., all the targets are detected
at every scan; the probability of false alarm is zero, i.e., all observations belong to true
targets; all objects are assumed to initiate at time t 0 and to have no termination
at a later time; and there are always as many observations as targets.

Since the noise e(j, tk) is assumed to be Gaussian with zero mean and standard
deviation a, 99.7% of the observations will lie within 3a of the true tracks. Any
observation error lying outside the interval [-3a, 3a] is returned to the nearest end
point, i.e., if e(j, tk) > 3a (< --3a), e(j, tk) is reset to 3a (--3a, respectively). The
reason is that in the current model, the probability of detection is assumed to be one
and the probability of false alarm is zero, so there is no method for dealing with missed
detections in the gating procedure. These restrictions are removed in the more general
model [35].

In what follows, the term track of observations [6], [28] is used to denote a sequence
of observations {zi ,..., z.K }, one from each scan. Assuming that the parameters N,
brain, bmax, mmin, mmax, {tk}C=l, and a are known, the data association problem
is to partition the N x K observations into N tracks of observations, so that the
corresponding N filtered tracks represent the N true tracks.

3. Problem formulation. Given K scans of observations, the data association
problem is next formulated as a K-dimensional assignment problem using the following
four stages: gating, filtering, scoring, and assignment formulation. Each of these stages
is considered in the following four subsections.

3.1. Gating. For N tracks and K scans, the potential number of tracks of ob-
servations is NK. To substantially reduce this number, we use two gating procedures:
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a coarse and computationally cheap phase, followed by a finer but more expensive one.
Both use a maximum error r, which is generally set to 3a in all the computations.
The following definition is needed for the description of the first gating procedure.

DEFINITION. FORWARD CONE. Let r be the maximum error, k E {1,...,K},
and let z.k be an observation at time tk. Define bl and b2 by z. mmintk -1-blSk Sk

mmaxtk + b2. Then, a forward cone C(zkik k) from the observation z.k is defined by
C(zkik, k) 0 when k K and by C(zki,k) {z, k < <_ K, mmin]/-[-bl 2r

_
z! ( mmaxtl q-b2 + 2r } for 1 < k < K- 1

The first gating procedure is recursive, and proceeds by constructing a series of
forward cones. It is assumed that the scan times are globally available, i.e., the value
k determines tk.

Phase One of Gating
Let list be the variable that will contain all the feasible tracks of observations.
The recursive procedure Gate is defined below.
set list to empty
.for all i 1,...,N do

track {z }
gate(zl d, 1, K, track, list)

gate(z, C, k, K, track, list)
if(k= K)

add track to list
else

(ilz2 e c}
.for all i I do

’ C CI C(z/k+l, k -- 1)
gate(z/k+l, 7, k + 1, K, track U {zk+l }, list)

Given a track of observations from the first phase, say {zk }=, the second phe of
gating is to determine whether or not there is a slope m and an intercept b that satisfy
the various constraints.

Phase Two of Gating
A given track of observations {zki }(=1 passes gating
if there is a feasible solution to the following inequalities:

/man <_m_< mmax, bmin_< b_< bmax,
and
--r < mtk + b-- z < r .for k --1,. K.

Otherwise, the track of observations fails gating.

Any track of observations (zk }kK__ that fails gating is not allowed to appear in the
final partition of the observations into tracks.

3.2. Filtering. Given a track of observations (z/k K)k= that has passed gating,
the next problem is to determine a corresponding filtered track. The slope m
rail ,iK and intercept b bil iK of the filtered track x mt + b are the minimizers
of the least squares problem

K

(3.1) minimize -’[z2 mtk b]=
k=l
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3.3. Scoring. The score or price associated with assigning the track of observa-
tions {zk }g=l to the filtered track x ml Kt + bl K is defined to be
(3.2)

K ,...,z.K) passes gating,k=i(z mil,...,itk bil ,)2 if (zll
g fails gating.

%,2, .,K
O if (Z11,..., ZX

Since the errors in the observations are assumed to be independent identically dis-
tributed Gaussian random variables with zero mean, this sum of distances is equiva-
lent to using the a priori negative log likelihood estimation technique. The resulting
solution has the same maximum likelihood in both a priori and a posteriori estimates
[13, Chap. 9].

3.4. The assignment problem formulation. The data association problem of
partitioning the observations into tracks can now be formulated as a multidimensional
assignment problem. Define a 0-1 variable zl iK for a track of observations (z11,...
K) byZiK

1(3.3) zl K 0
if (zll ,’", z’KK) is assigned to its filtered track,
otherwise.

One may preassign zil ,K to 0 if (z. z.g fails gating. Then the constraints in
$I SK

the problem arise from the requirement that the observation z on scan k belongs to
exactly one track, which can be stated mathematically as

N N N N N N

(3.4) y y y Zil ik,...,iK 1
i1:1 i2:1 ik-l:l ik+1:1 iK--I:I ig:l

for ik 1,...,N and k 1,...,K. Then the problem of assigning tracks of ob-
servations to tracks in such a way that each observation is assigned to exactly one
track and the overall score (cost) is minimized can be formulated as the following
multidimensional assignment problem:

(3.5)

minimize

subject to

N N

ell iKZil ig

Q=I iK=I
N N

-’’" Zil iK:I, il=I,...,N,
i2=1 iK=I
N N N N-...

i1=1 i-1=1 i+1=1

forik=l,...,N, k= 2,...,K-1,
N N--... z K=I, ig=l,...,N

i1:1 iK--l:l

Zil ig e {0,1}, il,...,iK-- 1,...,N.

4. A recursive Lagrangian relaxation algorithm. Lagrangian relaxation
originally gained prominence as a method for obtaining tight bounds for a branch and
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bound algorithm in Held and Karp’s highly successful work on the travelling sales-
man problem [22], [23]. Overviews of this methodology can be found in the works
of Geoffrion [19], Fisher [14], [15], Shapiro [40], Gavish [18], Nemhauser and Wolsey
[30], and the references therein. Our motivation for using this approach comes from
the the computational experience of several investigators [15], who have found that
the duality gap is particularly small and the bounds particularly good when one only
uses equality constraints in the relaxation. Other than the integrality constraints, the
multidimensional assignment problem (3.5) is exactly of this form. The particular
Lagrangian relaxation scheme developed in this work is motivated by the relaxation
scheme of Frieze and Yadegar [16], [17] for three-dimensional assignment problems
and incorporates the conjugate subgradient algorithms of Wolfe [42], [43] for non-
smooth optimization. We also use an adaptation of the reverse auction algorithm
of Bertsekas, Castafion, and Tsaknakis [11], [12] for the two-dimensional assignment
problems. As stated in the introduction, the relaxation algorithm is recursive in that a
K-dimensional assignment problem is relaxed to a (K-1)-dimensional one by incorpo-
rating one set of constraints into the objective function using a Lagrangian relaxation
of this set. Given a solution of the (K- 1)-dimensional problem, a feasible solution
of the K-dimensional problem is then reconstructed. The (K- 1)-dimensional prob-
lem is solved in a similar manner, and the process is repeated until it reaches the
two-dimensional problem, which is solved by the reverse auction algorithm [11], [12].

Consider again the multidimensional assignment problem (3.5). Although any set
of the constraints can be used, the description here will be based on the relaxation of
the last set of constraints in (3.5), which is given by

(u) minimize

subject to

where u is the multiplier vector associated with the last set of the constraints. This
problem is easily converted to a more obvious (K- 1)-dimensional assignment problem
by first defining, for each (il,..., iK-), an index m m(i,..., iK-1) and a new cost
function dil i_ by

(4.2)
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An equivalent problem is

(u) minimize

subject to

N N

ii’-I iK--i--I
N N

dil ,iK- Yil ,iK

Yil iK-1 1, il 1,...,N,
i2:1 iK--I:I

N N N

ii:l ik-l:l ik+l--i

for ik 1,..., N,
N N

’’" Yil K--1 1, iK-1 1,...,N
i1:1 iK--2"--I

Yil,...,iK--1 E {0,1}, il,...,iK-1 1,...,N.

Once (4.3) is solved, the solution of (4.1) is easily recovered via

{ YI K--1 if iK m(il,...,iK-1),(4.4) Zil iK-- 0 otherwise.

The numerical algorithm begins with the construction of a sequence of multipliers
{un)n=l such that {(un)}n=l is monotone increasing and limn_.(un) _=

sup {(u) u E lRn}. (The initial approximation is u 0, as suggested in the
work of Bazaraa and Goode [7].) For each multiplier un, a feasible solution zn of the
original problem is recovered by a scheme described below, and satisfies

< < <

where 2 is the optimal solution of (3.5) and v(z) is the value of the objective function
for a feasible solution z [19].

The function (u) is a concave, piecewise linear, continuous function, so that
maximizing (u) is a problem of nonsmooth optimization. One of the most. widely
used methods is the subgradient algorithm [9], [20], [21], [30]. We have, however, found
that our implementation of the conjugate subgradient method of Wolfe [42], [43] is
computationally superior to our implementation of the subgradient algorithm, and
thus we use the former. (For completeness, a brief description of Wolfe’s algorithm is
included in Appendix A.) Note that each time (u) is evaluated, a (K-1)-dimensional
assignment problem must be solved. If K > 3, this problem is solved by relaxation
or by techniques discussed in 5, but if K 3, the reduced assignment problem is
two-dimensional and is solved by the reverse auction algorithm [11], [12].

Given a multiplier un generated in the course of maximizing (u) in (4.1), the
next problem is to recover a feasible solution zn of (3.5). For notational convenience,
the superscript n will be dropped. Thus, let u (un) be a multiplier as in (4.1), and
let (u) be a corresponding feasible solution of the minimization problem (4.1),
which is obtained in the course of evaluating (u). The objective is to recover a
feasible solution Z (zn) of (3.5). Since satisfies the first K- 1 sets of constraints
in the original problem (3.5), it is feasible for (3.5) if the Kth set of constraints is
satisfied. In this case, the recovered solution is taken to be Z . If does not
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satisfy the last set of constraints, a procedure is needed to recover a feasible solution
Z. Motivated by the work of Frieze and Yadegar [16], [17], we reconstruct this feasible
solution of (3.5) so that it agrees with in the first K- 1 dimensions. Since there
are generally many options, we choose the one that minimizes the objective function
in (3.5) over all such choices.

Let ((j, i2(j),..., iK-i (J))}=l be an enumeration of those first K- 1 indices of
for which j,i2(j) i-l(j),k 1 for some k 1,..., K. Define

dk c,i2() iK-l(j),k for k 1,...,N

and let W denote a solution of the two-dimensional assignment problem

N N

minimize djkwjk
=1k=1
N

(4.6)
subject to ZwJk 1, j 1,...,N,

k=l

N

Zwk:l, k:l,...,N,
j=l

wjk e (O, 1}, j,k: l,...,N.

The recovered feasible solution Z is defined by

1 ifil iK-l,k--1 for somekandWiiK-1,(4.7) Zil iK 0 otherwise.

The feasible solution Z is optimal in that it is the minimizer of the objective function
in (3.5) over all feasible solutions of (3.5) that make the same assignments as in the
first K- 1 coordinates.

This recovery procedure has been formulated for the assignment problem with no
variables preassigned to zero. If some of the variables are preassigned to zero, some
variables in (4.6) could also be assigned the value zero. This might cause (4.6) to
have no feasible solution, in which case the recovery algorithm will treat preassigned
variables as free variables to be assigned a zero or one, but with infinite cost coefficients.
As a result, as many assignments are made as possible.

Three termination criteria are used for the algorithm: cumulative step length,
duality gap, and the number of steps taken. The first criterion, the cumulative step
length, is described by Wolfe [42]. This criterion does not depend on having an
estimate of the value of the optimal solution and is an integral part of the conjugate
subgradient algorithm; the algorithm is stopped if several very small steps are taken
in succession.

As discussed earlier, it is the duality gap [$, v(2)] that appears to be particularly
small for relaxations of equality constraints [15]. Since (un) _< _< v(2) <_ v(zn),
one can use the distance v(zn) -(un) to estimate the closeness of v(zn) to the
optimum v(2). Thus the second termination criterion is to terminate when the distance
v(zn) -(un) is sufficiently small [20]. If the algorithm has not yet succeeded in
computing a feasible solution of the assignment problem, the value of the objective
function is assumed to be infinite, so this criterion cannot be satisfied.

The third termination criterion is the maximum number of steps the main relax-
ation algorithm is allowed to take. Two limits for the number of steps are used. If a
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feasible solution for the assignment problem has been obtained, only a small number
of steps is taken. If no feasible solution has yet been found, the iterations are con-
tinued until the second limit is reached or a feasible solution is computed. This third
termination criterion is usually the one satisfied.

5. Preprocessing and algorithm refinements. The relaxation scheme is
slow at times due to local effects, such as regions of high contention where many tracks
cross one another. A partial resolution to this difficulty is to decompose these mul-
tidimensional assignment problems into disjoint components that can then be solved
independently. After the decomposition, a branch and bound technique is used to
solve small components for the following reason. The overhead required in setting
up the relaxation algorithm makes branch and bound more efficient on small compo-
nents. Furthermore, relaxations of these sparse K-dimensional assignment problems
introduces additional sparsity, and frequently the problems decompose into a number
of small components that are solved optimally without having to relax all the way
back to the two-dimensional problem.

5.1. Decomposition into disjoint components. Consider a graph with the
vertices being the observations. Two vertices will be connected by an edge if they
belong to successive scans and are part of the same feasible track of observations.
Connected components of the graph are then easily found by constructing a spanning
forest via a depth-first search. A detailed algorithm can be found in the book by Aho,
Hopcroft, and Ullman [1, 5.2]. The following modification of this algorithm uses the
additional information that all the observations in a track of observations belong to
the same component, thereby increasing the speed of the algorithm.

Decomposition algorithm
Given the observations in the list LO and the tracks of observations in the
list LFT, the algorithm proceeds as follows:
Set all the observations and tracks to unmarked
while there are unmarked observations do

pick any unmarked observation and mark it
repeat

mark all the unmarked tracks that pass through a marked observation
mark all the unmarked observations that belong to a newly marked track

until no marked/unmarked combinations are left
identify all the marked observations and tracks as a new component

and remove them from the problem

Decomposition of a different type might be based on the identification of bi- and
triconnected components [1] of a graph, if they exist. For example, an algorithm such
as that given by Aho, Hopcroft, and Ullman [1, 5.2] might be used to identify any
biconnected components, and then an enumeration or branch and bound scheme could
then be based on an enumeration of the connections between larger components.

5.2. Branch and bound algorithm. Although general descriptions of branch
and bound techniques can be found in several references [3], [10], [30], [38], a brief
description of our algorithm is given in this subsection for completeness.

Let costs={ci]ci=ci ,i ik l, N, k l, K} be a list of sorted cost
coefficients, and let :[+/-st {xi xi xi,...,i if ci ch i } be the corresponding
list of variables. If the problem is sparse, the variables preassigned to zero are taken
to have infinite costs and are not to be included in X+/-st and costs. Each variable
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in list can have one of the three values zero, one, or free. After completion, the
variable solution will contain the optimal solution, while the variable bound will
contain its value. If the solution 0, then every feasible solution requires that some
variables that have been preassigned to zero be changed to one. The algorithm then
proceeds as follows by recursively calling the procedure BranchBound.

Branch and Bound Algorithm
set inList to
for all x 6 list do

set x to free
set bound to
set value to 0
set solution to
set trySolution to
set inSolution to 0
BranchBound(list, costs, inList, 0, K,

solution, trySolution, inSolution, value, bound)
BranchBound(list, costs, n, current, K,sol, try, m, value, bound)
if (m-- K)

set sol try
set bound value

else
set I {i current < i <_ n and xi is free}
for all i 6 I do

if value + c _> bound
return

set x 1
let R(xi) {xj xj is free and 3 k s.t. ik jk

where xi xil iK and xj xjl }
for all x R(xi) do

set x to 0
set locValue value

j min{j }
let locValue vaue + (K m)cj

if (ocValue < bod)
BranchBound(ist, costs, n, i, K,

sol, try {xi}, m + 1, vaue + ci, bod)
set xi 0
for all x R(xi) do

set x to free
6. Numerical experiments: A case study. In this section we present some

representative numerical results from our extensive testing of the problems and algo-
rithms developed in the earlier sections. Twenty test problems were randomly gener-
ated, as discussed in 2, with the following parameters: the number of targets N 100,
the initial x-intercepts {b}_ and slopes {m}_ are chosen randomly using a uni-
form distribution over [bmin,%max] [0, 1000] an( [roman,/rtrnax]--[-0.2, 0.2], respec-
tively, the maximum error of 3a ranged from 0.1 to 5.0, and the time interval between
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observations is 40 seconds. These problems are scale-invariant for mmaxAt 0.2 40,
where At denotes the time between scans. Thus if the observations are taken every
five seconds, the slopes can range between -1.6 and 1.6. All computations were per-
formed on an IBM RS/6000-320. Tables 1 through 6 describe the complexity of the
tracking and assignment problems, and Tables 7 through 11 present the results and
performance measurements of the algorithms. The "--" in the bottom right-hand cor-
ner of these tables indicates that a number of problems failed to run due to memory
limitations, so that the averages were omitted.

Tables 1 and 2 give the number of variables after the first and second phases
of gating. The number of variables given in Table 1 is also the total number of
variables that are ever treated explicitly. Table I shows that the first gating procedure
significantly reduces the number of tracks of observations that have to be considered
by the second gating procedure. For example, for eight scans, less than 106 tracks of
observations, which is a tiny fraction of the 1016 possible tracks, are submitted to the
second gating procedure.

TABLE 1

Problem size after phase one of gating.

Max. error

0.1

1.0

2.0

3.0

4.0

5.0

3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

1050 2768 8014 25350 94882 339047

1103 3013 9154 29828 113698 401806

1165 3309 10239 35767 142817 "52318
1300 4025 13694 51877 21143 ’89345i
1428 4697 17802 72595 272382

1564 5559 22620 99524 265042

1729 6536 28734 103955

Max. error

0.1

0.5

1.0

2.0

3.0

4.0

5.0

TABLE 2

Problem size after phase two of gating.

scans 4 scans 5 scans 6 scans 7 scans 8 scans

430 516 618 717 817 915

553 ’649 774 912 1073 1250

703 916 1176 1498 1953 2663

986 1748 2992 4982 8448 15185

1239 2852 6408 14225 27792

1463 4139 11617 32217 55523

1671 5497 18359 47660

Tables 3 and 4 give the average numbers of small and large components. A small
component is one that has less than 19 variables and no more than 3 observations
per scan; otherwise, a component is classified as large. (This empirical distinction is
based on whether relaxation or branch and bound will solve the problem faster.)

Note that as the measurement errors increase, the number of small components
drops. The reason is that as the error size increases, more tracks interact, i.e., share
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TABLE 3

Number of small components.

Max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

0.1 67 87 89 90 90 92

0.5 30 39 41 43 42 43

1.0 20 20 19 21 20 22

2.0 12 10 9 9 10 13

3.0 8 6 5 6 8

4.0 6 4 3 3 5

5.0 4 3 3 3

TABLE 4

Number of large components.

Max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

0.1 7 2 2 2 3 3

0.5 12 10 11 10 10 ’10
1.0 13 12 12 11 10 8

2.0 14 12 11 9 7 6

3.0 13 11 9 8 6

4.0 13 10 9 7 5

5.0 12 9 8 6

observations, and thus small components merge into large ones. Large component
behavior is more interesting. As the errors increase, the number of large components
increases at first and then decreases. This is due to component merging. For smaller
errors, small components merge to make new large components. For larger errors,
large components are lost by merging, and there are few small components remaining
that can merge to form new large components. Finally, as the observation error
continues to increase the problems eventually become dense and do not decompose.
Group tracking techniques [13] then become applicable.

If the measurement error is kept constant and the number of scans is increased,
both the number of small components and the number of variables increase, but the
number of large components decreases. This behavior can be explained with the aid
of Tables 5 and 6.

As more scans are added, the average and largest component sizes increase. Also,
if the error is kept constant, additional scans will mean tighter gates. Thus, most of
the tracks will interact with fewer neighbors and components will be slower to merge.
However, in areas where tracks lie very close to one another, the number of feasible
tracks in a component will tend to grow exponentially as the scans are added. The
evidence for this can be found by comparing the maximum component sizes with the
total sizes of the assignment problems: for larger errors and more scans, more than half
of the variables belong to a single component. This leads to the conclusion that there
is a "best" level of information, i.e., a best number of scans for a given noise level. TOO
many scans might not improve the solution quality, but could lead to the exponential
increase of the number of variables in the largest components. This suggests that
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Max. error

0.1

0.5

1.0

2.0

3.0

4.0

5.0

TABLE 5

Average large component size.

3 scans 4 scans 5 scans 6 scans 7 scans

20 19 23 26 31

33 39 47 63 83

46 64 90 135 200

69 144 290 599 1178

95 263 733 1936 4521

116 415 1405’" 4845 12103

0 88

8 scans

36

102

367

2739

Max. error

0.1

0.5

1.0

2.0

3.0

4.0

5.0

TABLE 6

Largest component size.

3 scans 4 scans 5 scans 6 scans 7 scans

33 21 26 29 38

214 502 1080 2199 4199

303 980 2877 7202 16960

405 1520 5753 18395 35622

492 2190 9790 27713

8 scans

45

277

1160

8500

additional scans might more effectively be addressed within the context of a sliding
window of observations [5] and track extension, as opposed to track initiation.

To assess the quality of the solutions, one first needs to distinguish between two
issues: the performance of the algorithms in obtaining high-quality suboptimal solu-
tions to the multidimensional assignment problems, and the quality of the identified
tracks. We discuss these issues separately, present tables for each, and then present
the timings.

The objective function in the assignment problem contains noise due to the ob-
servation error, which is transferred to the cost coefficients via filtering. Thus the first
test is to determine whether the algorithms compute the solutions to or below this
noise level. Since the true tracks and corresponding true tracks of observations used
to generate the problem are available, one can compute an objective function value
for the true tracks of observations scored against the true tracks as well as the true
filtered tracks, which are obtained from the true track of observations by filtering. If
the algorithms have computed a solution to or below the noise level, the score of the
computed solution should be at or below that of the generating solution. Indeed, the
following three tables show this to be the case. Note that the true filtered tracks fit
the true tracks of observations much better than the true tracks, as can be seen from
Tables 7 and 8.

For lower observation errors the algorithms yield solutions with a score as good as
or slightly better than those of the true tracks of observations scored against either the
true tracks or the true filtered tracks, while at higher observation errors the scores are
significantly lower. On the average the algorithm is computing at or below the noise
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TABLE 7

Average score for true tracks.

Max. error

0.1

0.5

1.0

2.0

3.0

4,0
5.0

3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

<0.4

9

34

138

310

550

862

< 0.4

11

45

179

403

716

1120

1 1 1

14 16 19

55 66 77
222 265 309

500 596 695

890 1064 1246

1390 1642

1

22

87

348

TABLE 8

Average score for true filtered tracks.

Max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

0.1 < 0.4 < 0.4 < 0.4 < 0.4 1 1

0.5 3 6 8 11 14 16

1.0 12 22 33 44 55 65

2.0 48 91 133 177 221 262

3.0 108 206 302 401 498

4.0 191 367 532 702 888

5.0 297 570 825 1082

TABLE 9

Average score for the computed tracks.

Max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

0.1 < 0.4 < 0.4 < 0.4 < 0.4 1 1

0.5 3 5 8 11 13 16

1.0 10 21 31 41 52 62

2.0 37 80 120 164 206 244

3.0 76 169 262 356 443

4.0 120 284 445 593 773

5.0 171 413 657 914

level in the problem. Although the optimal solution is surely being computed in many
cases, we give an example in Appendix B which shows that the relaxation algorithm
and recovery procedure need not always produce the optimal solution, regardless of
the choice of the multipliers in the relaxed problem.

The second criterion is to judge how well the tracks of observations from the
solution of the multidimensional assignment problem identify the true tracks. One way
of measuring this identification is to determine how well the tracks of observations are
able to predict the location of the true tracks on the next scan. Although this process
of extrapolation is not always reliable, it is part of predicting the future location of the

K (i)}N=I be an enumeration of the N tracks of observationsobjects. Let {zil (i),..., ziK
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computed from the solution of the multidimensional assignment problem. Then, given
the N true tracks, and these N computed tracks of observations, the first task is to
assign the computed tracks of observations to the true tracks, and this is accomplished
by using the following two-dimensional assignment problem.

Let (mjt+bj}= be an enumeration of the N true tracks. For i and j 1,... ,N
define

K

k--1

and

if the ith track of observations is assigned to true track j,
if the ith track of observations is not assigned to true track j.

With this definition of the 0-1 variables xij and cost coefficients cij, one then solves the
corresponding two-dimensional assignment problem to determine the best assignment.
(This assignment problem is the same as the one formulated in (4.6) with di and

w replaced by cj and x, respectively.) Next, let {x()}Y=l be an enumeration

g(i(j))}of all those 0-1 variables xij for which xij 1, and let {zil(i(j)),...,ziK
be a track of observations assigned to true track j. Now, determine the set of all
slopes m and intercepts b satisfying mmin

_
m _< mmax, bmin

_
b _< bmax, and

-r < mtk+b--zk. (i(j)) < r for k 1 K. The range of the straight lines
x mt+ b as m and b vary over this set determines a gate at time t tK+. The jth
true track has been identified if the true target position is within this gate.

Since the following tables represent an average over 20 test problems and there
are 100 tracks per problem, an identification of 99.9% implies that all but one track
out of 1000 was correctly identified.

TABLE 10

Percentage of correctly identified tracks.

Max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

0.1 99.9 99.9 99.9 99.9 99.9 99.9

0.5 99.6 99.9 99.8 99.8 99.8 99.8

1.0 98.8 99.9 99.6 99.7 99.7 99.7

2.0 98.6 99.6 99.3 99.5 99.7 99.4

3.0 98.3 98.5 98.8 99.2 99.1

4.0 98.0 97.6 97.9 97.9 98.6

5.0 97.5 97.2 97.2 97.2

One would expect that as more scans are added, the identification should improve.
Table 3 shows this to be the case, but not always. The reason for this phenomena is
quite simple and generic. Regions of high contention cause the identification to de-
grade. Although additional scans of observations generally resolve this local difficulty,
additional regions of high contention appear in different areas of space on subsequent
scans. Also, for a fixed maximum error, the gates used in the identification become
smaller as more scans are added, so that the identification criterion becomes tighter
as the number of scans increases. We have also investigated those tracks that have not
been identified through the use of computer visualization. In almost every instance,
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the tracks lie just outside of our criteria. In the next table we present the timings for
the above problems.

We have placed much emphasis on real-time identification; let us now be specific.
Suppose a radar sweep takes 5 to 10 seconds. The objective then is to process as many
scans as possible between sweeps to improve identification, and to solve the problem
in the allotted time. The above table gives some idea of the present capability for 100
targets. Possible improvements in the algorithms include the use of "hot starts" and
a sliding window implementation for track extension. The reason for the former is
that one has a high-quality suboptimal or optimal solution of a closely related K- or
K- 1-dimensional problem, and such a solution should be used as a "hot start" for the
given problem. As an example of this latter possibility, consider the case of maximum
error of 2.0. At four scans we have identified 99.6% of the targets, but this information
is not used in solving the subsequent assignment problems for five through eight scans.
Once a relatively high percentage of the tracks have been identified, one might use a
sliding window of observations to process the incoming scans, thereby reducing the
dimension of the assignment problems and thus improving the timings. Each of these
algorithmic enhancements and massive parallelizations of the algorithms is currently
under investigation for more general tracking problems [35].

TABLE 11

Solution times in seconds.

Max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

0.1 0.02 0.03 0.04 0.04 0.04

0.5 0.03 0.04 0.05 0.07 0.09

1.0 0.04 0.07 0.10 0.17 0.22

2.0 0.06 0.13 0.28 0.49 0.91

3.0 0.08 0.22 0.50 1.40 3.27

4.0 0.09 0.30 0.87 3.77 8.12

5.0 0.09 0.46 1.37 5.72

0.05

0.11

0.39

3.00

Appendix A. The conjugate subgradient algorithm. A key step in the
Lagrangian relaxation is the maximization of the concave, piecewise linear, and con-
tinuous functions (u) in (4.1). For completeness, a brief outline of our implementation
of Wolfe’s conjugate subgradient algorithm [42], [43] is given here.

Some definitions are necessary for the description of the algorithm. Let G be a
finite set of vectors, and define d Nr G to be a convex combination of the vectors
in G that has the minimum 2-norm. The algorithm for computing Nr G is given in
the work of Wolfe [42], [43]. The set of all subgradients of at u will be denoted by
0(u); however, only a single element of 0(u) is computed at each stage. Finally,
define g(t) E O(u + td) for fixed u and d and any t >_ 0,

M(t)
(g(t), d) and Q(t) (u + td) (u) for t > 0.

d 12 t d 12
The conjugate subgradient algorithm is as follows.

Let e, , b, m2 < ml < 1/2, all positive, be given and fixed throughout the algorithm.
Let an initial approximation of the multiplier u be given. Initialize the line search
parameter t, compute g e 0(u), and set G (g} and a O.
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loop
compute d Nr G
if d ]< then

if a < 5 then
exit loop (algorithm finished)

else (reset) set G g and a 0
else compute u+ u + td, g+ g(t)

usirtg ml, m2, M, and Q accept, double, or halve t
if t was accepted or doubled then

set u u+, g g+, add g and d to G, set a a+
else if t ld I<_ b then

discard u+ and g+, add g and d to G
end loop

If u is a multiplier such that (4.2) has more than one optimal solution, d Nr G
is the best choice for the step direction. The conjugate subgradient algorithm belongs
to a broader class of algorithms called "bundle methods" [25]. (The set G is called a

"bundle.") Methods in this class substitute several recent directions in the bundle for
0(u). Each time a step is taken, the direction is added to the bundle in some manner.
To prevent the bundle from growing too large, oldest directions are discarded as new
vectors are added to the bundle. If the bundle size is set to one, bundle methods are
equivalent to the subgradient algorithm. In our computations the best bundle size
was determined to be 5, but it can be easily changed to suit a particular problem.

Appendix B. An example. This example illustrates the failure of the relax-
ation algorithm and recovery procedure developed in 4 to produce an optimal so-
lution, regardless of the multipliers chosen. Let 2 be an optimal solution of the K-
dimensional assignment problem (3.5), &(u) be the optimal solution of the relaxed
problem (4.1) for a given multiplier vector u, (u) be the value of the minimum of the
relaxed problem (4.1), and x(u) be the recovered feasible solution of (3.5).

Let K 4 and N 3 and define the cost coefficients as follows:

Cl 111 C2222 C3333 5
C111k C222/ C333m 10 k 2, 3, 1, 3, m 1, 2,

C2131 C2132 C1321 C1322 C3211 C3212 C2313 C3123 C1233 I,
C2133 C1323 C3213 C2311 C2312 C3121 C3122 C1231 C1232 15;

the remaining cost coefficients are set to 50. The optimal solution is x1111 1,
X2222 1, X3333 1 with the remaining variables set to zero, and the corresponding
objective function value is 15. The objective function values of the remaining feasible
solutions are greater than or equal to 17. Consider the relaxation of the last set
of constraints, and let ul, u2, u3 be the corresponding multipliers. To recover the
optimal solution of the original problem, the solution of the relaxed problem must
have xk x222/ x333m 1 for some k, l, m with the remaining variables being
zero. Notice that the particular choice of k, l, and m is dictated by the multiplier
values. Let A denote the relaxed objective function value associated with this set of
solutions (of the relaxed problem). Since the cost coefficients are known, A can be
expressed as a function of multipliers by the following expression:

A min{5 Ul, 10 u2, 10 u3 } + min{10 u, 5 u2, 10 u3 }
+ rain{10 u, 10 u2, 5 u3}.
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It will be shown that, regardless of the choice of multipliers, no solution in this
solution set can be an optimal solution of the relaxed problem. To see this, define
two other solution sets of the relaxed problem by X213k X132/ X321m 1 and
X231k X312/ X123m 1, where again the remaining variables are set to zero and
the particular choices of k, l, and m depend on the multiplier values. Let B and C
denote the relaxed objective function values for these two solution sets. B and C can
again be expressed as the functions of multipliers

B =3 min{1 ul, 1 u2,15 u3},
C -3 min(15 Ul, 15 u2, 1 u3}.

We now claim that for any choice of the multipliers, A > min{B, C}, i.e., none of
the solutions from the first solution set can ever be an optimal solution of the relaxed
problem. To see this, consider all the possible multiplier choices. They yield 10
possible values for A. In all cases, either B or C is smaller than A:

A=5-ul+10-Ul+10-ut=25-3ut>3-3ut>_B,
A =5 Ul + 10 u + 5 u3 20 2ul u3 > 17 2u u3 >_ B,
A =5- u + 5- u2 + 10- ul 20- 2u u2 > 3- 2ul u2 _> B,
A =5 u + 5 u2 + 10 u2 20 u 2u2 > 3 ul 2u2 _> B,
A =5- u + 5- u2 + 5- u3 15- u u2 u3 > 3- 2u u2 _> B,
A =5 u + 10 u3 + 5 u3 20 u 2u3 > 17 u 2u3 _> C,
A =10 u2 + 5 u2 + 10 u2 25 3u2 > 3 3u2 _> B,
A =10 u2 + 5 u2 + 5 u3 20 2u2 u3 > 17 2u2 u3 >_ B,
A =10 u3 + 5 u2 + 5 u3 20 u2 2u3 > 17 u2 2u3 _> C,
A =10 u3 + 10 u3 + 5 u3 25 3u3 > 3 3u3 >_ C.

This argument shows that, regardless of the multiplier choice, none of the solutions
from the first solution set can be an optimM solution of the relaxed problem. Thus the
optimal solution to the original problem can never be obtained through the relaxation
of the last constraint set.
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Abstract. This paper deals with a 2-dimensional parameter family of nonlinear programs:
minimize ho(x,t) subject to the equality constraints hi(x, t) 0 (i 1,... ,l) and the inequality
constraints hj(x,t) <_ 0 (j + 1,...,m). Each hi (i 0,1,...,m) is a twice continuously
differentiable real-valued map defined on the (n + 2)-dimensional Euclidean space Rn+2, where
x E R denotes a variable vector and E R2 denotes a 2-dimensional parameter vector. The local
properties of the Karush-Kuhn-Tucker stationary solution set, the set consisting of all (x, t) such
that x is a stationary solution of the program for some , are studied. In fact, it is shown that if the
Mangasarian-Fromovitz constraint qualification and a regular value condition are satisfied, (i) the
set is a 2-dimensional topological manifold without a boundary, and (ii) the set is a generalized
creased manifold if, in addition, a constant rank condition holds.

Key words, multiparametric nonlinear programs, generalized creased manifold, topological
manifold, piecewise differentiable manifold, Karush-Kuhn-Tucker set
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1. Introduction. The main purpose of this paper is to investigate some proper-
ties of the set of Karush-Kuhn-Tucker stationary solutions (see, for example, Luen-
berger [13]) of a nonlinear program under continuous deformations. We shall shortly
speak about a stationary solution instead of a Karush-Kuhn-Tucker stationary so-
lution. To be concrete, we deal with a d-dimensional parameter family of nonlinear
programs

P(t): minimize h0(x, t)
subject to x E X(t),

where

X(t) {x e Rn hi(x,t) 0 (i e L),hj(x,t) <_ 0 (j e M)},

L {1,2,. ,1}, M={l+l,l+2,...,m}, h=(h0, hl,...,h,)-is a twice continuously differentiable (i.e., C2) map from the (n + d)-dimensional Eu-
clidean space Rn+d into Rl+m. Here, x (xl,x2,... ,xn)- R denotes a variable
vector, t Rd denotes a d-dimensional parameter vector, and T stands for transpo-
sition. Later on, certain regularity assumptions will be imposed on the parametric
constraint set X(t). We study local properties of the stationary solution set E (i.e.,
the set of all (x, t) such that x is a stationary solution of P(t) for some t) and the
stationary point set H (i.e., the set of all (x, y, t) such that x is a stationary solution
of P(t) for some t and y is a Lagrange multiplier vector associated with x).

There are at least three approaches to the 1-dimensional parameter family P(t)
(t E R) of nonlinear programs. The first approach is due to Kojima and Hirabayashi
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[12], who showed that the stationary solution set is the disjoint union of paths
(without a boundary) and closed loops. The second approach is due to Jongen, Jonker,
and Twilt [4]-[9], who introduced the generalized critical points. They showed that
the generalized critical points can generically be classified into five types. The third
approach, by Poore and Tiahrt, is a direct application of bifurcation theory [15], [19].
For more details see an excellent survey paper by Jongen and Weber [10].

If the dimension d of the parameter space exceeds 1, the situation becomes more
complicated. In [12] Kojima and Hirabayashi showed, under a suitable regularity
assumption, that the stationary point set H is a piecewise continuously differentiable
manifold of dimension d. Moreover, if, in addition, a stationary solution x E X(t)
is strongly stable (in the sense of Kojima [11]), then the stationary solution set
around x is parametrizable by means of the parameter t. Within the context of
Pareto theory, Schecter [17] investigated the structure of the set for special types
of multiparametric programs under the following rank conditions:

(i) the gradients corresponding to the equality constraints are linearly indepen-
dent in the feasible region;

(ii) the gradients corresponding to the active inequality constraints are linearly
independent in the feasible region;

(iii) the rank of the set of the gradients corresponding to active constraints (in-
cluding the equality constraints) is locally constant.

Under these rank conditions Schecter [17] proved that the set is a creased
manifold with a boundary. At the boundary points of this manifold the Mangasarian-
Fromovitz constraint qualification (MFCQ) is violated. Jongen, Jonker, and Twilt [9]
showed, under the linear independence constraint qualification (LICQ), that the set

of a general P(t) (t Rd) is generically a creased manifold (in the sense of Schecter
[17]). Shindoh, Hirabayashi, and Matsumoto [18] dealt with 2-parameter cases and
proved that, in general, the stationary index (a natural generalization of the Morse
index) of a stationary point (x, y, t) can locally change at most by two on the stationary
point set H.

In this paper we investigate the structure of the stationary solution set E of P(t)
(t Rd) for the case d 2. The paper is organized as follows. In 2 we define a
class of generalized creased manifolds that are topological manifolds and that form a
natural extension of creased manifolds, and we present some preliminary results. In
3 some fundamental results necessary in the subsequent sections will be derived. In
4 we show that under MFCQ, a certain regularity assumption, and a certain constant
rank assumption, the set E is a 2-dimensional generalized creased manifold without
a boundary. In 5 we show that, under MFCQ and a certain regularity assumption
only, the set E is a 2-dimensional topological manifold without a boundary.

In this paper we make great use of the structure of the Lagrange multiplier vector
set that forms a polytope with dimension less than or equal to d 2. For this case
the adjacency of its faces is very simple. However, if d _> 3, the polytope may have
dimension d and the adjacency of its faces is combinatorially complicated. Hence it
is rather difficult to treat the case of d > 3.

2. Preliminaries.

2.1. PCl-maps. For every nonempty convex subset C of Rp the dimension of
C is defined to be the dimension of affine hull affC, and is denoted by dim C. By a
cell we mean a closed convex polyhedral set (i.e., the intersection of a finite number
of closed half-spaces) in Rp. By a k-cell we mean a cell of dimension k. If a cell B is
a face of a cell C, we write B - C.
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Let C be a k-cell in Rp, let , be a finite or countable collection of k-cells in Rp,
and let q be the collection of all faces of any a E ,, i.e., q {T C Rp T -< a for
some a E S}. q is said to be a subdivision of C and we write C Iql if the following
three conditions are satisfied:

(i) C U{a" a e ,};
(ii) for each -, a q with T a, Rel Int Tf3 Rel Int a );
(iii) q is locally finite, i.e., each point x C has a neighborhood that intersects

with only a finite number of k-cells of q.
Let 8 be a subdivision of a cell C in Rp. A PC1 (piecewise continuously differ-

entiable) map G Iql --* Rq is a continuous map from C into Rq such that for each
cell a of there exists an open set U D a and a C1 map G’ U --+ Rq that satisfies

G’la Gla where Gla (or G’la denotes the restriction of the map G (or G’) to the
cell a. We shall use the notation DG(zla for the Jacobian matrix of the restriction
of a PC map G’lq --+ Rq to a cell a at z.

2.2. Manifolds. A d-dimensional topological manifold in Rp is a subset Q of Rp
such that for each z E Q there exists an open set V c Rd and a homeomorphism

V -- Rp with (V) a neighborhood of z in Q. We call a parametrization
around z.

A d-dimensional Ci-manifold (respectively, manifold with a boundary) in Rp is
a subset Q of Rp such that for each z Q there exists an open set V c Rd and
a Cl-embedding V Rp with (V) a neighborhood of z in Q (respectively,
(y Rq

+ x Rd-q) a neighborhood of z in Q for some integer q {0,1,..., d}, where

R+ {r R]r > 0}). We also call a parametrization around z.
A d-dimensional pCl-manifold with respect to a subdivision , of Rp is a subset

Q in Rp such that Q is a d-dimensional topological manifold, and for each cell a e q
there exists a d-dimensional C-manifold Q’ such that Q 3 a Q’ 3 a.

We call , a creased subdivision of Rd at the origin if q is a subdivision of Rd

(i.e., ]8] Rd) such that it is a finite number of collection of d-cells, each of which
contains the origin. By a section we mean one of cells (0, 1,..., d cells) of q induced
by a creased subdivision 3 of Rd.

A d-dimensional generalized creased manifold is a subset Q in Rp such that
there exist Va, Ca,qa; each Va is an open neighborhood of the origin in Rd, each
Ca Va --+ Q is a map (called a parametrization), and each S is a creased subdivision
of Rd that satisfies the following:

(i) Q U (Y).
(ii) Each Ca is a homeomorphism onto an open subset of Q. (Hence, Q is a

topological manifold.)
(iii) For each ( the restriction of to any section of S is a Cl-embedding.
(iv) If Ca, are two parametrizations, let Van 1 o (V) c V, and let

V 1 o (Va) c V, so that 1 o is a homeomorphism of V onto V.
Then1 o Ca(Vf3 any section of ,) Vaf3 some section of q.

A generalized creased manifold is a natural generalization of a creased manifold
(see [17]). In particular, a 1-dimensional generalized creased manifold is a creased
manifold.

Let Q be a d-dimensional generalized creased manifold. Then for each point z E Q
there exist a neighborhood of the origin in Rd, & parametrization with (0) z,
and a creased subdivision q (see Fig. 2.1). In this case, (VN a section of S) is said
to be a section of a generalized creased manifold around z.

Under this notation any d-dimensional PC-manifold for which extended pieces
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FIG. 2.1. Generalized creased manifold.

intersect each cell of a subdivision transversally is a generalized creased manifold.
Here, a piece is a set of the type Q N a, as introduced above.

2.3. Regular values of pCl-maps. Let G be a Cl-map from an open subset
U of Rp into Rq, and let V be a subset of U. A point c E Rq is said to be a regular
value of G U --. Rq on V if rank DG(z) q for every z E Y such that G(z) c.
Obviously, if p < q, _then no c G(V) can be a regular value.

We shall define a regular value of a PCl-map. Let S be a subdivision of a p-cell
of C in Rp, and let G’IS --, Rq be a PC-map. A point c Rq is a regular value
of the PC-map G I,1 -- Rq if c e Rq is a regular value of Gla for every face of
any cell a of S (for details, see [12]). Subsequent sections will be concerned with
a special case for which p q / 2. In this case, if c is a regular value of G, then
G-(c) (z e IS]’G(z) c} does not intersect any cell of with dimension less
than q. Furthermore, using the well-known implicit function theorem [13] and some
other elementary results in differential topology, we can prove the theorem below.
The proof is omitted here.

THEOREM 2.1. Let , be a subdivision of Rq+2, and let G" IS - Rq be a PC-map. Suppose that c Rq is a regular value of the PC-map G. Then each connected
component on G-(c) is a 2-dimensional PC-manifold that intersects every face of
any cell in S transversally.

Remark 2.2. In Theorem 2.1, for each k-cell a e we have that if G-
then G-(c) RelInt a is nonempty and, moreover, is a (k- q)-dimensional manifold.
In particular, if k _< q 1, then G-(c) a .

2.4. Stationary solutions. As is stated in [12], it is convenient to formulate
the (Karush-Kuhn-Tucker) stationary condition by means of a system of equations
(the so-called Kojima function). We denote by Dhi(x, t) the partial derivative of the
map hi with respect to x, i.e.,

Dhi(x, t) ( Ohi(X’ox t)

For every a R let

a+ max{0, a} and c- min{0, a}.

Then we obviously have

a+_>0, a-_<0 for everyaR
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and a+ 0 or a- 0 (complementarity). Then the Kojima function H Rn+m+2 -Rn+m is defined as follows:

Dho(x, t)- + ieL YiDzhi(x, t)- + ’jeM YDhj(x, t)--hl(x,t)

H(,,t) -h(x, t)
_

h+(, t)

h(x,t)

The stationary condition now becomes

H(x,y,t) =0.

Let t E R2 be fixed. If x Rn satisfies the above stationary condition for some
y /m, we call x a stationary solution of P(t), we call y a Lagrange multiplier vector
associated with x, and we call the pair (x, y) a stationary point of P(t). Define E to
be the set of all (x, t)’s such that x is a stationary solution of P(t):

E {(x, t) e Rn+2" H(x, y, t) 0 for some y e Rm}.

The set E is our target whose local properties will be studied. For convenience, we
also define H to be the set of all (x, y, t) such that (x, y) is a stationary point of P(t)"

H {(x, y, t) e R’+m+2 H(x, y, t) 0}.

Note that the set E is the natural projection of H under the map (x, y, t) - (x, t).
Let

Jo(x, t)= {j e M" hj(x, t)- 0}.

Condition 0 (linear independence constraint qualification). For every (x, t) in E,
{Dxhi(x, t): e n U Jo(x, t)} is linearly independent.

Condition 1 (Mangasarian-Fromovitz constraint qualification [14]). For every
(x, t) in E

(i) {Dhi(x, t): i e L} is linearly independent;
(ii) there exists a w Rn such that

Dhi(x, t)w 0 for every i L,

Dxhj(x, t)w < 0 for every j Jo(x,t).

As is well known, Condition 0 implies Condition 1. Moreover, Condition 0 ensures
the uniqueness of the Lagrange multiplier vector associated with a stationary solu-
tion (x, t), whereas Condition 1 ensures the boundedness of the set of the Lagrange
multiplier vectors [3].

Condition 2 (regularity condition). 0 e RnWm is a regular value of the PCl-map
H.

For the more precise definition, see [11] and [12]. Under Condition 2, H is a
2-dimensional pCl-manifold without a boundary.
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Throughout the paper we use the following notations and symbols"

Dho(x,t)- + EiL YiDhi(x,t) +’MYDh(x,t)
H(x, y, t) -hi(x, t) (i e L)

y; hi(x, t) (j e M)

H {(x, y, t) e Rn+’+2 H(x, y, t) 0} (stationary point set),

E- {(x,t) e Rn+2" H(x, y, t) -0 for some y e Rm} (stationary solution set).

For each I, J with J C_ I c M

TIj Rn {y E Rm" yi < O t i E M\I, yj > O c j J} R2,

.* {’jj J C M}

is a subdivision of Rn/m+2,

-* {a" a is a face for some gj(J C M)},

Hj {(x, y, t) e H" (x, y, t) e TIj},

j {(X,t) e E" hi(x,t)= 0 i e L U J},

Zj (respectively, PlJ) is a connected component of -]j (respectively, Hij), p is a
natural projection map from II to E ((x, y, t)-. (x, t)),

Y(x, t) {y e Rm" (x, y, t) e H}

for a fixed (x, t) E,

N(x, y, t) D2ho(x, t) + EyiD2hi(x t) + E + 2y Dh(x,t),
iEL jEM

Aj(x, t) [Dxhj(x, t)- (j e L (J J)],

Mj(x y, t) (N(x,y,t)_Aj(x,t)T
Aj(x,t) )0

Wj(x,t) {w e Rn Dxhi(x,t)w 0 (i e L J)},

Jo(x, t) {j e M" hi(x, t) 0},

J+(y)={jeM’yj>O} foryeR",
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Jn(y)={jEM’yj>_0} for y E Rm,
and JI is the cardinality of J.

Under Conditions i and 2 and the above notations, we can easily see the following
properties:

* {YIJ" J c_ I c_ M},

IJ U IIK1K.,
K2CJCICK1

J U ’]J’
JDJ

(]J is a closure of ]J in ),

]j, C j for each J’ _D J,

p(jj) j.

Suppose that z (x, y, t) is a stationary point of P(t). Then we see that

J+(y) c Jn(y) Jo(x, t) and z (x, y, t) e JJ

if J+(y) c J c J(y).
Then, up to a row permutation, we can represent the (n-t-m) x (n-b m) Jacobian

matrix D(x,y)H(z[jg) as

Mj(z)
D(x,y)H(zlyjj _A(z)T 0)

where AS(z [Dhj(x,t)T (j e M\J)] and E denotes the (m- IJI) x (m- IJI)
identity matrix. Hence in this case we have

det D(x,y)H(zlYjj det Mj(z).

3. Basic results. In this section we introduce some basic properties of the sta-
tionary solutions.

LEMMA 3.1. Suppose that Conditions 1 and 2 hold. Suppose that (x, t) and
Jo(x,t) {1-b l, + 2,...,k} for some k e {1,1-b l,...,m}. In case k we set
J0(x, t) --O. Then we have either

(i) rank Ago(,t (x, t) k >_ or

(ii) rank Ajo(,t (x, t) k- 2 or k- 1 >_ q- 1.

Proof. If rankAgo(x,t)(x,t k- d (d >_ 1), then from Condition 1 we see that
k- d _> q- i. From Condition 2, rank Ajo(,t)(x t)

_
k- 2. D

Lemmas 3.2 and 3.3 below are independent of Condition 2.
LEMMA 3.2. Suppose that Condition 1 holds. Let Z be a subset of , and let

P p-l(Z) {(x, y, t) e H’(x, t) e Z}. Then the following hold:
(i) If Z is compact, so is P. In particular, if Z consists of a single point, then

P is a compact cell.
(ii) If Z is connected, then so is P.
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(iii) If Z is a connected component of E, then P is a connected component of H.
LEMMA 3.3. Let P be a connected component of H, and let Z be the natural

projection of P, i.e., Z p(P). Then Z is a connected component of E, and P
p- Z) holds.

In view of Lemmas 3.2 and 3.3, we see that there is a one-to-one correspondence
between the connected components of H (respectively, IIjg) and those of E (respec-
tively, Ej).

The next lemma, which asserts the upper semicontinuity of p-l, is well known
and is fundamental to this paper.

LEMMA 3.4. Under Condition 1, p- is upper semicontinuous in the sense of
Berge (see [1], [2]).

Proof. See [16, Thm. 2.3]. [:]

Remark 3.5. If Condition 0 (LICQ) holds at (x,t), then there exists one and
only one Lagrange multiplier y E Rm for (x, t) and p is a homeomorphism from some
neighborhood of (x, y, t) E H to some neighborhood of (x, t) E.

If Conditions 1 and 2 hold, then corank Ago(x,t (x, t) _< 2, where corank A
min{m, n} -rankA for any n m matrix A.

LEMMA 3.6. Under Conditions 1 and 2, .for each (x, t) E
(i) if corank Aj (x, t) 0, then p- (x, t) is a singleton;
(ii) if corankAg(x,t) 1, then p-(x,t) is a singleton or a line segment;
(iii) if corankAj(x,t) 2, then p-(x,t) is a 2-dimensional polytope, where

J Jo(x, t).
Proof. (i) This case is clear.
(ii) Since corank Aj(x, t) 1, the set Y(x, t) is an intersection of a straight line

y e R" yj hj(x,t) (j e M\J), Dxho(x,t)- + E YDxhi(x’t)- 0}
iELuJ

and the y-component of an orthant jj. Note that (x,t) E Zj and Condition 1
(MFCQ) is satisfied at this point, and so p-(x, t) is nonempty and compact. There-
fore, p-(x, t) is a singleton or a line segment.

(iii) In this case corankAj(x,t) 2. By an argument similar to that in (ii),
Y(x, t) is a (nonempty and compact) intersection of a 2-dimensional plane

y e Rm" yj hj(x,t) (j e M\J), Dho(x,t)- + E YiDxhi(x,t)- 0}iELJJ

and the y-component of an orthant jj, SO that the set Y(x, t) is a singleton, a line
segment, or a 2-dimensional polytope. However, if it is 1-dimensional, then it is not
bounded, and this contradicts Condition 1 (MFCQ), whereas Condition 2 (regularity
condition) and Theorem 2.1 yield that it is not a singleton. Hence p-(x,t) is a
two-dimensional polytope.

4. Structure of the stationary solution set: I. In this section we show that
the stationary solution set is a 2-dimensional generalized creased manifold under the
assumption of Conditions 1 and 2 and under the additional Condition 3 below, which
was introduced by Schecter [17].

For k _> 0 let ffk denote the collection of Zj (connected component of j) such
that corankAg(x, t) k at every (x, t) Zj (Zj is a closure of Zj in E).
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Z (Xo,t o) = Z

Fro. 4.1.

Condition 3 (constant rank condition [17]). For each J c_ M every connected
component Zj of ’]J belongs to some Tk. Assuming Condition 2, we have k 0, 1,
or 2.

Throughout this section we assume that Conditions 1, 2, and 3 hold.
The next two results are key to proving the manifold theorems (Theorems 4.3

and 4.5) below. We understand a ruled surface to be the union of a one-parameter
family of straight lines.

LEMMA 4.1. For each (x, t)
(i) if Zj e 7o and (x,t) e Zj, then p-(x,t) is a singleton;
(ii) if Zj e 7 and (x, t) e Zj, then p-(x, t) is a singleton or a line segment

and p- (Zj) is a ruled surface with a boundary;
(iii) if Zj 72 and (x,t) Zj, then p-(x,t) is a 2-dimensional polytope and

zj

Proof. (i) Since Zj e ,70 (i.e., {Dhj(x,t) (j e n J J)} is linearly independent),
p-(x, t) is a singleton from Lemma 3.6(i).

(ii) Since Zj e , corankAg(x,t) 1. From Lemma 3.6(ii), p-(x,t)is
singleton or a line segment. From Condition 3 (constant-rank condition) and Lemma
3.4, p-l(g) is a ruled surface with a boundary.

(iii) Since Zj e 2, corankAg(x,t) 2. From Lemma 3.6(iii), p-(x,t)is a
2-dimensional polytope. It is clear that Zj {(x, t)}.

In the next lemma, the (constant rank) Condition 3 is heavily used.
LEMMA 4.2. Let Zj 2. (Hence from Lemma 4.1(iii) there exists some (xo, to)

such that Zj {(x0,t0)}.) Then there is at least one Zj,, e o with (i) J" c J, (ii)
IJ"l Igl 2, and (iii) (xo, to) e Zj,,. Moreover, if Zj,, satisfies properties (i), (ii),
and (iii), then Zj,, o. There is at least one Zj, with (iv), J" c J’ c J, (v)
(xo, to) e Zj,, and (vi) IJ’l- IJ 1. Moreover, if Zj, satisfies properties (iv), (v),
and (vi), then Zj, (see Fig. 4.1). Also, for any J’ such that J" c J’ c J there
exists Zj, such that (xo, to) Zj, and Zj, .

Proof. Since p-(xo, to) is a 2-dimensional polytope, each vertex of this polytope
is on.an intersection of four orthants. Denote one of those vertices by (x0, yo, to),
which is in Ilgg IIj,,g,, with ]J"l ]J]- 2. Therefore, there exists a Zj,, such that
(x0, to) 6 g,,. Without loss of generality, we may assume that J {1 + 1,..., k} and
J" {1 + 1,...,k- 2}. Let J {l + 1,...,k- 1}, and let J {1 + 1,...,k- 2, k}
(in this case (xo, Yo, to) IIgg (i 1,2)). From Lemma A.1 in the Appendix there
exists at least one nonzero element in det Mj, det MjI, det Mj and det Mj,,.



STRUCTURE OF K-K-T SET WITH TWO PARAMETERS 573

H

FIG. 4.2.

For the sake of simplicity, set Aj Aj(xo, to) and set Mj :- Mj(xo, Yo, to).
Note that corankMj 2 since corankAj 2 (Zj E 2). Thus 1 <_ corankMj,
corank Mj

_
2, and hence det Mj det Mj O. Therefore, det Mj,, O, and it

implies corank Aj,, O. Therefore, Zj,, o.
Since rank Aj,,

_
rank Aj:

_
rank Aj (i 1, 2) and rank Aj,, rank Aj k 2,

rank Ag k- 2 (-IL Jl - 1) (i 1, 2). Therefore, Zj e 1 (i 1, 2).
The other cases are easily shown. D
Now we are in a position to state one of the main results of this paper. Set

YIo- U P-I(ZJ)"
ZgE3o

THEOREM 4.3. Suppose that Conditions 1, 2, and 3 hold. Then the set E is a
2-dimensional topological manifold without a boundary.

Proof. Let any (xo, to) E be fixed. We will prove that some neighborhood of
(x0, to) in E is homeomorphic to R2.

Case 1 (Zj o and (x0, to) Zj). Since (x0, to) E Zj o from Lemma 4.1(i),
the set p-(xo,to) is a singleton denoted by (xo, Yo, to). Let N be a neighborhood
of (x0, yo, to) in H such that (x,t) lies in Zj for each (x,y,t) N. Since Zj o,
the mapping p is a homeomorphism from N to p(N) (from Remark 3.5). Hence H is
homeomorphic to E on the neighborhood of (xo, yo, to), i.e., in the neighborhood of
(xo, to), E is a 2-dimensional topological manifold (without a boundary).

Case 2 (Zj and (x0, to) E Zj). In this case, p-(xo, to) is a singleton or a
line segment (from Lemma 4.1(ii)).

Subcase 2.1 (p-(xo, to) is a line segment; see Fig. 4.2). This case has been already
proved by Schecter [17], and we briefly trace his proof since it makes the rest of the
proof more understandable.

For i 1, 2 let (x0, y, to) be end points of p- (x0, to), and let Ni be a neigh-
borhood of (x0, y, t0) in H. We shall show that PlNnIo is one-to-one. If (x, y, t)
RelInt (Ni N H0), then there exists Zj, o with (x, t) Zj, and hence p is one-
to-one. If (x,y,t) N N 0H0, then p-l(x,t) is a line segment in jj and hence
{(x, y, t)} p-(x, t) Ni g Ho. Thus p is one-to-one in this case.



574 ft. HIRABAYASHI, M. SHIDA, AND S. SHINDOH

FIG. 4.3.

Next, it may be easily seen that a neighborhood of (Xo, to) in is homeomorphic
to the quotient space

nx Ho) u, t) u’, t’) , t) t’).

If (x, yi,t) E Ni fq RelInt H0, then it is not identified with any other point in
If (x, yl, t) e N1 f 0H0 (respectively, (x, Y2, t) e N2 fq 0H0), then p-l(x, t) is a line
segment open in H\H0. Hence (x, y, t) (respectively, (x, Y2, t)) can be identified with
some (x, Y2, t) N2 fq 0Ho (respectively, (x, yl, t) N N cOH0) from Lemma 4.1(ii).

Note that NifqH0 is homeomorphic to RxR+ (for i 1, 2). Now those boundaries
Ni fq0H0 (i 1, 2) are identified in 7 in the sense above. Hence E is a 2-dimensional
topological manifold (without a boundary) in a neighborhood of (xo, to).

Subcase 2.2 (p-l(xo, to) is a singleton denoted by (xo, yo, to); see Fig. 4.3). In
this case (x0, Yo, to) is on an intersection of four orthants. Therefore, there are three
index sets J", J, and J with [J"[ [J[- 2 and J" c J C J (i 1, 2) such that
(xo, to) Zj fq Zj,, fq Zj f3 Zj (in this case Zj,, and ZjI (i 1,2) are elements
of ,70). Let N be a neighborhood of (x0, Y0, t0) in H. Then N f Ho N\Hjj and
N N 0H0 N fq (IIjj tA IIjj tA IIjj,,).

A neighborhood of (x0, to) in E is homeomorphic to the quotient space

2 N fq Ho/(x, y, t) (x’, y’, t’) v (x,t)= (x’, t’).

It is clear that PlNnrtelInt no is one-to-one. For each (x, y, t) N f3 IIjj (respectively,
N Hjj) the set p-(x, t) is a line segment such that one end point is (x, y, t). From
Lemma 4.1(ii) another end point is in N f’)Hjj (respectively, N fq HjjI). Thus in

T2 these two points are identified and no other points are identified. If (x, y, t)
N IIjj,,, then (x, y, t) (x0, Y0, to) and it is not identified with any other points
in 72. Since N f3 H0 is homeomorphic to R x R+ and its boundary is identified in
72, the set E is a 2-dimensional topological manifold (without a boundary) in the
neighborhood of (x0, t0).

Case 3 (Zj ( if2 and (xo,to) Zj; see Fig. 4.4). In this case p-l(xo, to) is a
2-dimensional polytope (from Lemma 4.1(iii)), and so its boundary is orientable. Let
z (xo, y, to) be its vertices (i 1,..., r, mod r), whose numbering is determined
along its boundary. For each i define
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FI(. 4.4.

(i) J’ as an index set with IJ’]- IJI- 2 such that z e Hjj,;
(ii) J as an index with IJl--IJI- 1 such that J’, J-i c J c J and the edge

zz+ is in Hgj.
In this case J’ c Jr. Jf,

_
C J, Zj, o,Z , and Zj 2 (from Lemma

4.2). Let Ni be a neighborhood of z in H. om Lemma 4.2, again, Ni H0
N H,,,.,

We shall show that PNno is one-tone. If (x, y, t) Ni RelInt H0, then
(x, t) Zj,; hence, p is one-tone. If (x, y, t) e N 0H0, then two ces occur.
The first is that (x,y,t) is in Hjj,; in this ce (x,t) is (xo, to). The other ce is

that (x, y,t) is in H<j,, (respectively, H,,.,__,_,,); in this ce p-(x,t) is a line segment

in g< (respectively, <_<_), and hence ((x,y,t)} p-(x,t) Ni Ho. Thus

P]NHo is one-tone.
A neighborhood of (x0, t0) in is homeomorphic to the quotient space

If (x, y, t) E N N Rel Int H0, (c, y, t) cannot be identified with any other points in :R3.
If (x, y, t) E Ni 0H0, then the following two cases occur:

(i) If (x, y, t) Hjg,, then (x, y, t) is (x0, y, to) and hence it is identified with

all other vertices of p-(x,t) in 73.
(ii) If (x,y,t) Ni H0 Hg_lg, (respectively, Hjj,), then p-l(x,t) is a

line segment in Hj_lj_ (respectively, Hjj). Hence it can be identified with some

(x’, y’, t’) e N_ H0 H,,__ j,,_ (respectively, Ni+
Note that for each i (1,... ,r}, Ni II0 is homeomorphic to R R+. Now

those boundaries are identified in T3 in the sense above. Hence is a 2-dimensional
topological manifold (without a boundary) in the neighborhood of (x0,t0). Hence
each connected component of Z is a 2-dimensional topological manifold without a
boundary.
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Remark 4.4. Schecter [17] shows and proves only Case 1 and Subcase 2.1 in
Case 2.

THEOREM 4.5. Under Conditions 1, 2, and 3 the set is a 2-dimensional gen-
eralized creased manifold without a boundary.

Proof. From Theorem 4.3 we know that is a topological manifold without a
boundary and that it is obtained by all Zj with Zj E o. Note that the set H is a
2-dimensional PCl-manifold transversally intersecting each face of every cell of the
subdivision /(:*. Also note that p-l(j) is a connected component of jJ and a
2-dimensional Cl-manifold with a boundary. Hence from the proof of Theorem 4.3 it
suffices to show that P-I is a diffeomorphism for each Zj Jo.

We have already seen that p is a homeomorphism from Lemma 4.1(i) in this case.
Since p-l(g) is a 2-dimensional Cl-manifold with a boundary, there exist two

linearly independent tangent directions for each point in p-l(j). Now it suffices to
show that projections of these tangent directions to (x, t)-space (Rn x R2) are still
linearly independent.

Let Tz denote a tangent space of p-(-j) at z (it is 2-dimensional). Then it is
clear that DH(zlYjg)w 0 for each w e Tz. Now suppose that there exist w
(/, /1, t’l) and w2 (/2, )2, t) in Tz such that Wl and w2 are linearly independent but
the projections of these directions to (x, t)-space are linear dependent. Without loss
of generality, we may assume that w2 (0, ]2, 0) (note that w2 0), and DH(zlgj
is of the form

DH(zIjj) -AJ 0 OH/Ot =: -A
0 E

K OH/Or

Note that Zj 0, so that the (n + m) m submatrix K has full column rank.
Therefore, /2 0 since DH(zlYgg)w2 Kj2 O. Hence w2 0, which contradicts
the fact that w2 0. Thus, the projection of the basis of Tz spans R2. Hence p-11j
is diffeomorphic.

Consequently, the set is a 2-dimensional generalized creased manifold without
a boundary.

5. Structure of the stationary solution set: II. In this section we show that
merely Conditions 1 and 2 together already guarantee that the stationary solution set

is a 2-dimensional topological manifold.
THEOREM 5.1. Under Conditions 1 and 2 the set is a 2-dimensional topological

manifold without a boundary.
Proof. If Condition 3 holds at all points (x,t) in , the assertion is proved

in Theorem 4.3. So we assume that there exists some point (x,t) in at which
Condition 3 is violated. Let f {(x, t) " corank Ajo(,)(x t) > 0} (we assume
that f is not empty). Note that f is a closed subset of . Let (x, t) be in f. If for
any Zj (J c_ M) with (x, t) e j there exists some neighborhood U of (x, t) such that
rankAj(x’, t’) rankAg(x, t) for each point (x’, t’) of-2jNU (we call this point (x, t)
an element of Rel Int f), then the assertion of this theorem is clear from Theorem 4.3
at point (x, t) (at each point of RelInt f).

We have only to show the case for which (x, t) is in 0f (-- f\Rel Int f) (i.e., for
some Zj (J c_ M) with (x, t) e j and for any small neighborhood U of (x, t) there
exists some point (x’,t’) Zj U such that rankAj(x,t) < rankAj(x’,t’)). First,
assume that corankAj(x,t) 1 and that p-(x, t) is a line segment (it may be a

singleton, but it is clear for that case).
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(i) Case 1 ((x0, to) 0 is an isolated point in ; see Fig. 5.1). In this case we may
assume that p- (x0, to) is a line segment. Thus we may choose some neighborhood
U of p- (x0, to) in H and some chart from U to some neighborhood V of an interval
I-- [-1, 1] (0} in R2 that maps the line segment p-(xo, to) onto I.

Let be a continuous map from V onto some neighborhood of the origin in R2

such that (x) (d(x, I) cos(arg x), d(x, I) sin(arg x)), where d(x, I)
x’ e I} and arg x is an argument of x, i.e., x/llxll (cos(arg x),sin(arg x)). This
maps I to the origin and maps R2\I to R2\(0} homeomorphically. Note that p is a
continuous map from p-(xo, to) to (xo, to) and that it locally maps II\p-(xo, to) to
\(x0, to) homeomorphically. Thus, we conclude that is a 2-dimensional topological
manifold in the neighborhood of (x0, to). (Note that even if there exist an infinite
number of points in 0 that are isolated points in , this assertion remains true.)

(ii) Case 2 ((xo, to) Ot is an accumulation point in ). In this case the following
two cases may occur: either ((xo, to)} is a path-connected component in , or it is
not.

Subcase 2.1 (((x0,t0)} is not a path-connected component of ; see Fig. 5.2). In
this case we almost can use the same argument that we used in Case 1. We may
choose some neighborhood U of p-(xo, to) in H and some chart from U to some
neighborhood V of an interval I [-1, 1] (0} in R2 that maps the line segment
p-(xo, to) onto I. In this case p-(x,t) is a line segment for all points (x,t) of , so
that p- (12) is a ruled surface with a boundary. We may assume that the chart maps
p-() U to I’ [-1, 1] (-x), 0] Y. Choose a continuous map given in Case
1. In this case we can identify two points of 0(I). Thus we conclude that is a
2-dimensional topological manifold in the neighborhood of (xo, to). (Note that, even
if there exists an infinite number of points in 0 that are path-connected with some
other points in , this assertion is still true.)

Subcase 2.2 (((x0,t0)} is a path-connected component of ; see Fig. 5.3). We
may assume that is a sequence ((xi,ti)}i=l,2 of the points that accumulates to
(xo, to). Let li be the line segments p-(xi,ti) (i 1,2,...), and let lo be the line
segment p-(xo, to). As in Case 1, we may choose some neighborhood U of lo and
some chart from U to some neighborhood V of an interval I [-1, 1] (0} in R2
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___- ,t)

FIG. 5.2.

that maps the line segment 10 onto I since H is locally flat in U. We may assume that
line segments li (i 1, 2,...) are in U and that they converge to 10.

Note that V is homeomorphic to the interior of a disc 02. By identifying its
boundary with the boundary of another disc 02 we obtain a sphere S2. Since l0 is
1-dimensional manifold (with two end points) in the compact 2-dimensional manifold
S2, if we delete 10, then we obtain R2 and li’s are 1-dimensional manifolds (with
two end points) that are discrete from each other in this space (divergent to
Therefore, each li (i 1, 2,...) is reduced to Case 1, and we may choose a continuous
map from R2 to R2 that maps li to some point {xi} for each i 1,2,... that
diverges to {oc} and maps R2\ t21 li to R2\ tAl {xi} homeomorphically. Next, we
identify l0 with {oc} and we obtain a sphere S2, again. Last, we separate a closed
disc from S2, and we obtain an open disc (homeomorphic to V).

Now p maps line segment li p-(xi, ti) to (xi, ti) for i 0, 1,2,... and
maps H\ [A0 p-(xi, ti) to 5]\ (J0 {(xi, ti)} homeomorphically. Thus we conclude
that 5] is a 2-dimensional topological manifold in the neighborhood of (x0, to).

The case corank Aj(x, t) 2 is clear from an argument similar to the one above.
Thus each connected component of 5] is a 2-dimensional topological manifold without
boundary.

Appendix. LEMMA A.1 (for the proof of Lemma 4.2). Let N be an n x n
symmetric matrix, and let Ak be an n x k matrix (n

_
k). Let M be an (n + k) x

(n + k 2) matrix of the form

N A-2 )M= o

where Ak-2 is an n x (k- 2) matrix with the first (k- 2) columns of Ak (k >_ 2).
Suppose that M is of full rank (i.e., rankM n -b k- 2). Then there exists an index
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FIG. 5.3.

set J with (1,...,k- 2} c_ J C_ (1,...,k} such that

o

is nonsingulr, where A
submt.

Pro@ We are interested only in the rank condition, and so we can use an ele-
mentary gransformation freely. Le rank A k- r(r 0, 1 or 2). Withou loss of
generality, we may sume

A=( Ek-rO O)
is an n k matrix and that

Ak-2-- ( Ek-2I0
is an n (k- 2) matrix (since M is of full rank, so is Ak-2).

Thus, we obtain

N Ek-2 0
0

rankrankM rank
Ek-r 0 Ek-r

0

C
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where C is an (n- k + 2) x (n- k + r) matrix. Note that C is a lower-right submatrix
of N, and hence the (n k + r) x (n k + r) lower (square) submatrix D of C is
symmetric. Let rank D s. Since M is of full rank, so is C. We may assume

0 0

Remember that the lower square submatrix of N is symmetric.
Let AJ be the first (2k n 2r + s) columns of A. Set 2k n 2r + s.

Then we have the form

AJ’T O
E

Therefore, the assertion is clear.

En-k-Pr-s

Sn-k-r-s

Acknowledgments. The authors thank two anonymous referees for useful com-
ments and suggestions.

REFERENCES

[1] K. BANK, J. GUDDAT, D. KLATTE, B. KUMMER, AND K. TAMMER, Nonlinear Parametric
Optimization, Akademie-Verlag, Berlin, 1982.

[2] C. BERGS, Topological Spaces--including a Treatment of Multi-Valued Functions, Vector
Spaces and Convexity, Macmillan, New York, 1963.

[3] C. G. GAUVIN, A necessary and suflJcient regularity condition to have bounded multipliers in
nonconvex programming, Math. Programming, 12 (1977), pp. 136-138.

[4] H. TH. JONGEN, P. JONKER, AND F. TWILT, On one-parameter families of sets defined by
(in)equality constraints, Nieuw Arch. Wisk. (3), 30 (1982), pp. 307-322.

[5] Nonlinear Optimization in Rn, I: Morse Theory, Chebychev Approximation, Peter Lang
Verlag, Frankfurt, 1983.

[6] ., Critical sets in parametric optimization, Math. Programming, 34 (1986), pp. 333-353.
[7] Nonlinear Optimization in Rn, II: Transversality, Flows, Parametric Aspects, Peter

Lang Verlag, Frankfurt, 1986.
[8] One-parameter families of optimization problems: Equality constraints, J. Optim. The-

ory Appl., 48 (1986), pp. 141-161.
[9] , Parametric optimization: The Kuhn-Tucker set, in Parametric Optimization and Re-

lated Topics, Vol. 35, J. Guddat, .H. Th. Jongen, B. Kummer, and F. Noika, eds.,
Akademie-Verlag, Berlin, 1987, pp. 196-208.

[10] H. TH. JONGEN AND G. W. WEBER, On parametric nonlinear programming, Ann. Oper. Res.,
27 (1990), pp. 253-2s4.

[11] M. KOJIMA, Strongly stable stationary solutions in nonlinear programs, in Analysis and Com-
putation of Fixed Points, S. M. Robinson, ed., Academic Press, New York, 1980, pp. 93-138.

[12] M. KOJIMA AND R. HIRABAYASHI, Continuous deformations of nonlinear programs, Math.
Programming Stud., 21 (1984), pp. 150-198.

[13] D. G. LUENBERGER, Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1973;
2nd ed., 1984.

[14] O. L. MANGASARIAN AND S. FaOMOVITZ, The Fritz John necessary optimality conditions
in the presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967),
pp. 37-47.

[15] A. B. POORE AND C. A. TIAHRT, Bifurcation problems in nonlinear parametric programming,
Math. Programming, 39 (1987), pp. 189-205.

[16] S. M. ROBINSON, Generalized equations and their solutions, part II: Applications to nonlinear
programming, Math. Programming Stud., 19 (1982), pp. 200-221.



STRUCTURE OF K-K-T SET WITH TWO PARAMETERS 581

[17] S. SCHECTER, Structure of the first-order solution set for a class of nonlinear programs with
parameters, Math. Programming, 34 (1986), pp. 84-110.

[18] S. SHINDOH, R. HIRABAYASHI, AND T. MATSUMOTO, Structure of solution set to nonlinear
programs with two parameters, I: Change of stationary indices, in Parametric Optimization
and Related Topics II, J. Guddat, H. Th. Jongen, B. Kummer, and F. Noika, eds.,
Academie-Verlag, Berlin, 1989, pp. 168-175.

[19] C. A. TIAHRT AND A. B. POORE, A bifurcation analysis of the nonlinear parametric program-
ming problem, Math. Programming, 47 (1990), pp. 117-141.



SIAM J. OPTIMIZATION
Vol. 3 No. 3, pp. 582-608 August 1993

()1993 Society for Industrial and Applied Mathematics
0O9

NUMERICAL EXPERIENCE WITH LIMITED-MEMORY
QUASI-NEWTON AND TRUNCATED NEWTON METHODS*
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T. SCHLICKII, AND F. X. LE DIMET**

Abstract. Computational experience with several limited-memory quasi-Newton and trun-
cated Newton methods for unconstrained nonlinear optimization is described. Comparative tests
were conducted on a well-known test library [J. J. Mor, B. S. Garbow, and K. E. Hillstrom, ACM
Trans. Math. Software, 7 (1981), pp. 17-41], on several synthetic problems allowing control of the
clustering of eigenvalues in the Hessian spectrum, and on some large-scale problems in oceanography
and meteorology. The results indicate that among the tested limited-memory quasi-Newton methods,
the L-BFGS method [D. C. Liu and J. Nocedal, Math. Programming, 45 (1989), pp. 503-528] has the
best overall performance for the problems examined. The numerical performance of two truncated
Newton methods, differing in the inner-loop solution for the search vector, is competitive with that
of L-BFGS.

Key words, limited-memory quasi-Newton methods, truncated Newton methods, synthetic
cluster functions, large-scale unconstrained minimization

AMS subject classifications. 90C30, 93C20, 93C75, 65K10, 76C20

1. Introduction. Limited-memory quasi-Newton (LMQN) and truncated New-
ton (TN) methods represent two classes of algorithms that are attractive for large-scale
problems because of their modest storage requirements. They use a low and adjustable
amount of storage and require the function and gradient values at each iteration. Pre-
conditioning of the Newton equations may be used for both algorithms. In this case,
additional function information (e.g., a sparse approximation to the Hessian) may
also be required at each iteration. LMQN methods can be viewed as extensions of
conjugate-gradient (CG) methods in which the addition of some modest storage serves
to accelerate the convergence rate. TN methods attempt to retain the rapid conver-
gence rate of classical Newton methods while economizing storage and computational
requirements so as to become feasible for large-scale applications. They can be par-
ticularly powerful when structure information of the objective function is exploited

LMQN originated from the works of Nazareth [21] and Perry [25], [26] and were
further extended by Shanno [31], [32] resulting in the CONMIN code of Shanno and
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Phua [33]. Many researchers, including Buckley [1], Nazareth [22], Nocedal [23], Gill
and Murray [8], and Nash [15]-[17], studied these methods. Gill and Murray pro-
posed an LMQN method with preconditioning whose code has recently been imple-
mented in routine E04DGF of the NAG library [14]. Buckley and ienir [3], [4] pro-
posed a variable-storage CG algorithm. The method becomes the usual Shanno-Phua
LMQN when the available storage is minimal. Their method was implemented in code
BBVSCG, recently updated and improved by Buckley [2]. Morerecently, the L-BFGS
method of Liu and Nocedal [12] based on the limited-memory BFGS method described
by Nocedal [23] was developed. L-BFGS is available as routine VA05AD of the Hat-
well software library. Two TN methods proposed by Nash [15]-[17] and by Schlick
and Fogelson [29] have also been made available by the authors for distribution. Here
the codes were tested on the variational data assimilation problems in meteorology.

Several large-scale unconstrained minimization algorithms have been previously
compared. Navon and Legler [19] compared a number of different CG methods for
problems in meteorology and concluded that the Shanno-Phua [33] LMQN algorithm
was the most adequate for their test problems. The studies of Gilbert and Lemar6chal
[7] and of Liu and Nocedal [12] indicated that the L-BFGS method is among the
best LMQN methods available to date. Nash and Nocedal [18] compared the L-BFGS
method with the TN method of Nash [15]-[17] on 53 problems of dimensions 102 to 10a.
Their results suggested that performance is correlated with the degree of nonlinearity
of the objective function: for quadratic and approximately quadratic problems the TN
algorithm outperformed L-BFGS, whereas for most of the highly nonlinear problems
L-BFGS performed better.

The aim of this paper is to compare and analyze the performance of several
LMQN methods. The most representative LMQN method is then compared with TN
methods for large-scale problems in meteorology. We focus on various implementation
details, such as step-size searches, stopping criteria, and other practical computational
features. In 2 we briefly review the tested LMQN methods. The relationships of the
different methods to one another are discussed along with practical implementation
details. TN methods are briefly described in 3. In 4 we describe the various test
problems used in the Mor, Garbow, and Hillstrom [13] package, the synthetic cluster
problem, and some real-life large-scale problems ( 104 variables) from oceanography
and meteorology. Discussion of the performance of the different LMQN methods
and some general observations are presented in 5. In 6 the performance of TN
methods for the optimal control problems in meteorology is presented. Summary and
conclusions are presented in 7.

2. LMQN algorithms. The behavior of CG algorithms with inexact line
searches may depart considerably from theoretical expectations. For this reason, meth-
ods such as LMQN compute a descent direction but impose much milder restrictions
on the accepted step length.

LMQN algorithms have the following basic structure for minimizing J(x), x
TN:

1) Choose an initial guess x0 and a positive definite initial approximation to the
inverse Hessian matrix H0 (which may be chosen as the identity matrix).

2) Compute

and set

go g(xo) VJ(x0),

(2.2) do -H0g0.
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3) For k 0, 1,..., set

(2.3) Xk+l Xk + okdk

where ak is the step size (see below).
4) Compute

(2.4) gk+l TJ(xk+l).

5) Check for restarts (discussed below).
6) Generate a new search direction dk+l by setting

(2.5) dk+ :--Hk+lgk+.

7) Check for convergence: If

(2.6)

stop, where e 10-5. Otherwise, continue from step 3.
LMQN methods combine the advantages of the CG low storage requirement with

the computational efficiency of the quasi-Newton (Q-N) method. They avoid storage
of the approximate Hessian matrix by building several rank-one or rank-two matrix
updates. In practice, the BFGS update formula [12], [24] forms an approximate inverse
Hessian from H0 and k pairs of vectors (q, pi), where qi gi+l-gi and pi Xi+l-Xi
for i > 0. Since H0 is generally taken to be the identity matrix or some other
diagonal matrix, the pairs (qi, pi) are stored instead of Hk, and nkgk is computed by
a recursive algorithm. All the LMQN methods presented below fit into this conceptual
framework. They differ only in the selection of the vector couples (qi, pi), the choice
of H0, the method for computing nkgk, the line-search implementation, and the
handling of restarts.

2.1. CONMIN. The LMQN method of Shanno and Phua [33] is a two-step
LMQN-like CG method that incorporates Beale restarts. Only seven vectors of storage
are necessary.

Step sizes are obtained by using Davidon’s [5] cubic interpolation method to
satisfy the following Wolfe [34] conditions:

(2.7) J(xk + akdk) <_ J(xk)+/’(kgkTdk,

(2.s) VJ(xk +
gTdk

where/3’ 0.0001 and/ 0.9.
The following restart criterion is used:

(2.9) TIg+xgkl > o.211g+ll

The new search direction dk+l, defined by (2.5), is obtained by setting
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If a restart is satisfied, (2.5) is changed to

(2.11) dk+l --Itikgk+l,

where

(2.12) /:/k 7t (I-- ptqtT +qtptT qtTqt PiPiT) PiPiT

Here the subscript t represents the last step of the previous cycle for which a line
search was made. The parameter Vt pTqt/qTqt is obtained by minimizing the
condition number H-1Ht+l [33].

The Shanno and Phua method implemented in CONMIN uses two couples of vec-
tors q and p to build its current approximation of the Hessian matrix. The advantage
of CONMIN is that it generates descent directions automatically without requiring
exact line searches as long as (qk, Pk) are positive at each iteration. This can be
ensured by satisfying the second Wolfe condition (2.8) in the line search. However,
CONMIN cannot take advantage of additional storage that might be available.

2.2. E04DGF. The Gill and Murray nonlinear unconstrained minimization al-
gorithm is a two-step LMQN method with preconditioning and restarts. The amount
of working storage required by this method is 12N real words of working space.

The step size is determined as follows. Let (aJ, j 1, 2,..., define a sequence
of points that tend in the limit to a local minimizer of the cost function along the
direction dk. This sequence may be computed by means of a safeguarded polynomial
interpolation algorithm. A choice of the initial step length is the one suggested by
Davidon [5]:

(2.13) aO (--2(Jkl Jest)/gdk if-2(Jk- Jest)/gdk <_ 1,
if--2(Jk Jest)/gdk > 1.

Here Jest represents an estimate of the cost function at the solution point. Let t be
the first index of this sequence that satisfies

(2.14) TIVJ(x + atdk)Tdkl <_ --rigk dk, 0 <_ ] <_ 1.

The method finds the smallest nonnegative integer r such that

1
(2.15) Jk J(xk + 2-ratdk) >_ --2-rat#g’dk, 0

_
#

_ ,
and then sets ak s-rat.

A restart is required if one of the Powell restart criteria (2.9) or the condition

(2.16) T d 2-1.2llgk+lll _< gk+l k+l

__
-0.8llgk+llle

is satisfied [27].
The new search direction is generated by (2.5), where Hk+l is calculated by the

following two-step BFGS formula:

1
(Ulqp" + pq’U1)+ qTpk q,p(2.17) U2 U- q,p----- 1 + pp
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1 I qTU2q )1 (U2qp" + pkqkTU2)+ q,p 1 + qp pp(2.18) Hk+l U2 qp
If a restart is indicated, the following self-scaling update method [31], [32] is used
instead of U2:

where 7 qtTpt/qtTUlqt and U1 is a diagonal preconditioning matrix rather than
the identity matrix.

2.3. L-BFGS. The LMQN algorithm L-BFGS [12] was chosen as one of the
candidate minimization techniques to be tested since it accommodates variable stor-
age, which is crucial in practice for large-scale minimization problems. The method
abandons the restart procedure. The update formula generates matrices by using in-
formation from the last m Q-N iterations, where m is the number of Q-N updates
supplied by the user (generally, 3 <_ m <_ 7). After 2Nm storage locations are ex-
hausted, the Q-N matrix is updated by replacing the oldest information by the newest
information. Thus the Q-N approximation of the inverse Hessian matrix is continu-
ously updated.

In the line search a unit step length is always tried first, and only if it does
not satisfy the Wolfe condition is a cubic interpolation performed. This ensures that
L-BFGS resembles the (full-memory) BFGS method as much as possible while being
as economical as possible for large-scale problems, for which the quadratic termination
properties are generally not very meaningful.

Hk+l of (2.5) is obtained by the following procedure. Let rh min{k,m- 1}.
Then update H0 h + 1 times by using the vector pairs (U, P)=k-k, where Pk
Xk+l xk, qk gk+l gk, and

+ PkPkP.

Here Pk 1/(q’pk), Vk I- PkqkP, and I is the identity matrix.
Two options for the above procedure are offered in the code. One performs a more

accurate line search by using a small value for/ in (2.8) (e.g., f 10-2 or 10-3);
this is advantageous when the function and gradient evaluations are inexpensive. The
other uses simple scaling to reduce the number of iterations. In general it is preferable
to replace H0 of (2.20) by I-I as one proceeds, so that H0 incorporates more up-to-date
information according to one of the following:

MI: H H0 (no scaling).
M2" H 7oH0, 70 q0Tp0/llq0112 (only initial scaling).

TM3: H 7Ho, 7 qk Pk/llqkll 2"
Since Liu and Nocedal [12] reported that M3 is the most effective scaling, we use

it in all our numerical experiments.
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2.4. BBVSCG. BBVSCG implements the LMQN method of Buckley and Lenir
and may be viewed as an extension of the Shanno and Phua method. Extra storage
space can be accommodated.

The method begins by performing the BFGS Q-N update algorithm. When all
available storage is exhausted, the current BFGS approximation to the inverse Hes-
sian matrix is retained as a preconditioning matrix. The method then continues by
performing preconditioned memoryless Q-N steps, equivalent to the preconditioned
CG method with exact line searches. The memoryless Q-N steps are then repeated
until the criterion of Powell [27] indicates that a restart is required. At that time all
the BFGS corrections are discarded and a new approximation to the preconditioning
matrix begins.

For the line search, when k _< m, a step size of ( 1 is tried. A line search
using cubic interpolation is applied only if the new point does not satisfy pTqk > 0.

Td dTFor k m, a -g / Hd. At least one quadratic interpolation is performed
before cz is accepted.

The search direction is calculated by d+ -Hg instead of by 2.5, where
H is obtained as follows.

(i) If k 1, use a scaled Q-N BFGS formula:

(2.21) H1 0
O0qkP" +PkqkTO0(p,qk+ 1 + q’O0q)PP’p,qP’q

where O0 is defined as Oo (w0/v0)H0, wo p0Tq0, and v0 qoTH0qo.
(ii) If 1 < k _< m, use the Q-N BFGS formula:

Hk_qkp" + pq’H_ q _qk ppk
T

(2.22) Hk Hk-1 T - 1 +
Pk qk pkTqk PkTqk

(iii) If k > m, use the preconditioned memoryless Q-N formula:

T T ((2.23) Hk Hm Pkqk Hm + Hmqkpk
Pkq" + qk Hmqk PkpT

where Hm is used as a preconditioner.
The matrix Hk need not be stored since only matrix-vector products (Hkv) are

required. These are calculated from

Pk Vuk(2.24) Hkv-- Hqv- u’v 1 +

Tnwhere vk qk qqk, wk p’qk, and uk nqqk. The subscript q is either k 1
or m, depending on whether k <_ m or k > m. If one applies (2.24) recursively, the
following formula is obtained:

(2.25) Hqv=H0v- 1+-- uj

The total storage required for the matrices H1,..., Hm consists of m(2N + 2) loca-
tions.
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If k > m, a restart test is implemented. Restarts will take place if (2.9) and (2.16)
are satisfied. In that case I-Ira is discarded, k is set to 1, and the algorithm continues
from step 1.

Both the L-BFGS and Buckley-Lenir methods allow the user to specify the num-
ber of Q-N updates m. When m 1, BBVSCG reduces to CONMIN, whereas when
m oo, both L-BFGS and the Buckley-Lenir methods are identical to the Q-N BFGS
method (implemented in the CONMIN-BFGS code).

3. TN methods. Just as LMQN methods attempt to combine modest storage
and computational requirements of CG methods with the convergence properties of
the standard Q-N methods, TN methods attempt to retain the rapid (quadratic)
convergence rate of classic Newton methods while making storage and computational
requirements feasible for large-scale applications [6]. Recall that Newton methods for
minimizing a multivariate function J(xk) are iterative techniques based on minimizing
a local quadratic approximation to J at every step. The quadratic model of J at a
point xk along the direction of a vector dk can be written as

(3.1) J(xk + dk) J(xk)+ gTdk + 1d’Hd,
where gk and I-I denote the gradient and Hessian, respectively, of J at Xk. Mini-
mization of this quadratic approximation produces a linear system of equations for
the search vector dk that are known as the Newton equations:

(3.2) Hkdk --gk.

In the modified Newton framework a sequence of iterates is generated from x0 by the
rule xk+l Xk + akdk. The vector dk is obtained as the solution (or approximate
solution) of the system (3.2) or, possibly, a modified version of it, where some positive
definite approximation to I-Ik, Hk, replaces Hk.

When an approximate solution is used, the method is referred to as a truncated
Newton method because the solution process of (3.2) is not carried to completion. In
this case dk may be considered satisfactory when the residual vector r Hkdk + gk

is sufficiently small. Truncation may be justified since accurate search directions are
not essential in regions far away from local minima. For such regions any descent
direction suffices, and so the effort expended in solving the system accurately is often
unwarranted. However, as a solution of the optimization problem is approached, the
quadratic approximation of (3.1) is likely to become more accurate and a smaller
residual may be more important. Thus the truncation criterion should be chosen to
enforce a smaller residual systematically as minimization proceeds. One such effective
strategy requires

where

(3.4) r] min , IIgll c _< 1.

Indeed, it can be shown that quadratic convergence can still be maintained [6]. Other
truncation criteria have also been discussed [15], [16], [29].

The quadratic subproblem of computing an approximate search direction at each
step is accomplished through some iterative scheme. This produces a nested itera-
tion structure: an outer loop for updating xk and an inner loop for computing dk.
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The linear CG method is attractive for large-scale problems because of its modest
computational requirements and theoretical convergence in at most N iterations [9].
However, since CG methods were developed for positive definite systems, adaptations
must be made in the present context where the Hessian may be indefinite. Typically,
this is handled by terminating the inner loop (at iteration q) when a direction of neg-
ative curvature is detected (dqTHkdq < , where is a small positive tolerance such
as 10-10); an exit direction that is guaranteed to be a descent direction is then chosen
[6], [29]. An alternative procedure to the linear CG for the inner loop is based on
the Lanczos factorization .[9], which works for symmetric but not necessarily positive
definite systems. It is important to note that different procedures for the inner loop
can lead to a very different overall performance in the minimization [28].

Implementations of two TN packages are examined in this work: TN1, developed
by Nash [15]-[17], which uses a modified Lanczos algorithm with an automatically
supplied diagonal preconditioner, and TN2 (TNPACK) developed by Schlick and Fo-
gelson [29] (see also [30]), designed for structured separable problems for which the
user provides a sparse preconditioner for the inner loop. In TN2 a sparse modified
Cholesky factorization based on the Yale Sparse Matrix Package is used to factor the
preconditioner, which need not be positive definite (computational chemistry prob-
lems, where such situations occur, provided motivation for the method). Two modi-
fied Cholesky factorizations have been implemented in TN2 [28]. Although we have
not yet formulated a preconditioner for our meteorology application, we intend to fo-
cus future efforts on formulating an efficient preconditioner for this package. Here we
report only results for which no preconditioning is used in TN2. Although it is clear
that performance must suffer, our results provide further perspective. Full algorithmic
descriptions of the TN codes can be found in the original cited works.

4. Testing problems. Mor, Garbow, and Hillstrom [13] developed a relatively
large collection of carefully coded test functions of different degrees of difficulty and
designed very simple procedures for testing the reliability and robustness of the opti-
mization software. We used these problems to test the different LMQN methods.

The test problems of [13] involve Hessians of varying spectral condition numbers
and eigenvalues, and the eigenvalues are generally of unknown and uncontrollable dis-
persion. A synthetic test function with a controllable spectrum of clustered eigenvalues
was thus also tested.

Two representative real-life large-scale unconstrained minimization applications
from meteorology and oceanography were also examined to compare the performances
of the LMQN and TN methods. The number of variables for these large-scale problems
ranges from 7330 to 14,763.

4.1. Standard library test problems. All of the 18 test problems of Mor(,
Garbow, and Hillstrom for unconstrained minimization have the following composi-
tion:

m

(4.1) J(x)=f2(x), m<_N, xEng.
i--1

These problems were all minimized by using both the recommended standard
starting points x0 as well as by using nonstandard starting points, taken as 10x0 and
100x0. The vectors x0 and 100x0 are regarded as being close to and far away from
the solution, respectively; it is not unusual for unconstrained minimization algorithms
to succeed with an initial guess of x0 but fail with an initial guess of either 10x0 or

100x0.
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4.2. Synthetic cluster function problems. Consider the quadratic objective
function

1
(4.2) J(x)-- xTHx,
where x is a vector of N variables and H is an N x N positive definite matrix of real
entries. There exists then a real orthogonal matrix Q such that

(4.3) QTHQ diag(1,..., N),

where the ith column of Q is the ith eigenvector corresponding to the ith eigenvalue
Ai. The objective function can be written as

(4.4) J(x) xTQDQTx.
The orientation and shape of this N-dimensional quadratic surface is a function

of Q and D: the directions of the principal axes of this hyperellipsoid are determined
by the directions of the eigenvectors, and the lengths of the axes are determined by
the eigenvalues. The axes’ lengths are inversely proportional to the square root of the
corresponding eigenvalues.

Consider a quadratic objective function defined by

1 (Diixi)2(4.5) J(x)
i=l

where

i- Mk- l-J 1Dk) ck,(4.6) Dii 1 + [-J + 1

[ represents the floor function, Nk, Mk, and K are some positive integers, and ck
and Dk are some real values satisfying the following restrictions:

K

I <_K <_N,

Cl < C2 < < CK, 0 <_ Dk < 1,

k

By comparing (4.7) with (4.4) we see that the function (4.5) has the standard basis
eigenvectors (since Q in this case was taken to be equal to the identity matrix I) and
K clusters of eigenvalues with N eigenvalues in the kth cluster, respectively. The kth
cluster is located around the position c with interval width D, which is defined in
a fractional form in terms of ck (0.0 <_ Dk < 1.0). For example, D 0.5 implies an
interval width of [0.5ck, 1.5ck].
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This function yields an eigenvalue system of homogeneous dispersion within each
cluster, i.e., each cluster consists of equally spaced eigenvalues. The choice Q I
determines an orientation of the hyperellipsoid in which the principal axes are aligned
parallel to the x coordinates. The advantage of this choice is that, without loss of
generality, the objective function and its gradient vector are computationally very
simple even for large N, which permits testing on very large problems at a relatively
low cost. The gradient components for this choice are given by

Gi (Dii)2xi, i 1,...,N,

and the condition number of the Hessian is given by

2

(4.9) ca ’Oll ]

As shown below, we can test the LMQN methods with a variety of setup values for
the various parameters (N; K; Nk, k 1,..., K; ck, k 1,..., K; Ok, k 1,..., K).

Example 1. Let N 21; K 1; N1 N; D1 A; C1 1.0. These parameters
yield N-dimensional hyperellipsoidal contours. The condition number of this system
is ca ((11 + 10A)/(ll- 10A))2.

Example 2. Let N 21;K 2,N1 ll, N2 10;C1 1.0, C2 A;D1
0.2, D2 0.3. These parameters yield a bicluster problem, the condition number
being controlled by ca --((6 + 402)c2/(6- 501)cl)2.

4.3. Oceanography problem. This problem is derived from an analysis of the
monthly averaged pseudo-wind-stress components over the Indian Ocean. We attempt
to analyze the wind over a region by using the following available information: (a)
ship-reported averages on a 1 resolution mesh and (b) a 60-yr pseudostress clima-
tology. The objective function is a measure of discrepancy in the data according to
certain prescribed conditions, which may be dynamically or statistically motivated.
According to climatological observations, the wind pattern should be smooth. Some
measure of roughness and some measure of lack of fit to climatology should also be
included in the objective function [11].

To formulate the problem, we used the following objective function:

where Txo and Tyo are the components of the 1 mean values determined by the ship
wind reports; Txc and Tuc are climatology pseudostress vectors, respectively; x
u. (u2 + v2) 1/2 and TU V. (U2 + V2) 1/2 are the resultant eastward and northward
pseudostress components, respectively; v represents the wind vector; and L is a length
scale (chosen to be 1 latitude), which makes all the terms in the objective cost
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function dimensionally uniform and scales them to the same order of magnitude. The
coefficients (actually weights) 7, A,/, and ( control how closely the direct minimization
fits each constraint. The first term in J expresses the closeness to the input data. The
second measures the fit to the climatology data values for that month. The third is a
smoothing term for data roughness and controls the radius of influence of an anomaly
in the input data. The fourth and the fifth terms are boundary-layer kinematic terms
that force the results to be comparable to the climatology.

A discretization of the domain 2 of 3665 mesh points produces 2 x 3665 7330
variables.

4.4. Meteorology problems. Combining in an optimal way new information
(in the form of measurements) with a priori knowledge (in the form of a forecast) is a
key idea of variational data assimilation in numerical weather prediction. The object
is to produce a regular, physically consistent two- or three-dimensional representation
of the state of the atmosphere from a series of measurements (called observations)
that are heterogeneous in both space and time. This approach is implemented by
minimizing a cost function measuring the misfit between the observations and the
solution predicted by the model.

Below, a two-dimensional limited-area shallow-water-equations model is used to
evaluate a quadratic objective function. The equations may be written as the following
(see [20] for details):

(4.11a)
Ou Ou Ou
o--i + + + =o,

(4.11b)
Ov Ov Ov 0+ + vN + + N o,

(4.11c) 0 0 0 + =0,

where f is the Coriolis parameter u, v are the two components of the velocity field,
and is the geopotential field; both fields are spatially discretized with a centered-
difference scheme in space and an explicit leap-frog integration scheme in time. A
rectangular domain of size L 6000 km, D 4400 km is used along with discretization
parameters Ax 300 km, Ay 220 km, and At 600 s.

This model is widely used in meteorology and oceanography since it contains
most of the physical degrees of freedom (including gravity waves) present in the more
sophisticated three-dimensional primitive-equation models. It is computationally less
expensive to implement, and results with this model can be expected to be similar to
those obtained from a more complicated primitive-equation model. The gradient of
the objective function with respect to the control variables is calculated by the adjoint
technique [20].

Two experiments are conducted here. The first involves a model in which only
the initial conditions serve as the control variables. The second includes both the
initial and boundary conditions as control variables.

The objective function is defined as a simple weighted sum of squared differences
between the observations and the corresponding prediction model values:

N Nv
J W’( bs)2 + Wy -.[(u ubs)2 + (v vb)2],

n=l n=l
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where u, v are the two components of the velocity field, is the geopotential field,
N is the total number of geopotential observations available over the assimilation
window (to, tR), and Nv is the total number of wind vector observations. The quan-
tities 0obs vonbs, and (nbSn are the observed values for the northward wind component,
the eastward wind component, and the geopotential field, respectively, and the quan-
tities un, vn, and Cn are the corresponding computed model values. We and Wv
are weighting factors, taken to be the inverse of estimates of the statistical root-mean-
square observational errors on geopotential and wind components, respectively. Values
of We 10-a m-asa and Wv 10-2 m-2s2 are used. In the first problem the objec-
tive function g is viewed as a function of x0 (u(to), v(to), (t0))T, whereas in the
second J is a function of (x0, v), where v represents a function of time defined on the
boundary.

For the experiments the observational data consist of the model-integrated values
for wind and geopotential at each time step starting from the Grammeltvedt initial
conditions [10] (see Fig. 1). Random perturbations of these fields, performed by using
a standard library randomizer RANF on the CRAY-YMP (shown in Fig. 2), are then
used as the initial guess for the solution. A grid of 21 21 points in space and 60 time
steps in the assimilation window (10 hrs) results in a dimension of the vector of control
variables of 1323 for the initial control problem. Controlling the boundary conditions
of a limited-area model implies storing in memory as control variables all of the three
field variables on the boundary perimeter for all the time steps. The dimension of the
vector of control variables thus becomes 14,763.

Two different scaling procedures were considered: gradient and consistent. The
first scales the gradient of the objective function. The second makes the shallow-
water-equations model nondimensional.

5. Numerical results for LMQN methods. In most of our test problems
(those in [13] and synthetic problems) the computational cost of the function is low
and the computational effort of the minimization iteration sometimes dominates the
cost of evaluating the function and gradient. However, there are also several practical
large-scale problems (for example, the variational data assimilation in meteorology)
for which the functional computation is expensive. We report, therefore, both the
number of function and gradient evaluations and the time required for minimization
of some problems.

Table 1 shows the amount of storage required by the different LMQN methods
for various values of m, the number of Q-N updates, and the dimension N.

The runs below were performed on a CRAY-YMP, for which the unit roundoff
is approximately 10-14. In all tables "Iter" represents the total number of iterations,
"Nfun" represents the total number of function calls, "MTM" represents the total CPU
time spent in minimization, and "FTM" represents the CPU time spent in function
and gradient evaluations.

5.1. Results for the standard library test problems. For the 18 test prob-
lems, the number of variables ranges from 2 to 100. All the runs reported in this
section and 5.2 were terminated when the stopping criterion (2.6) was satisfied. Low
accuracy in the solution is adequate in practice.

In the corresponding tables P denotes the problem number, and the results are
reported in the form

CONMIN-CG/CONMIN-BFGS/E04DGF,
L-BFGS (m- 3)/L-BFGS (m 5)/L-BFGS (m--7),

BBVSCG (m 3)/BBVSCG (m- 5)/BBVSCG (m 7).
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(b)

FIG. 1 Ueopotetlal #eld (a) baaed o the Urammeltedt nitial condltlo ad the id #eld
(b), calculated from the geopotential fields in Fig. l(a) by the geostrophic approximation at the same
time levels. Contour interval is 200 m2s-2 and the value of maximum vector is 29.9 ms-1
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(a)

(b)

FIG. 2 Random perturbation o] the geopotential (a) and the wind (b), fields in Fig. 1. Contour
interval is 500 m2s-2 and the value of maximum vector is 54.4 ms-1.
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TABLE 1

Storage locations (N, dimension of the control variable; m, number of quasi-Newton updates).

ICONMIN-CG CONMIN-BFGS E04DGF L-BFGS BBVSCG
5N+2 N(N+7)/2 14N (2m+2)N+2m (2m+3)N+2m

Table 2 compares the performance of the four LMQN methods from the standard
starting points, with m 3, 5, 7 updates for both L-BFGS and the Buckley-Lenir
method. An "F" indicates failure when the maximum number of function calls (3000)
is exceeded. An "S" indicates failure in the line search. The latter may occur from
roundoff, and a solution may be obtained nonetheless.

The results show that for some problems in which the objective function depends
on no more than three or four variables (such as problems 4, 10, 12, and 16) the
full-memory Q-N BFGS method is clearly superior to the LMQN .methods. For other
problems the LMQN methods display better performance.

For most problems the number of iterations and function calls required decreases
as the number of Q-N updates m is increased in L-BFGS. A dramatic case illustrating
this is the extended Powell singular function (problem 15). The variation of the value
of the objective function and the norm of the gradient with the number of iterations
is shown in Fig. 3. For m 3 the number of iterations and function calls required to
reach the same convergence criteria is (65, 76); for m 5 it is (56, 66), and for m 7
it is (39, 45). The difference between different values of m becomes obvious only after
18 iterations.

BBVSCG usually uses the fewest function calls when m 7. Either m 7 or
m 3 performs best in terms of the number of iterations. Figures 4 and 5 present two
illustrative examples. Figure 4 presents the variation of the value of J and the norm
of VJ for the Wood function (problem 17), and Fig. 5 presents the same variation for
the variable-dimensioned function (problem 6 (N 100)). The differences between
the cases m 5 and m 7 for the two problems are smaller than the corresponding
differences between the m 3 and m 5 cases.

Table 2 also shows that L-BFGS usually requires fewer function calls than does
BBVSCG. This agrees with the experience of Liu and Nocedal [12], who suggested
that BBVSCG gives little or no "speed-up" from additional storage. To investigate
this further, we measure in Figs. 6 and 7 the effect of increasing the storage. We define
the speed-up by using the same definition as did Liu and Nocedal, i.e., the ratio of
function calls required when m 3 and m 7.

We see from these figures that the speed-up of BBVSCG is not smaller than
that of L-BFGS. There are cases for which L-BFGS gains more speed-up than does
BBVSCG (i.e., problems 2, 4, 5, 7a, 9b, 11, 15, 18). However, there are also cases for
which BBVSCG has larger speed-up than does L-BFGS (i.e., problems 7b, 8, 9a, 12,
13, 16, 17). Therefore, the reason that L-BFGS requires fewer function calls cannot
be the difference in speed-up between the two codes.

For problems for which the function and gradient evaluations are inexpensive, we
also examine the number of iterations and the total time required by the two methods.
From Table 2 we see that BBVSCG usually requires fewer iterations and less total
CPU time than does L-BFGS. The more accurate line search in BBVSCG may provide
an explanation. Will a more accurate line search in L-BFGS decrease the number of
iterations? In Table 3 we present the results for L-BFGS (m 7) when the line search
is forced to satisfy (2.8) with/i/--0.01 rather than 0.9.

For most problems (18 out of 21) the number of iterations when L-BFGS is used
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TABLE 2

Eighteen standard library test problems with standard starting points.

P N Iter Nfun MTM FTM
(total CPU time) (function calls’ CPU)

22/28/37 49/31/81 0.0223/0.0238/0.0211 0.0008/0.0005/0.0014
3 28/27/28 35/31/34 0.0278/0.0316/0.0383 0.0006/0.0005/0.0006

25/31/26 42/44/39 0.0229/0.0326/0.0315 0.0007/0.0007/0.0007

2 6

3 3

4 2

5 3

10 2

11 4

12 3

13

14

15

16

17

18

10

100

12

30

100

10

50

100

100

100

100

24/41/48 50/45/100 0.0260/0.0557/0.0301 0.0026/0.0023/0.0051
52/42/35 66/46/42 0.0556/0.0523/0.0513 0.0034/0.0024/0.0021
45/52/38 80/86/55 0.0456/0.0619/0.0516 0.0041/0.0044/0.0029
3/7/4 7/9/11 0.0028/0.0058/0.0070 0.0001/0.0002/0.0002
6/7/7 9/9/9 0.0059/0.0073/0.0074 0.0002/0.0002/0.0002
4/5/4 9/9/8 0.0032/0.0042/0.0031 0.0002/0.0002/0.0001
99/140/167 257/187/433 0.0912/0.1042/0.0770 0.0033/0.0024/0.0051
173/167/169 229/208/215 0.1752/0.2045/0.2461 0.0030/0.0027/0.0028
114/123/136 232/235/231 0.1066/0.135910.1723 0.0030/0.0031/0.0030
11/32/47 31/40/113 0.0109/0.0285/0.0278 0.0010/0.0013/0.0037
30/29/27 40/40/37 0.0310/0.0361/0.0383 0.0013/0.0013/0.0012
19/22/22 36/35/36 0.0175/0.0230/0.0279 0.0012/0.0011/0.0012
6/19/19 13/20/41 0.0052/0.0373/0.0148 0.0002/0.0003/0.0006
19/19/19 20/20/20 0.0187/0.0224/0.0256 0.0003/0.0003/0.0003
14/13/17 26/22/27 0.0129/0.0142/0.0218 0.0004/0.0003/0.0004
10/36/35 21/37/73 0.0224/1.7774/0.0464 0.0004/0.0007/0.0014
36/36/36 37/37/37 0.0733/0.0936/0.1125 0.0007/0.0007/0.0007
15/26/29 37/49/45 0.0288/0.0586/0.0707 0.0007/0.0010/0.0009
215/97/F 432/100/F

2202/396/222 2511/458/255
239/234/201 433/373/289
600/135/F 1208/140/F
F/2049/106 F/2400/1240
572/470/223 1108/800/355
24/71/F 59/80/F
60/59/56 73/69/67

67/48/49 132/87/80
125/17/332 306/26/863
17/21/17 19/23/19
18/17/18 32/25/24
127/F/141 281/F/309
250/250/223 331/308/272
136/146/148 254/256/215
8/10/11 18/15/28
13/13/13 25/25/25
11/11/16 26/22/30
26/35/36 F/36/79
38/22/27 63/43/37
25/24/23 S/48/52
15/16/29 36/21/71
26/24/24 35/32/33
13/13/15 30/27/24
46/42/53 98/52/122
49/48/47 56/54/53
43/54/51 78/91/48
18/36/24 49/50/69
33/35/38 45/46/50
31/30/34 56/48/52
47/42/46 95/43/108
65/56/39 76/66/45
44/49/58 86/79/82
10/15/16 22/16/35
16/14/14 18/15/15
14/16/15 30/25/19
48/36/200 106/43/418
106/93/86 137/119/113
30/24/22 53/42/34
686/465/832 1384/491/1724
1137/853/781 1213/895/821
709/591/698 1393/1110/1318

0.4707/0.2870/2.1152
3.5291/0.7419/0.4794
0.4597/0.4616/0.4111
2.1548/1.1544/3.8358
6.2462/5.7458/3.2839
1.8518/1.4923/0.7219
0.0604/3.5806/0.7649
0.1266/0.1590/0.1824
0.1276/0.1066/0.1271
0.1437/0.0355/0.1997
0.0182/0.0261/0.0236
0.0186/0.0190/0.0228
0.2719/9.3038/0.1596
0.4425/0.5301/0.5577
0.2381/0.2883/0.3168
0.0063/0.0073/0.0097
0.0142/0.0162/0.0177
0.0098/0.0108/0.0191
0.4817/0.0356/0.0231
0.0432/0.0305/0.0387
0.0344/0.0262/0.0279
0.0207/0.0183/0.0330
0.0337/0.0355/0.0402
0.0187/0.0199/0.0222
0.1457/2.1017/0.0749
0.1094/0.1345/0.1574
0.0968/0.1431/0.1422
0.04571.7946/0.0378
0.0706/0.0941/0.1227
0.0576/0.0645/0.0854
0.1247/2.0963/0.0536
0.1367/0.1512/0.1243
0.0854/0.1087/0.1494
0.0078/0.0103/0.0114
0.0150/0.0151/0.0169
0.0130/0.0161/0.0163
0.0497/0.0362/0.0871
0.1073/0.1152/0.1260
0.0272/0.0253/0.0262
8.8249/26.57/9.0296
8.2528/6.6732/6.6005
8.5565/7.2290/9.2365

0.2152/0.0498/1.4839
1.2506/0.2282/0.1276
0.2158/0.1859/0.1440
1.2577/0.1457/3.1262
3.1237/2.4986/1.2903
1.1542/0.8334/0.3697
0.0010/0.0014/0.0512
0.0012/0.0012/0.0011
0.0023/0.0015/0.0014
0.0173/0.0015/0.0484
0.0011/0.0013/0.0011
0.0018/0.0014/0.0014
0.0650/0.6949/0.0712
0.0766/0.0712/0.0628
0.0589/0.0593/0.0498
0.0001/0.0001/0.0002
0.0002/0.0002/0.0002
0.0002/0.0002/0.0002
0.1299/0.0016/0.0034
0.0027/0.0019/0.0016
0.0051/0.0016/0.0014
0.0081/0.0048/0.0161
0.0079/0.0072/0.0075
0.0068/0.0061/0.0054
0.0142/0.0075/0.0176
0.0081/0.0078/0.0077
0.0113/0.0132/0.0107
O. 0006/0.0006/0.0009
O.0005/0.0006/0.0006
0.0007/0.0006/0.0006
0.0014/0.0006/0.0016
0.0011/0.0010/0.0007
0.0013/0.0012/0.0012
0.0002/0.0001/0.0003
0.0001/0.0001/0.0001
0.0002/0.0002/0.0002
0.0009/0.0004/0.0035
0.0011/0.00100.0009
0.0004/0.0003/0.0003
6.7316/2. 39398.4209
5.8978/4.3587/3.9912
6.7916/5.4006/6.5045
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FIG. 3. Variation o[ (a) the objective function and (b) the norm of gradient with the number

of iterations using the L-BFGS method with m equal 7 (solid), 5 (dash dot), and 3 (dotted) for the
test library problem 15.

is then markedly reduced (compare Table 2 L-BFGS (m- 7) with Table 3). Among
those problems, about two-thirds require more function calls, but about one-third
require even fewer function calls.

This implementation of L-BFGS is compared with the CONMIN-CG, E04DGF,
L-BFGS ( -0.9), and BBVSCG codes in Table 4. The "number of wins" describes
the number of runs for which a method required fewest function calls and the number
of runs for which a method required fewest iterations. Because ties occur, numbers
across a row do not add up to the number of different test cases.

We see that L-BFGS (m 7 and 0.01) uses the fewest iterations and that
L-BFGS (m 7 and /-0.9), CONMIN-CG, and BBVSCG use the fewest function
calls. If both the numbers of iterations avd function calls are considered, CONMIN-
CG seems to be the best.
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FIG. 4. Variation of (a) the objective junction and (b) the norm of gradient with the number

of iterations using the BBVSGG method with m equal 7 (solid), 5 (dash dot), and 3 (dotted) for the
test library problem 17.

We also find that L-BFGS still requires the fewest function calls among LMQN
methods that use nonstandard starting points (data not shown).

Therefore, from the experiments with the 18 library test problems, L-BFGS with
a more accurate line search (f 0.01) emerges as the most efficient minimizer for
problems for which the function calls are inexpensive and the computational effort of
the iteration dominates the cost of evaluating the function and gradient. However,
both L-BFGS with inexact line searches and CONMIN are very effective on problems
for which the function calls are exceedingly expensive. E04DGF does not perform as
well as the other LMQN methods.

5.2. Results for the synthetic cluster function problems. For the first
one-cluster hyperellipsoidal problem we tested the sensitivity of all the methods to
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FIG. 5. Variation of (a) the objective function and (b) the norm of gradient with the number

of iterations using the BBVSCG method with m equal 7 (solid), 5 (dash dot), and 3 (dotted) for the
test library problem 6 with dimension 100.

various degrees of ill conditioning by controlling the value of D1, the dispersion interval
in fractional form. Table 5 presents the results for D1 taken to be 0.2, 0.8, and 0.99,
respectively. The corresponding condition numbers are 2.0, 39.9, and 436.8. The
results in Table 5 indicate that L-BFGS performs best when the condition number
is small. As the condition number is increased, L-BFGS requires the most iterations
and function calls, whereas CONMIN-CG uses the fewest function calls. In CPU
time E04DGF is most efficient and CONMIN-BFGS is most expensive (even though
the latter requires fewer iterations and function calls than does L-BFGS). The full-
memory CONMIN-BFGS code spends about four times as much CPU time as does
any other method. This occurs because most iteration time is spent in matrix and
vector multiplications.

For the second bicluster problem we control the condition number by changing
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FIG. 6. Speed-up NFUN(3)/NFUN(7), for L-BFGS method.
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FIG. 7. Speed-up NFUN(3)/NFUN(7), for BBVSCG method.

the position of the center of the second cluster C2. The performance when the value
of the condition number is equal to 8.29, 8.29 102, and 8.29 10a, respectively, is
given in Table 6. We see that when the condition number is equal to 8.29, L-BFGS
uses the fewest function calls. However, the differences among the various methods is
not significant. When the condition number is increased, L-BFGS again turns out to
be the worst. The E04DGF code turns out to be best in all computational respects:
number of iterations, number of function calls, and total CPU time. If we use a more
accurate line search, L-BFGS is competitive with CONMIN-CG, which is the second
best, and is better than BBVSCG.

We also compared the performance of different LMQN methods on a multicluster
problem. The same conclusion can be drawn (table omitted): the E04DGF performs
best. L-BFGS with a more accurate line search and CONMIN-CG come in second,
followed by BBVSCG.
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TABLE 3

Eighteen standard library test problems with standard starting points, using the L-BFGS (m
7) method with more accurate line search.

P N Iter Nfun (total CPU time) (Function calls’
CPU time)

3 19 55 0.0325 0.0009
2 6 19 57 0.0352 0.0029
3 3 3 9 0.0038 0.0002
4 2 98 355 0.1938 0.0047
5 3 11 42 0.0199 0.0014

10 4 14 0.0057 0.0002
6 100 7 27 0.0220 0.0005

12 36 97 0.1130 0.0479
7 30 254 654 1.2429 0.6812
8 100 58 223 0.2491 0.0039

10 61 226 0.1371 0.0127
9 50 155 444 0.5163 0.1027
10 2 8 30 0.0130 0.0002
11 4 13 35 0.0219 0.0012
12 3 14 47 0.0348 0.0107
13 100 41 107 0.1656 0.0134
14 100 23 77 0.0880 0.0010
15 100 19 56 0.0685 0.0008
16 2 9 28 0.0139 0.0002
17 4 29 83 0.0507 0.0007
18 100 704 1451 9.8829 7.2431

TABLE 4

Number of wins on the whole set of 18 test problems with the standard starting points, using
limited memory Q-N methods.

L:BFGS
WINS CONMN E04DGF (9=0.9)

-CG, m=3 m=5 rn=7
Iter 6 0 0 2
Nfun ,5 ,0, 2 3 5

L-BFGS
,(l=0.01),,
m=7
13
2

BBVSO3

m=3 m=5 m=7

0 0 5

TABLE 5

One cluster problem (N 21; K 1; N1 21; C1 1.0; D 0.2, 0.8, and 0.99), the
condition numbers are 2.0, 39.9, and 436.8, respectively.

CONMIN:CG
Conmin-BFGS
E04DGF

L-BFGS
(1=0.9)

BBVSCG

L-BFGS’
(=,10"2

’0.2 0.8 0.99
10’ 21 ’21
11 45 56
10 21 32
10 50 117
10 45 97
10 42 99
10 24 44
10 26 26
10 42 61
10 21 45
10 21 45
10 21 45

Nfun

0.2 0.8 0.’99
2i’ 43 43’
13 47 58
23 ,45 67
12 56 124
12 52 103
12 48 107
19 47 87
17 50 49
15 62 101
23 45 46
23 45 46
23 45 46

(total CPU time
0.2 0.8 0.99
o.o15q 0.0342 0.0342
0.0493 0.2187 0.2679
0.0060 0.0119 0.0179
0.0129 0.0654 0.1515
0.0146 0.0716 0.1535
0.0157 0.0773 0.1855
0.0152 0.0403 0.0747
0.0165 0.0528 0.0527
0.0170 0.0790 0.1269
0.0168 0.0343 0.0347
0.0185 0.0393 0.0397
0.0196 0.0436 0.0440



LIMITED-MEMORY QUASI-NEWTON AND TRUNCATED NEWTON METHODS 603

TABLE 6

Bi-cluster problem (N 21; K 2; N1 11; N2 10; CI 1.0; C2 2.0,20, and 200;
DI 0.2, 0.3), the condition numbers are 8.29, 8.29 102, and 8.29 104, respectively.

m Itcr

D 2.0 20.0 200.

CONMIN-CG
Conmin-BFGS
E04DGF

L-BFGS
(1=0.9)

BBVSCG

L-BFGS’
(=I0-2)

18 23 35
28 90 141
15 19 22
24 158 1009
24 154 895
24 168 579
20 67 168
24 75 167
24 81 169
18 21 29
18 20 29
18 21 30

2.0

37
30
33
28
29
28
39
38
31
39
39
39

N fun

20.0 2O0.

47 71
92 143
42 47
170 1083
164 951
182 610
129 289
128 256
126 232
53 81
49 83
51 88

(total CPU time)
2.0 20.0 200.0

0.0318 0.0412 0.0634
0.1334 0.4516 0.6958
0.0115 0.0148 0.0167
0.0338 0.2205 1.4129
0.0392 0.2591 1.5187
0.0439 0.3330 1.1523
0.0355 0.1198 0.2695
0.0418 0.1406 0.2895
0.0398 0.1636 0.3232
0.0335 0.0419 0.0616
0.0376 0.0439 0.0699
0.0410 0.0504 0.0824

TABLE 7

Ocean problem (N 7330), using limited-memory Q-N methods.

MTM
Algorithm Iter Nfun (total CPU time)

CONMIN-CG 7 15 15.45

L-BFGS(I=0.9) 22 25 17.15

BBVSCG 4 8 8.43

L-BFGS(I=0.001) 22 25 17.03

FTM
(function calls’

CPU time,)

15.42

16.44

9.23

!6.33

5.3. Results for the oceanographic large-scale minimization problem.
Only CONMIN-CG, L-BFGS, and BBVSCG were successful for this large-scale prob-
lem. E04DGF failed in its line search. All the methods used the same convergence
criterion:

(5.1) IIgll < e, e 10-8.

Numerical experiments indicate that when the number of Q-N updates m is increased
from 3 to 7, there is no significant improvement in performance. In Table 7 we present
only the results for L-BFGS and BBVSCG when m 3. We see that the function
evaluation for this problem is far more expensive than is the iterative procedure. Both
L-BFGS and CONMIN-CG require 15 function calls, whereas BBVSCG uses only 8
function calls. Therefore, BBVSCG emerges as the most effective algorithm here. It
also uses fewest iterations. No significant improvement was observed for L-BFGS with
a more accurate line search.

5.4. Results for the meteorological large-scale minimization problem.
Both gradient scaling and nondimensional scaling were applied to the meteorological
large-scale minimization problem for all four LMQN methods. CONMIN-CG and
BBVSCG failed after the first iteration with either gradient scaling or nondimensional
scaling. L-BFGS was successful only with gradient scaling. E04DGF worked only
with the nondimensional shallow-water-equations model. It appears that additional
scaling is crucial for the success of the LMQN minimization algorithms applied to this
real-life, large-scale meteorological problem.
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TABLE 8

Meteorological problem with the limited memory quasi-Newton methods.

Control Variables

Initial

Initial+Boundary

MTM
Algorithm tc Nfun (total CPUtimc)

E04DGF 72 203 36.89
L-BFGS 66 89 15.53
EO4DGF 160 481 87.31
L-BFGS 179 468 80.70

FTM
(function calls’

CP,U ,time)
33.56
14.76
79.98
77.81

TABLE 9

Maximum absolute differences between the retrieval and the unperturbed initial wind and geopo-
tential fields using the limited memory quasi-Newton methods.

Cbntroi Variables Algorithm,, ,i"2"1"V2) 1/2 ,*
E04DGF 0.75E-2 0.12E2

In iti ai L-BFGS 0.38E- 0.90E0
E04DGF 0.1’0E0 0.64E

Initial+Boundary L-BFGS 0.26E1 0.22E2

Table 8 presents the performance of these two LMQN methods, namely, E04DGF
and L-BFGS, when only the initial conditions or the initial-plus-boundary conditions
are taken to be the control variables. Because of the different scaling procedures used
in the two methods the minimization was stopped when the convergence criterion

(5.2) IIgll < 10-4 x Ilgoll

was satisfied.
We observe from Table 8 that most of the CPU time is spent on function calls

rather than in the minimization iteration. By comparing the number of function
calls and CPU time we find that the computational cost of L-BFGS is much lower
than that of E04DGF. L-BFGS converged in 66 iterations with 89 function calls. In
contrast, E04DGF required 72 iterations and 203 function calls to reach the same
convergence criterion. This produces rather large differences in the CPU time spent
in minimization. L-BFGS uses less than half of the total CPU time required for
E04DGF.

The differences between figures showing the retrieved initial wind and geopoten-
tial and Fig. 1 are imperceptible (figures omitted). Table 9 gives the maximum differ-
ences between the retrieval and the unperturbed initial conditions from E04DGF and
L-BFGS minimization results. An accuracy of at least 10-3 is reached for both the
wind and geopotential fields by using both the codes of L-BFGS and of E04DGF for the
initial control. This clearly shows the capability of the unconstrained LMQN methods
to adjust a numerical weather prediction model to a set of observations distributed in
both time and space.

When we control both the boundary and initial conditions, we expect to produce
a much more difficult problem than when we control only the initial conditions. First,
since the dimensionality of the Hessian of the objective function is increased by about
one order of magnitude (from 103 to 104), the condition number of the Hessian will
increase as O(N2/d) [27], where d is the dimensionality of the space variables and N is
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TABLE 10

Initial control problem in meteorology.

algorithm

TNI

TNI
(no prec.)
TN2

ltcr

3 19
50 20
3 63
50 39
3 81
50. 4

Nfun

0
26
64
40
82
5

NCG

50
54
i70
165
242
91

MTM

12.20
13.79
38.82
32.78
68.68
16.41

’i.3
12.89
37.15
31.53
67.21
16.30

the number of components of the vector of control variables. Second, the perturbation
of the boundary conditions creates locally an ill-posed problem. This is reflected by
an increase of high-frequency noise near the boundary. In turn, the condition number
of the Hessian of the objective function increases.

From Tables 8 and 9 we see, indeed, that when we control both the initial and
boundary conditions, minimization becomes much more difficult. The computational
cost is doubled and the accuracy of the retrieval is decreased by an order of magnitude
compared with those of the initial control problem. The largest differences occur near
the boundary for both the wind and geopotential fields. However, the differences
between the performances of E04DGF and L-BFGS on the initial- and boundary-
value problems are small.

6. Results for TN methods. The meteorology problems of 5.4 were tested for
TN1 and TN2. In TN methods performance.often depends on the specified maximum
number of permitted inner iterations per outer iteration (MXITCG). Our experience
suggests that different settings for MXITCG have a small impact on the performance
of TN1 but a rather large impact on that of TN2 (see Table 10). This results from our
current unpreconditioned implementation for TN2 since the inner CG loop requires
more iterations to find a search direction.

To clarify this idea and to see what differences in performance between the two
TN methods were due to the different truncation criteria, CG versus Lanczos, and
to preconditioning, we also performed minimization for TN1 without diagonal pre-
conditioning. The results are presented in Table 10. Similar trends are identified for
both TN1 and TN2 in this case: the cost for large MXITCG is much lower than that
for small MXITCG. However, TN2 with MXITCG 50 performs much better than
does TN1 with MXITCG 50 in terms of Newton iterations, CG iterations, function
evaluations, and CPU time. This strongly suggests that with a suitable preconditioner
for the problem in meteorology, TN2 might perform best.

Numerical results for both initial control and initial and boundary control are
summarized in Tables 11 and 12. We see from the tables that time is approximately
proportional to the number of inner iterations. Thus the use of preconditioning in
TN1 accelerates performance, as expected. Note that without preconditioning TN1
requires more function evaluations than does TN2. Preconditioning is particularly
important as the dimension of the minimization problem increases.

Comparison with Table 9 shows that the TN methods are competitive with
L-BFGS. TN1 is better than L-BFGS for initial control and much better than L-
BFGS for initial and boundary control. TN1 also produces higher accuracy than do
the other three methods (see Tables 9 and 12).
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TABLE 11

Meteorological problem with the truncated Newton methods.

Control Variables Algorithm ltcr

TN1 19
Initial TN2 4

TNI 70
Initial+Boundary TN2 12.

Nfun

70
96

283
5Z0

’MTM FTM
(iotl CPU time) (function Calls’

CPU lime)
12.20 11.31
16.41 16.30
’49.96 46.22
87.22 86.30

TABLE 12

Maximum absolute differences between the retrieval and the unperturbed initial wind and geopo-
tential fields using the truncated Newton methods.

Control Variables

Initial

Initial+Boundary

Algorith,m -_, ,(u2+v2)I ]2 ., #
TN1 0.89E-2 0.54E2
TN2 0.58E-2 0.41E2
TNI 0.96E1 0.48E3
TN2 0.14E0 0.90E3

It appears that for this set of test problems TN methods always require far fewer
iterations and fewer function calls than do the LMQN methods. The good perfor-
mance of the TN methods for large-scale minimization of variational data assimilation
problems is very encouraging since minimization is the most computationally intensive
part of the assimilation procedure and the numerical weather prediction model already
taxes the capability of present-day computers. The complexity of these problem stems
from the cost of the integration of the model and of the adjoint system required to
update the gradient in the minimization procedure.

7. Summary and conclusions. Four recently available LMQN methods and
two TN methods were examined for a variety of test and real-life problems. All meth-
ods have practical appeal: they are simple to implement, they can be formulated to
require only function and gradient (and possibly additional preconditioning) informa-
tion, and they can be faster than full-memory Q-N methods for large-scale problems.
L-BFGS emerged as the most robust code among the LMQN methods tested. It uses
the fewest iterations and function calls for most of the 18 standard test library prob-
lems, and it can be greatly improved by a simple scaling or by a more accurate line
search. All of the LMQN methods (L-BFGS, CONMIN-CG, and BBVSCG) perform
better than the full-memory Q-N BFGS method, especially in terms of total CPU
time. E04DGF appears to be the least efficient method for the library test prob-
lems. However, numerical results obtained for the synthetic cluster function reveal
that E04DGF performs quite well on problems whose Hessian matrices have clustered
eigenvalues.

Both variable-storage methods (L-BFGS and BBVSCG) were very successful on
the large-scale problem from oceanography, and BBVSCG turned out to perform
slightly better on this problem than did L-BFGS.

The convergence rate of the variable-storage methods was accelerated when the
number m of Q-N updates was increased for medium-sized problems. However, for
small- and large-scale problems both methods showed only a slight improvement as
the number of Q-N updates m is increased. The reason for this is not yet known,
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and further research is needed. Implementation of these minimization algorithms on
vector and parallel computer architectures is expected to yield a significant reduction
in the computational cost of large minimization problems.

Only E04DGF and L-BFGS performed successfully on the large-scale optimal
control problems in meteorology, and they were successful only after special scalings
were applied. L-BFGS performed better than E04DGF in terms of computational
cost.

Although the L-BFGS method may be adequate for most present-day large-scale
minimization, TN methods yield the best results for large-scale meteorological prob-
lems.
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A GLOBALLY CONVERGENT METHOD FOR 1p PROBLEMS*
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Abstract. The/p-norm discrete estimation problem minen lib- ATxll is troublesome when
p is close to unity because the objective function approaches a nonsmooth form as p converges to
one. This paper presents an efficient algorithm for solving /p-norm problems for all 1

_
p 2.

When p 1 it is essentially the method presented by T. F. Coleman and Y. Li [Math. Programming,
56 (1992), pp. 189-222], which is a globally and quadratically convergent algorithm under some
nondegeneracy assumptions. The existing iteratively reweighted least-squares (IRLS) method can
be obtained from the new approach by updating some dual multipliers in a special fashion. The new
method is globally convergent, and it is superlinearly convergent when there is no zero residual at
the solution. At each iteration the main computational cost of the new method is the same as that of
the IRLS method: solving a reweighted least-squares problem. Numerical experiments indicate that
this method is significantly faster than popular iteratively reweighted least-squares methods when p
is close or equal to one.

Key words, discrete estimation, data analysis, IRLS method, linear programming, interior-
point algorithm, simplex method, Newton method

AMS subject classifications. 65H10, 65K05, 65K10

1. Introduction. In discrete estimation and data analysis it is often appropriate
to solve the following problem:

(1.1) min IIATx bll ,x

where A [al, am] E nx,, b E }m, and m > n. We denote the objective
function IIATx- bll -m__l laTex- blP by (x). In this paper we focus on the case
when 1 _< p < 2. We assume that A has rank n. When 1 < p < cx this assumption
is equivalent to (x) being strictly convex. We also assume that there does not exist
any x such that ATx- b- O.

The most often used measures for (1.1) are 2-norm, 1-norm, and cx>norm. The
l solution offers a worst-case guarantee. The 2-norm solution is popular because
of its special relationship with the normal distributions. The increasingly impor-
tant 11 solution is useful since it is insensitive to a small number of large residuals
(resistant). Thus one can imagine situations when minimizing the /p-norm, where
1 < p < 2, is appropriate [13], [14]. Moreover, the problem is theoretically interest-
ing since it ranges from a piecewise-differentiable minimization problem (equivalent
to a constrained minimization) when p 1, through a once-differentiable minimiza-
tion problem (but not twice differentiable) when 1 < p < 2, to a twice-differentiable
problem when p 2. Clearly, it would be useful, although challengiig, to develop a
method that works well in all the cases.

The 2-norm problem is easy to solve: it is a simple least-squares problem. The 11
and l problems are much more complicated and can be treated as linear program-
ming problems and thus solved by special linear programming methods that usually
take advantage of their special structures (e.g., [1], [2]). The objective function
is piecewise linear when p 1 or
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Until recently, the usual methods for l and loo have been finite algorithms (e.g.,
[1], [2]). These methods move along negative projected gradients, and the iterates tend
to follow nondifferentiable hyperplanes. In contrast, Coleman and Li have recently
developed iterative methods for l and loo minimization [4], [5]. These algorithms
deal with the nondifferentiable hyperplanes by strategically avoiding landing on them
exactly and by being able to cross when necessary. They are computationally efficient.
Under a suitable nondegeneracy assumption, both algorithms proved to be globally
convergent with a quadratic convergence rate.

For 1 < p < 2 the most popular method for solving (1.1) is the iteratively
reweighted least-squares (IRLS) method (e.g., [10], [13]). This method essentially
takes a fixed step size along the Newton direction defined by the optimality condition
V(x) 0. It is globally linearly convergent for 1 < p < 2 (e.g., [13]). This method
can also be applied to the case p 1, although no global convergence has been proved
to our knowledge. With a suitable line search, the algorithm can be accelerated to
be quadratically convergent when there is no zero residual at a solution. However, it
is known that the method can be extremely slow, as will be further demonstrated by
our numerical examples. Since the second-order derivative of the objective function
does not exist when zero residuals occur, this is usually regarded as a main problem
with the IRLS approach [3], [8].

The purpose of this paper is to further investigate the performance of the IRLS
method and to provide a new method that works well for 1 <_ p < 2. Our experience
indicates (2) that zero residuals at a solution alone do not, in general, impede the
speed of the convergence for the IRLS approach; rather, slow convergence occurs when
p is close or equal to unity. This is reasonable because (1.1) is a more complicated
problem (linear programming) when p 1, whereas a solution for (1.1) can be ob-
tained by solving one linear system when p 2. Nonetheless, there is an additional
reason for the slowness of the IRLS method: the nonlinear equation V(x) 0 that
defines the Newton step for the IRLS method does not include the conditions for a
solution of (1.1) when p 1. On the basis of this observation, in 3 we develop a
new method by considering the system of nonlinear equations that form part of the
optimality conditions for (1.1) for all 1 _< p < 2. We also present a special line search
procedure that exploits the special structure of the objective function and prevents
zero residuals at each iteration. The new method performs significantly better than
the IRLS methods, and it reduces to the method of Coleman and Li [5] when p 1.
We emphasize, however, that the main reason for the improvement is not the preven-
tion of zero residuals in the line search. Rather, the consideration of the appropriate
system of nonlinear equations brings about the improvement. In 4 we prove that the
new algorithm is globally convergent. Superlinear convergence is achieved when there
is no zero residual at the solution for 1 < p < 2 and when a problem is nondegenerate
for p-- 1. Some numerical experience is reported in 5.

Finally, we introduce some notation. In this paper the superscript directly on
a quantity denotes its value at the kth iteration, e.g., xk. The conventional power
operation is denoted by using brackets and superscripts together, e.g., (x) k. We
always use r to represent the residual vector r ATx- b, and a denotes its sign, i.e.,
a sgn(r). Since we assume that A has full rank, the relation between x and r is a
bijection. The objective function is denoted in terms of r by (r) Ilrll, (- (x)),
and the gradient V(r), when it exists, is denoted by g p(Irl)p-la. In this paper the

symbol l..
means that a linear system is solved in a least-squares sense, e.g., ATx L_s_. b
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is equivalent to solving

2min [[ATx bll 2.

We also adopt a few MATLAB notations [11]. The symbols., and ./denote com-
ponentwise multiplication and division between vectors. The operator I" denotes
the componentwise absolute values of a number, vector, or matrix. The operator
max(x, y) with two vectors as arguments defines a vector whose components are the
maximum of the corresponding argument vectors. The notation max(x), where x is a
vector, denotes the maximum component of x, whereas the operator diag(x), x E n,
represents the diagonal matrix with the ith diagonal element being xi. The left arrow
x -- y denotes setting x to y.

2. IRLS methods. It is well known that the/p-norm is differentiable and strictly
convex for 1 < p < c under the assumption that A has full rank; thus the solution
occurs at a point where the gradient V(x) Ag vanishes. Assume that we are at a
point with ri 0, 1 <_ i _< m. This is equivalent to

(2.1) A(D)-2r-O,

where D diag((Irl)(2-p)/2). The motivation of the IRLS method comes from the
fact that (2.1) forms the normal equations for the following weighted least-squares
system:

(D)_IATx l.s=. (D)_lb.

Thus the IRLS method can simply be described as in Fig. 1.

Given a starting point x
Step 1 Compute rk ATxk b;
Step 2 Define Ok -diag((Irkl)(2-p)/2), solve xk+l from

(2.2) (Dk)_lATxk+l 1.s (Dk)_lb; k - k + 1;

Go to Step 1;

FIG. 1. IRLS Algorithm.

Remark. In the description of the algorithm it is implicitly assumed that at
keach iteration ri : 0, 1 _< i _< m. In practice, care must be taken when some

k 0 Let eT [1 1] e m be the m vector of all ones. Watson [14] suggestedr
using Dk diag(max{Se, Irkl}) (2-p)/2 for some small positive constant 5. In our
implementation we use Dk diag(100ee + (Irkl)(2-p)/2), where e is the machine
precision.

Let us inspect the step xk+l -xk taken by IRLS more closely. If it is assumed
that rk 0 /1 < i < m, a Newton step in x-space for (2.1) can be defined through
differentiation as

(2.3) dkN
1

p- 1
(A(Dk)-2AT)-IA(Dk)-2rk"
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It is clear that dN is always a descent direction for the objective function (x).
Consider the increment Axk xk+l xk obtained from IRLS:

Axk --(A(Dk)-2AT)-IA(Dk)-2b (A(Dk)-2AT)-IA(Dk)-2ATxk

-(A(Dk)-2AT)-1A(Dk)-2rk
1)d 

Hence Ax can be considered as a damped Newton step (e.g., [14]).
In [13] it is proved by assuming 1 < p < 2 and ri 0, 1 _< i <_ m, that the limit

point of the sequence {xk } generated by the IRLS algorithm is a solution to (1.1) and
that the convergence is linear with convergence constant 2- p. Wolfe [15] obtained
the same local convergence property with a rather involved proof.

When p 1 there is no global convergence result to our knowledge; however, if
global convergence is assumed, then the convergence rate will be linear [13]. We claim
that a slight modification of the proofs in [5] yields that IRLS, when p 1, is also
globally convergent under some nondegeneracy assumptions.

The above IRLS method has a linear convergence rate because of its failure to
take a full Newton step. However, taking a full Newton step at each iteration may lead
to divergence [10]. Nonetheless, a line search globalization of the Newton method can
be made to achieve final quadratic convergence and to maintain global convergence
at the same time.

In this paper a line search procedure is used for improving both the IRLS method
and the new algorithm. We refer to the modified IRLS algorithm as IRLSL (IRLS
with the line search). Note that dkN as defined in (2.3) is the solution to the following
least-squares problem:

(Dk)_lATdk 1.. _Dkgk, where Dk (diag(Irkl)(diag(p 1)]gk])-l) 1/2.

A model algorithm for IRLSL in terms of r is described in Fig. 2.

Given an initial point r ATx --b with Irl > 0
Step 1 Compute gk p(]rkl)p-ak, Drk diag(irkl)

(Dkdiag((p 1)lgkl)-l)/2;
Step 2 Compute the direction dk by solving

and Dk=

(Dk)-lATdk "" _Dkgk
dk T k=A dx;

Step 3 Perform the line search as described below (see Fig. 3). Update

rk+l +- rk + okdk, k +- k + 1;

Go to Step 1;

FIG. 2. IRLSL Algorithm.

Remark. We describe IRLSL in this fashion so as to compare it with our new
algorithm, which will be presented in 3. Since r ATx- b and A has full rank, x
can be recovered from r on termination if needed. Alternatively, one can choose to
update x directly at each iteration.
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Now we discuss how to determine a suitable step size ck. Given any descent
direction dk E .m, we determine a suitable step size ck by attempting to minimize
(rk + odk) over c _> 0.

The objective function (r) is continuously differentiable when p > 1. Thus, by
k such that,following [7, Whm. 6.3.2], given 0 </I </g < 1, there exists 0 < ck < cu

when k E [c, k], the following conditions are satisfied at rk+l rk W okdk"

(2.5) (rk+l) _< (rk) + ikV(rk)Td,
V(rk+)Tdk >_ gV(rk)Tdk.

Unfortunately, the objective function (r) is not twice differentiable everywhere.
Hence conditions (2.5) and (2.6) do not guarantee convergence to the solution. The
difficulty is that condition (2.6) may not guarantee large enough step lengths because
of the nonsmoothness of the derivatives.

Since the function (rk + (dk) is strictly convex (under our assumption), there
can be only one minimum along dk. However, we do not want to perform an exact line
search when p > 1 because of concern for efficiency. Instead, we exploit the special
structure of the objective function (r) and perform the line search in the following
fashion.

Consider the following strictly convex quadratic function Uk(r) around a differ-
kentiable point rk, i.e., r 0, 1 _< i _< m, as defined by Osborne [13, p. 252]"

where gk V(rk). This quadratic function has been used [13, p. 252] to prove that
{rk} generated by IRLS decreases the objective function (r) monotonically. It has
the following properties [13, p. 252]"

< u u
and

k(rk V(rk), U(r) diag(p(Irkl)P-U).

Moreover, argminx Uk(r) xk+, where Xk/l is defined by the IRLS algorithm (cf.
(2.2)). In other words, Uk(r) is a special quadratic interpolation of (r).

In this paper we use this quadratic interpolation to facilitate the line search in
both IRLSL and in our new method, which will be discussed later. We calculate
the minimizer of Uk(r) along any descent direction dk and use it to approximate the
minimizer of (r) along this direction. The minimizer for Uk(rk -b adk) equals

gkTdk
dkTdiag(p(Irk I)P-2)dk

For IRLSL dk T k kA dx, where d is defined by (2.4). Thus k p_ 1 and &k is the
step size that IRLS takes at each iteration when p > 1.

The following lemma indicates that for any descent direction dk, &k always intro-
duces a sufficient decrease in objective function value. This explains why the sequence
generated by IRLS converges to a solution when 1 < p < 2.
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LEMMA 2.1. Assume 1 <_ p < 2. Given any descent direction dk

as defined by (2.9) satisfies (2.5) with any 0 <
Proof. Let Uk be as defined by (2.7). Then

(rk) (r/ -4- &/d/)
>_ Uk(r) U(rk + &kd) (from (2.8))

uu d  tic)_&kgkTdk
1 k kT-k-----(kgkTdk + -0 g a (from (2.9))

l_kgkTdk
2

>_ --$&kgkTdk.
Hence (2.5) is satisfied.

Quadratic interpolation techniques have been used in line search methods for
general nonlinear minimization [9]. However, it is worth emphasizing that for general
nonlinear functions the interpolation function is usually a one-dimensional function
that is defined along a search direction instead of approximating the objective function
in the entire space. For any given problem (1.1), the interpolation function Uk(r) used
here guarantees that the step size &k is acceptable for (r) (i.e., sufficient decrease is
achieved and the step is not too small), which usually cannot be achieved for general
nonlinear functions.

Since (r) becomes increasingly close to being nondifferentiable as p gets close
to one, &k may be a bad choice (it converges to zero). When the objective function
(r) is not differentiable, i.e., p 1, the exact minimizer (rk + (d) occurs at
a nondifferentiable point. Along any direction d m the points at which the
second-order derivatives fail to exist can easily be calculated. We refer to the step
sizes corresponding to such points as breakpoints. The set identifies the positive
breakpoints:

r di < 0(2.10) ci (i dk,
The basic idea behind our line search procedure is to take larger step sizes when

possible. We consider the first positive breakpoint at which dk becomes an ascent
direction, a unit step size, and &k in this order. The first at which the objective
function is sufficiently decreased (i.e., (2.5) is satisfied) is accepted.

However, the exact nondifferentiable point needs to be avoided (if a unit step size
or is taken, it is unlikely that rk/l is a nondifferentiable point). We achieve this by

k wdk 0 atslightly stepping back from a nondifferentiable point. Assume that r +
the step size w > 0 under consideration. Let

k

and set

(2.11)

where Tk E (0, 1).
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For IRLSL we choose

(2.12) Tk max T, 1-
1 + IIAgk]12

and T E (0, 1), e.g., T 0.975. When 1 < p < 2, IIAgkll is a measure of optimality.
When a solution for 1 < p < 2 is approached IIAgkll converges to zero and thus Tk

converges to one. Hence if (2.5) is satisfied with the unit step size, the perturbed ak

converges to unity, which is required for fast local convergence. By assuming that
(2.5) is satisfied with w, it is easy to verify that (2.5) is also satisfied with ak defined
by (2.11) since (r) is convex under our assumption. Thus (2.5) is always satisfied
for the step size computed.

The line search procedure is summarized in Fig. 3. We point out that when p -1,
g(rk + ak,dk) does not exist and the gradient just past the breakpoint a,k is used (for
details see [5]). Moreover, if it is assumed that f 0 and p 1, this line search

kprocedure always locates the exact minimizer and ensures that r 0, 1 <_ i <_ m, at
each iteration (the line search procedure always returns at Step 1).

GivenTk f E (0,1), dk rk &} k
ai (defined by (2.10)), and a large PB > 0 (e.g.,

106

Step 1 Let a,k be the smallest positive breakpoint in [&,PB] with
g(r -b ak,dk)Td >_ O. If such a breakpoint a,k exists and (2.5) is

k ,k} and setsatisfied with a,, let a - max(ak" 0 <_ i <

Step 2
and return; Otherwise, continue;
If (2.5) is not satisfied with k 1, continue to the next step.
Otherwise, set

ak -- { 1 if min([rk + dkl) > 0,

a + Tk (1 a otherwise,

Step 3
where
Set

k+-- max{ak 0 <_ ai < 1}, return;

if min(Irk q- &kdk[) > O,
otherwise,

kwhere a -- max{a" 0 _< a < }, return;

FIG. 3. Line search procedure.

In 4 we will prove that the IRLSL algorithm with the above line search procedure
is globally convergent. It is quadratically convergent when there is no zero residual
at the solution.

Merle and Sp/ith [10] empirically studied the IRLS algorithm and concluded that
the IRLS algorithm (without a line search) is satisfactory. We disagree with this
claim. To investigate the performance of the algorithms more carefully, we apply
both the IRLS and IRLSL algorithms to some randomly generated/p-norm problems
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(for details, see 5). The following stopping criterion is used:

either
1

< 8 x 10-11 or itcount > 50.

Here itcount denotes the number of iterations. For more discussion of the stopping
criterion, see 5.

TABLE 1
Behavior of the two algorithms when p approaches one.

Number of Iterations m

p 1 1.01 1.02 1.03 1.04 1.05 1.06 1’07 1.08 1.09 1’1
IFtLSL 50 50 36 50 40 38 28 33 30 29 24
IRLS 50 50 50 50 50 50 50 50 50 50 50

TABLE 2
Effec of zero residuals.

Number of Iterations m- 100, n--50

p (no r 0)
1.3
1.4
1.5
1.6
1.7
1.8
1.9

IRLS IRLSL p (five r 0) IRLS IFtLSL
32 14 1.3 31 18
’23 8 1.4 22 12
17 9 1.5 17 11
13 7 1.6 13 8
io 7 1.7 1o 7
s 5 1.s 8 7
6 5 1.9 6 5

Tables 1 and 2 represent typical performance of IRLS and IRLSL.
First, we observe that IRLSL is more efficient than IRLS. Our computational

experience indicates that IRLSL converges faster than does IRLS (e.g., Tables 1 and
2): even when both methods fail to find a solution, IRLSL computes an approximate
solution with a lower objective function value. The additional cost per iteration for
IRLSL is that of the line search, which is roughly O(m), where is the number
of positive breakpoints in [&,pB] that have to be inspected in order to find a., i.e.,
an inner product needs to be computed at every such point. In our experiments this
number is in general much less than n and decreases quickly as p departs from unity.
Thus the cost of the line search is of a lower order than that of solving a least-squares
problem (O(mn2)). Hence we conclude that IRLSL is more efficient than IRLS, and
subsequently we will compare our new method (3) with IRLSL only.

As indicated in Table 1, both algorithms (with or without a line search) converge
increasingly slowly when p approaches unity. It is clear that when p 1 one can
always find a solution with n zero residuals (e.g., [1]). Thus when p is close to unity,
there usually exist either zero residuals or extremely small residuals. Because the
Hessian matrix of the objective function does not exist at points with zero residuals
when 1 < p < 2, it seems to be reasonable to blame the slow convergence on the
occurrence of the zero residuals at a solution.

However, we argue that this is not the reason. Our argument is supported by
the results in Table 2, which indicate that the presence of zero residuals at solutions
does not significantly affect the algorithm when p is further away from unity. When a

random/p-norm problem, p > 1.5, is generated, it usually does not have zero residuals
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at the solution. For comparison, we generate random/v-norm problems in a special
way to guarantee the zero residuals at the solution: we solve an /p-norm problem
first and add more residuals so that they equal zero at the solution. As indicated by
Table 1, both algorithms seem to be unaffected by the presence of zero residuals at a
solution.

We will further investigate this question in the next section.

3. /k new algorithm. The IRLSL method works well when p is sufficiently far
from unity (e.g., p > 1.3), as indicated by our numerical results. However, when
p is close to unity it becomes unsatisfactory. Moreover, our numerical experience
indicates that a zero residual does not necessarily impede the speed of convergence.
Hence alternative reasons for the slowness of the IRLS methods must be sought.

Recall that the descent directions used by both IRLS and IRLSL are derived
from the nonlinear equations (x) 0. This is the optimality condition for (1.1)
when 1 < p < 2 but not whenp-- 1. Hence whenp 1 slow progress is made
by moving along these descent directions because no attempt is made to satisfy the
optimality conditions directly. We believe that this is the cause of the unsatisfactory
performance of the IRLS methods when p is close or equal to unity.

Let the rows of the matrix Z form a basis for the null space of A, i.e., AZT O.
Recall that g p(Irl)P-la. We can write (2.1) in the following equivalent form:

(3.1) g- ZTw O.

The number of equations is m, which is equivalent to the number of variables (x, w)
(note that x e n and w E m-n).

Let Drk diag(Irkl), and denote Ak ZTwk. At any point (xk, wk) the Newton
step for the above equations is defined by

(3.2) [p(p- 1)diag((Irkl)P-2)AT, -ZT] [dkw

Thus the Newton step for the x variables is

dzk= 1
p- 1

(A(Dk )-ldiag(Igkl)AT)-lAgk’

which is equivalent to the Newton step (2.3) for V(x) 0.
Now we consider the following nonlinear system of equations:

(3.3) Dr(g ZTw) O.

When p 1 this is the complementary slackness condition for a solution and is often
called the vector of dual multipliers. In [5] we have used (3.3) to define local Newton
steps for/1-norm problems. When 1 < p < 2, (3.3) is the optimality condition for
(1.1) if Dr is nonsingular.

A solution to (3.1) is always a solution to (3.3). A solution (x, w) to (3.3) is a
solution to (3.1) if for any ri 0, Ai 0. Hence we can compute a solution of (1.1)
by satisfying (3.3) and the condition that 0 if r 0.

By considering (3.3) instead of (3.1), we capture both the optimality conditions
for smooth minimization (p > 1) and part of the optimality conditions for nonsmooth
minimization (p 1). Given that the objective function (r) becomes nearly non-
smooth when p is close to unity, we argue that it is better to consider (3.3) than to
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consider (3.1). Since we are concerned with the/n-norm problem for all 1 <_ p < 2,
taking Newton steps defined by (3.3) is more appropriate than using (3.1). This is
the main idea behind our new method. Next we describe our new method in more
detail.

Assume for now that the Jacobian of D,.(g- ZTw) exists at (Xk,Wk) and is
nonsingular. Let D --diag(pak., gk_ o.k., Ak). Then the Newton step for (3.3) is
defined by

(3.4)

Hence we obtain

IDeAT, _DkZT] [dkw[ dk ] [Dkr(gk Ak)].

A(Dk)-D T kA d.=-Agk

or, equivalently,

(3.6) dk -(A(Dk -1DAT) Agk.

In [5] we have proved that when p-- 1, A(D,.)-D),AT is positive definite in the
neighborhood of the solution, under some nondegeneracy assumptions.

Consider the case in which 1 < p < 2. If there is no zero residual at the solution,
i.e., Ir*l > 0, (D.)-D, is positive definite since D (p- 1)diag(Ig*l) and A is
assumed to have full rank. Thus A(Dkr)-DAT is also positive definite when (xk, wk)
is close to (x*, w*). Hence the Newton direction dk becomes a descent direction for
(x) in a neighborhood of the solution.

If there exists some r 0, the Jacobian matrix of (3.3) is singular at the solution
when 1 < p < 2 because g A 0. However, at those points the Jacobian matrix
of the original system (2.1) does not exist either. Hence this trouble is not introduced
by considering (3.3) instead of (3.1). If there exists a zero residual at a solution x*,
it is difficult to achieve quadratic convergence and we are content with fast linear
convergence.

Since A(Dkr)-DAT may not be positive definite far from a solution, globaliza-
tion of the Newton step (3.5) is required.

First, we recall the technique used in [5] for p 1. In [5] the Newton method is
globalized by defining a diagonal matrix D0 such that A(Dk)-IDAT changes from
A(Dk)-AT to A(D)-DAT as the solution is approached and by replacing D by
D0k when a direction is computed by (3.4). Thus the hybrid step can be considered
as the solution to the following linear equations:

(3.7) [DAT’--DkrZT] d
--Dk(gk’-- Ak)"

Hence

dk -(A(Dk Dko AT) Agk.

If a controlling variable 0 < 0 < 1 that measures the closeness to the solution is used,
the diagonal matrix D is defined in the following way:

(3.9) D IOkdiag(akgk) + (1 O*)Dl diag(Igk (1 Ok)Akl).
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Here 0k measures the satisfaction of the complementary slackness condition and the
dual feasibility of an/i-norm problem

(3.10) "Y + vk’

and 0 < 7 < 1 (in our implementation 7 0.99). In other words, is the mimum
of the violation of the complementy slkness condition (Dr(9- A) O) and of duM
feibility (IAI Igl). Note that Ig IP(Irl)P-l e when p 1. In this ce, 0 0
(or y 0) is a necessary and sufficient condition of optimality. (For a more detailed
discussion see [5].)

Now we consider the ce in which 1 < p < 2. Since we know that the direction
defined by the IRLS methods leads to global convergence, we want to define a diagonal
matrix Do such that globally the direction defined by replacing Dx by Do is the same
direction that of IRLS and that locally it converges to D. Notice that if we let
Da ]diag((p- 1)g)], the direction defined by (3.7) equals the IRLS direction (2.3).
Unfortunately, a simple scalar combination ]0 diag(pg) + (1 O)D] does not lead to
the IRLS direction globally because some components of the combination may not
approach zero when the corresponding components in diag(p[g]) converge to zero. We
form the diagonal matrix D0 in a slightly more complicated way: the diagonal is the
componentwise convex combination of that of diag(pgk) and D"

D$ diag(Ok)diag(pakgk) + diag(e Ok)D]
(3.11)

diag(]pgk (e Ok)., Ak]).

(Recall that the operators., and ./denote componentwise multiplications and divi-
sions between vectors.) Here 0k is a vector

e +
where is, again, a constant with 0 < < 1 and eT [1,..., 1] e m. The scalar
yk is defined in (3.10). It is clear that when p 1, (3.11) is the same definition
(3.9), which is used in [5]. Hence when p 1, D$ defined by (3.12) is equivalent to
that defined by (3.10). Moreover, x is optimal if and only if there exists A ZTw
such that 0.

The diagonal matrix D h the following properties.
LEMMA 3.1. Suppose 0 < < 1. Assume D$ is dCned by (3.11). Then D$

satisfies

(3.13) (p- 1)diag(g}]) P$] (p + 1)diag(]g}]).

Proof. By definition (3.11)

D diag(Ipgk (e Ok).,

From definition (3.12) of

?k e 0k) ,),Ok.,
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Hence

Therefore,

Hence

(p- 1)diag(Igkl) _< IDOl _< (p + 1)diag(Igkl). [:]

As will be shown in 4, with a suitable line search this globalization guarantees
that when 1 < p < 2, {)k} converges to zero if {rk} converges to zero. Hence the
corresponding {xk } converges to a solution of (1.1).

We apply the same line search procedure to the new method. However, the
definition of Tk in (2.12) is replaced by

(3.14) T
k max T, 1

+ rlk

SO as to include the measure of the optimality for p 1. Note that when {yk}
converges to zero, {Tk } converges to unity. When p-- 1 the line search procedure for
the new method is equivalent to the one used in [5].

For IRLSL &k is a constant p- 1. For our new algorithm with dk defined by
(3.8), &k changes at each iteration. However, it is bounded between p- 1 and p + 1
as indicated by the following lemma.

LEMMA 3 2. Assume d T k kA dx, where dx is defined by (3.8). Then the step size
&k as defined by (2.9) satisfies

p- l <_&k <_p+ l.

Proof. By definition (2.9)

(k gkTdk
dkTdiag(p(Irk I)p-2)dk

dkT(Dkr)-lDdk
dkTdiag(p(Irk I)p-2)dk

(from (3.8)).

From (3.13)

(p 1)
dkT(Dk )-ldiag(Igkl)dk dkT(Dkr )-idiag(Igk[)dk
dkTdiag(p(Irkl)p-2)dk

_
&k

_
(p + 1) dkTdiag(p(irkl)p_2)dk

This means

(p- 1) _< &k _< (p+ 1).
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Computationally, instead of solving an m m linear system (3.7) to compute
(dk, dkw), one may prefer to compute dk by solving an m n least-squares problem

(Dk 1ATdx 1.s. Dkgk

where Ok -(Dk(D)-l)1/2. Hence

-A do
Once dk T kA dx is computed, A can be updated by

(3.16) )k+
__
(D)-IDdk / gk.

The new method is referred to GNCS: a globalized Newton method that uses the
complementary slackness conditions for/p-norm problems. It is summarized in Fig. 4.

Given an initial point r ATx --b with Irl > 0 and Ao
Step 1 Compute Ok by (3.12) and gk p(irkl)p-lak; Let Drk diag(Irkl),

let D diag(Ipgk--(e--Ok)., Akl) and define Ok (Dkr(D)-)/2;
Step 2 Compute the direction dk by

(Dk)_ATdk
-x -Dkgk,

dk ATdk;

Update Ak+"

Xk+ (Dk)-iDdk +

Step 3 Compute Tk by (3.14); Apply the line search procedure as described
in Fig. 3; Update:

rk+l -- rk + (kdk, k - k + 1;

Go to Step 1;

FIG. 4. The GNCS Algorithm.

Remark. It is interesting that we can express the fact that the function is smooth
through (3.3)" optimality conditions simply require A* g*. Thus if we ignore the
requirement that A ZTw, we may set

(3.17) Ak+
_

gk+.

If this definition of Ak+ is used, k+ 0 and 0k+l 0. When Ok 0, step (3.15) is
equivalent to the Newton step (3.6). Hence GNCS becomes IRLSL if we set Ok 0 at
each iteration. Indeed, GNCS and IRLSL are computationally very similar. The only
difference is that for IRLSL, D diag(l(p- 1)gkl) and the multiplier information
(Ak} is not used in defining descent directions. The multipliers are used in GNCS
and can be obtained at almost no cost.

In the next section we prove that GNCS is globally convergent for all 1 < p <
2. Moreover, when there is no r 0 at a solution we have (A(Dk)-DAT) --(A(Dk)-DAT) fast enough so that superlinear convergence is achieved.
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4. Convergence properties. As we have mentioned before, when iv 1, the
GNCS algorithm is equivalent to the method Coleman and Li proposed and analyzed
in [5]. Thus when iv 1 GNCS is globally and quadratically convergent under some
nondegeneracy assumptions. We need only to consider the convergence of GNCS
when 1 < p < 2. For the rest of this section we assume that 1 < p < 2.

For IRLS (without the line search) global convergence is established in [13]. How-
ever, the convergence of IRLSL (with the line search) still needs to be established.
The convergence for GNCS when 1 < p < 2 does not follow automatically from the
convergence theory [71 for general line-search-based algorithms because the objective
function is not twice differentiable everywhere. In addition, our line search procedure
is not standard.

We first consider global convergence for both IRLSL and GNCS.
Let P be the orthogonal projector onto the orthogonal space of ZD, i.e.,

pk I- DkzT(z(Dk)2zT)-IZDk.

k k -1Assume Dk equals either (Drk(diag((p 1)]gkl)-)/2 or (DrD )/2, depending on
whether IRLSL or GNCS is being considered. Then

dk _AT(A(Dk)-2AT)-1Ag
(4.1) -DPDg

_(Dk)2(gk Ak+),
where Ak+t ZTwk+I and w+ is the least-squares solution to

DkZTwk+l 1.s__. Dkgk.

First, we prove that (dk } generated by each algorithm converges to zero.
THEOREM 4.1. Let Dk and dk be defined by GNCS (or by IRLSL). Then lim__.

pkDkgk II 2 0 and limk__,o dk O.
Proof. It is clear that

k-1

j=O

k-1

(4.3) <_ //3f(jgTd (from Lemma 2.1),
j=o

with/$ > 0. Since {(rk)} is bounded and kgkTdk < 0 always,

lim kgkTdk O.

From the line search procedure we have ck _> &k. Using Lemma 3.2, we have ak >_
(p- 1). Hence

lim gkTdk O.

But gkTdk --[[pkDkgk[l? according to (4.1). This means

lim ]lPDgll2 o.
k---cx
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Since (rk) is bounded below, {r } is bounded. From Lemma 3.1 there exists M > 0
such that

1 (diag(irkl2_p))l/2Dkl p(p- 1)
_< M.

Using (4.1) again, we obtain

lim dk O.

Next we prove that (rk} converges.
THEOREM 4.2. Let {r}} be obtained by GNCS (or by IRLSL). Then (r} con-

verges to r*.
Proof. Let 8-- { is a limit point of (rk}}. From Lemma (3.2)

&k _<p+l.

With our line search, _< max{pB, 1,&k}. Hence {} is bounded. From Theorem
4.1 we have

lim akdk O.
k-+oo

Since (rk} is bounded and ((kdk} converges to zero, , is closed and connected [12,

Since {(rk)} is monotonically decreasing and bounded below and (r)is contin-
uous, there exists an r* such that

lim (rk) (r*).

Hence for any limit point E ,, (4) (r*). In addition, since 8 is closed and
connected and (r) is strictly convex, S can contain only one point. From the bound-
edness of (rk } and the uniqueness of its limit point, we conclude that (rk } converges
to r*.

Finally, we prove that by assuming rk ATxk --b, (xk } converges to a solution
of (1.1).

THEOREM 4.3. Let {rk} be obtained by GNCS (or by IRLSL), and let rk

ATxk --bk. Assume that at the limit point r* ATx --b, {a b aT x* 0}
is a linearly independent set. Then (Ak} converges to * and (xk} converges to the
solution of (1.1).

Proof. Following Theorem 4.2 there exists r* such that limk-oo rk r*. Thus
there exists x* with limk_o xk x*.

Let Z [Zl,... ,Zm], and let ,4 {ilr 0}. Since limk-oo D(gk--ZTwTM)
0, any limit point of (wTM} satisfies zT g*, Vi E jt*. By assumption that at
the limit point r*, {ai bi aT x O} is linearly independent, zw g, i
has a unique solution. Hence (Ak ZTwk } is bounded and converges to A*.

We prove that x* is a solution by showing that ,k 0 if r* 0. Assume
otherwise, i.e., that there exists some A 0 with r 0. Consider the breakpoint
k

cj as defined by (2.10). Then

/k+l
for GNCS,

k g -kjcj r
k+l for IRLSL.
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It is clear that {} converges to zero because {g]} and {1- 0]} converge to zero.
kHence there exists kl such that when k >_ kl, j < & p- 1, all nonzero A remain

the same sign and [r][- < ]A] for all r 0 with A 0.
k and kl+lBy using Lemma 3.2 (or Lemma 2.1), a > > a for k

k+2have different signs, at iteration k kl + 1, Aj and -,-j will have the same sign

because a > a. If, for > k, r and A have he same sign, i will remain so

for k > because d > 0. Bu his means [r[ will be increed for k > kl. This
contradicts the fac ha r 0.

Now we discuss he local convergence properties of he wo algorithms. If a he
solution r* there is some r 0, he Hessian matrix of () does no exis
corresponding z*. Hence, heoreically, we do no expec superlinear convergence for
either he IRLSL or he GNCS algorithm.

Assume that r 0 for any 1 i m. The Hessian matrix of () is positive
definite a *. Following Theorem 4.1, {d} converges o zero. If our line search

converges o infinity. This meansprocedure is used, every positive breakpoin ai
ha the uni sep size is tested for acceptance for sucienly large k. Since () is
wice continuously differeniable near z*, a uni sep size is admissible for a Newon
sep or a qui-Newon sep (e.g., [7]). In addition, perturbation to he unit sep size
is no necessary close o he solution because [r + d[ > 0 for sucienfly large
Hence a 1 for sucienfly large k. Thus the IRLSL method is locally equivalen
o he Newton mehod for minimizing (), which is a locally twice continuously
differentiable function. Hence, if sandard unconstrained minimization convergence
analysis is followed (e.g., [7]), he IRLSL mehod is locally quadratically convergent.
Similarly, he GNCS algorithm is locally equivalen o a qui-Newon mehod for he
minimization of a twice continuously differeniable function (), wih he Hessian
matrix replaced by he matrix AT(D)-IDA. Moreover, we have

=0

since {D -diag((p- 1)[9[)} converges to zero. From [6, Thm. 6.4], {xk} converges
superlinearly to x*.

In summary, we have shown that under the assumptions of Theorem 4.3 a sequence
{rk } generated by either IRLSL or GNCS from any starting point r ATxO- b with
Irk[ > 0 converges to a solution. If it is assumed that there is no zero residual at
the solution, IRLSL is locally quadratically convergent, whereas the GNCS method is
locally superlinearly convergent.

5. Numerical experiments. In this section we compare the computational per-
formance of the IRLSL method with that of the proposed GNCS algorithm. All the
experiments are done in MATLAB [11]. The numerical results clearly show the supe-
riority of GNCS over IRLSL (and thus over IRLS as well).

The dominant cost of the computation of the two methods is the same: solving
a weighted least-squares problem of the same dimension and structure per iteration.
Moreover, the same line search procedure is used.

Now we discuss possible stopping criteria for problem (1.1).
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Assume 1 < p < 2. The optimality condition is simply Ag* 0 or, equivalently,
r/* --0 (see (3.12)). We point out, however, that testing IIAgll against a tolerance is
generally not a good stopping criterion. When p is close to unity, the gradient function
A(Dr)P-la is ill conditioned in the neighborhood of a point where some r 0, i.e., a
small change of a variable may lead to a large change in the gradient. As an example,
let us consider a simple scalar function () {’{1.001. The gradient function is equal
to 1.001’1 sgn(). Even when 2.2204 x 10-16 (machine precision in MATLAB),
the gradient V() equals 0.9656. Since the gradient should be zero when 0, it is
clear that the gradient function is extremely unstable.

In our computation we terminate the calculation when the algorithm has stopped
decreasing the objective function. More specifically, we stop the computation when

either
{(rk+l)- (rk)l < Ts or r/k < Ts or itcount > 50,

where T8 has been set to 1/210-11 and itcount denotes the number of iterations. For the
GNCS algorithm, if p 1 or if 1 < p < 2 but there is no zero residual at the solution,
we .observe that final superlinear or quadratic convergence is achieved and that the
accuracy of the computed solution is about Ts (since v/k is about T at termination).
For the IRLSL method this is true only when 1 < p < 2 and there is no zero residual
at the solution.

For the results reported in this paper the parameters required by the algorithms
are set as follows:

where e is machine precision.

TABLE 3
Function approximation problems.

m 200, n 6, fl (z)
p GNCS IRLSL

1 11 20
1.001 13 30
1.01 12 25
1.1 11 22
1.2 10 45
1.3 8 26
1.4 9 22
1.5 8 17
1.6 7 17
1.7 6 12
1.8 5 8
1.9 4 5

m 200, n 10, f2(z)
p GNCS

1 12
1.001 11
1.01 15
1.1 10
1.2 9
1.3 7
1.4 8
1.5 6
1.6 6
1.7 6
1.8 6
1.9 4

IRLSL
50
50
50
33
23
27
20
15
12
11
7
6

The starting point for both IRLSL and GNCS is computed as the solution to
l.s.ATx b. Our experience indicates that the role of 0 is less significant, and we set

it in a similar way to that defined in [5]"

A =T
gO

Next, we generate some test problems from discrete approximation.
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1Function approximation problems. Approximate f(z), evaluated at z 0, ,...,
by a polynomial of degree n- 1" j=l xJzj-1 such that the/p-norm residuals are
minimized. The two test functions used are

k (z) v/l + z,
5

A(z) + o
if 0.1 < z < 0.2,
otherwise.

As indicated by Table 3, GNCS is consistently better than IRLSL. The first
function fl (z) is continuous, whereas the second function f2(z) is not. For fl (z) and
p 1.9, the best/p-norm residual is (r*) 4.97528518113 10-1. For the second
function f2(z), if p 1.9, the best/y-norm residual is (r*) 1.7535105 102.

Random problems. We also generate random test problems by generating random
entries for matrix A and right-hand side b by using the random number generator
(with normal distribution) in PRO-MATLAB [11].

TABLE 4
p--1.

Number of Steps m 100

n GNCS IRLSL
10 12 50
30 14 50
50 12 50
70 13 50

Number of Steps m 200

n GNCS IRLSL
10 17 50
30 17 50
50 15 50
70 21 50
90 15 50
110 14 50
130 17 50
150 13 50
170 13 50
190 9 50

TABLE 5
p-- 1.001.

Number of Steps m 100

n
10
20
30
40
50
’60
’70
80
90

GNCS
11
14
20
16
16
17
14
11
13

IRLSL
27
46
50
50
5O
50

50’
37

Number of Steps m 200

n

30
50
70
90
110
130
150
170
190

GNCS
15
18
15
17
21
15
17
14
18
13

IRLSL
38
5O
5O
5O
5O
5O
5O
5O
5O
5O

Table 4 exhibits the number of iterations required by GNCS and IRLSL when
p 1. The IRLSL method stops after 50 iterations with the objective function
having only a few digits of accuracy. The GNCS algorithm is essentially the method
presented in [5], and it demonstrates fast convergence.

When p is very close to unity (e.g., see Tables 5 and 6 with p 1.001, 1.01),
the number of zero residuals at a solution is usually slightly less than n. The GNCS
algorithm exhibits final superlinear convergence behavior because n of the residuals
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are usually nearly zero at the solution. The GNCS algorithm behaves as though ap-
proaching a vertex and thus demonstrates superlinear behavior when approaching the
neighborhood of the solution. At termination the objective function values computed
by GNCS are always smaller than that of IRLSL. Comparing the IRLSL solutions
with the more accurate GNCS solutions, we see that the former typically have about
six digits of accuracy. The IRLSL method again shows extremely slow convergence
and fails to find a solution after 50 iterations for the majority of problems.

TABLE 6
p-- 1.01.

Number of Steps m 100

n GNCS

30 12
50 13
70 13
90 16

IRLSL
34
50
50
50
50

Number of Steps m 200

n GNCS IRLSL
10" 11 33
30 18 50
50 18 48
70 19 al
90 17 50
110 17 50
130 17 50
150 15 47
170 13 50
190 17 50

When p is further away from unity (e.g., Tables 7 and 8 with p 1.1, 1.3), the
number of zero residuals at the solution is less. However, many residuals are still
relatively small. Hence the GNCS algorithm again approaches the neighborhood of a
solution with a few final superlinear steps. Here the IRLSL method finds a solution
with the required accuracy, but the number of iterations required by IRLSL is more
than twice of that of the GNCS algorithm (see Tables 7 and 8).

When p is significantly larger than unity (e.g., Table 9 with p 1.7), there
usually exists no zero residual at the solution. Thus both the GNCS algorithm and
the IRLSL method converge quickly to solutions and exhibit fast convergence. For
these problems the two methods have roughly the same behavior.

In summary, the GNCS algorithm works very well for all 1 _< p < 2. It always
performs significantly better than IRLSL when p is close to unity (p < 1.5). When p
is very close or equal to unity, the IRLSL method is extremely inefficient, whereas the
GNCS method finds the solutions in about 18 iterations. The latter is slightly better
than IRLSL when p _> 1.5 and there exits no zero residual at a solution.

Finally, we point out that the number of iterations required by the GNCS method
appears to be relatively insensitive to the problem size.

6. Conclusions. In this paper we have developed a new efficient method that
solves the /p-norm minimization problem with 1 _< p < 2. We also have further
investigated the performance of the classical IRLS method and have compared it with
the new approach. We observed that the slow convergence of the IRLS (or IRLSL)
method is not entirely due to the zero residuals at a solution but is also due to
the fact that the constrained aspect is not taken care of: the Newton steps for the
IRLS methods are based on the optimality conditions for the unconstrained problem
(1 < p < 2) but not the constrained case (p 1). On the basis of this observation
we developed the GNCS method, which uses the Newton directions derived from the
optimality conditions for all 1 <_ p < 2.
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Number of Steps m 100

n GNCS
10 11
30 9
50 11
70 10
90 10

IRLSL
19
24
24
25
28

Number of Steps m 200

n GNCS
10 10
30 11
50 12
70 11
90 11
110 10
130 10
150 12
170 10
190 10

IRLSL
15
26
28
26
29
34
2"7
27
37
32

Number of Steps m 100

n GNCS
10 7
30 8
5O 8
70 9’
90 8

IRLSL
8
10
11
13
15

Number of Steps m 200

n
10
30
50
70
90
110
130
150
170
190

GNCS
8
9
8
8
8
9
9
9
9
9

IRLSL
13
13
13
13
13
15
16
17
17
19

TABLE 9
p-- 1.7.

Number of Steps m 100

n GNCS IRLSL
10 6 5
30 6 8
50 7 7
70 9 7
90 8 11

Number of Steps m 200

n GNCS
10 5
30 6
50 6
70 6
90 7
110 7
130 6
150 7
170 8
190 7

IRLSL
5
7
7
6
7
7
6
10
9
11

The GNCS method is attractive because of its capability to efficiently solve the
/p-norm minimization problem with the entire range 1 _< p < 2. When p 1 it is
exactly the approach for l presented in [5] and is quadratically convergent under
nondegeneracy assumptions. When p > 1 the new method is superlinearly convergent
when there are no zero residuals at the solution.

The GNCS method is significantly better than the IRLSL algorithm when p is
close or equal to unity. The computational cost of each iteration of the two methods
is the same: the main cost is solving a weighted least-squares problem of the same
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size and structure. The difference between the two methods lies only in the definition
of the different diagonal scaling matrices that define descent directions: in our new
method the multiplier information is incorporated in the diagonal scaling matrix, and
this is the key to a significant improvement.
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A COLLINEAR SCALING INTERPRETATION
OF KARMARKAR’S LINEAR PROGRAMMING ALGORITHM*

J. C. LAGARIASt

Abstract. In 1980 W. C. Davidon proposed a class of unconstrained minimization methods,
called collinear scaling algorithms, that are invariant under projective transformations. In these
methods the nonlinear function f to be minimized is approximated near a point x0 by a suitable conic
function q(xo +p) o+ Ig, P)/ (1 + (d, p) + 1/2 p, Ap)/(1 + (d, p) )2 and the conic search direction is the
global minimizer of q(xo + p). The full-dimensional version of Karmarkar’s 1984 linear programming
algorithm is shown to be a collinear scaling method for minimizing Karmarkar’s potential function
gK, where the denominator 1 + Id, p) of the conic function is chosen as the normalized linear program
objective function and the Taylor series expansions of gK(xO +P) and q(xo +p) agree to second order.

Key words. Karmarkar’s algorithm, collinear scaling, conic approximation

AMS subject classifications. 65K05, 90C05, 90C30

1. Introduction. The interior point linear programming method of Karmarkar
[11] can be viewed as a method for unconstrained minimization of a particular nonlin-
ear function, called the Karmarkar potential function. Bayer and Lagarias [2] showed
that, after a fixed change of coordinates, the search direction of Karmarkar’s algo-
rithm is the Newton direction for this function. Various other relations of Karmarkar’s
method to nonlinear programming appear in Gill, et al. [8], Bayer and Lagarias [1],
Nesterov and Nemirovsky [13], and Powell [14].

Davidon [3] presented a class of collinear scaling algorithms for unconstrained
minimization that are invariant under projective transformations. Since an intrinsic
feature of Karmarkar’s algorithm is invariance under projective transformations, it is
reasonable to expect that there is some interpretation of Karmarkur’s algorithm in
Davidon’s framework. Here we show that the full-dimensional variant of Karmarkar’s
algorithm has a simple interpretation as a collinear scaling algorithm, namely, that
its search direction is the minimizing direction for a natural conic approximation to
the associated potential function.

This collinear scaling interpretation does not explain the nice properties, such as
polynomiality, of Karmarkar’s algorithm. In addition, it does not prescribe a choice
of step size for Karmarkar’s algorithm. Rather, it may be viewed in reverse--as
supplying, for certain nonlinear functions, a good choice of denominator to use in the
conic approximations underlying collinear scaling algorithms. Thus for every quasi-
Newton method for minimizing the Karmarkar potential function, a collinear scaling
method exists that is likely to be as good or better because a good denominator for
the conic approximations is always available for free; see (12) below.

Section 2 describes conic functions and collinear scaling algorithms. Section
3 gives the main result, the interpretation of the Karmarkar search direction as a
collinear scaling direction. Section 4 concludes with a brief discussion.

2. Conic functions and collinear scaling algorithms. The collinear scaling
algorithms proposed by Davidon [3] consist of approximating the nonlinear objective
function f(x) near a given point x0 by a conic function that maps n to and is of

Received by the editors February 11, 1991; accepted for publication (in revised form) June 24,
1992.
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630



COLLINEAR SCALING INTERPRETATION 631

the form

(1) q(xo + p) fo + 1 + (d,p) (1 + (d,p))2’

where p is interpreted as a perturbation, f0 is a scalar, g and d are n 1 column
vectors, A is an n n matrix, and (y, x) denotes the Euclidean inner product of y
and x. The function 1 + (d,p) is called the denominator of q(xo + p). The conic
function (1) is said to be cupped if it has a unique minimizer p* on the half-space
{d (d, p) + 1 > 0} and if all level sets of q(xo + p) are convex on this domain. In this
case, p* is the solution of

(2) (A + gdT)p* --g.

The conic search direction vq(xo) at x0 for a cupped conic function (1) is

(3) :=

Let x0 be the current approximation to an unconstrained minimizer of f. A conic
algorithm is one that produces, by various methods, a conic approximation q(xo + p)
to the function f(xo -t-p) and produces a new iterate xl xo + AqVq that is defined
by taking a suitable step Aq along the conic search direction defined by (3). Newton’s
method is a special kind of conic algorithm in which the conic approximation to
f(xo + p) is taken to have a constant denominator of unity (i.e., d 0) and in which
g and A are chosen so that the Taylor series expansions of q(xo + p) and f(xo + p)
about x0 agree to second order.

Conic approximations to a nonlinear function offer more flexibility in approxima-
tion than do quadratic polynomials. The set of conic functions is closed under the
subgroup of projective transformations that have the origin as a fixed point and that
have a positive denominator at p 0; these transformations are called collinear scal-
ings by Davidon. It is possible to create conic algorithms that are formally invariant
under such projective transformations. Such algorithms are called collinear scaling
algorithms. Newton’s method is not a collinear scaling algorithm because it does not
possess this projective invariance property.

Davidon [3] defined a class of collinear scaling algorithms in which conic models
(1) are constructed by using data from the function f and its gradient at several pre-
vious iterations. Sorensen [17] described a superlinearly convergent collinear scaling
algorithm. These algorithms were designed to have projective invariance analogous
to the affine invariance property of quasi-Newton methods; see [5]. Some other conic
algorithms are discussed in [a], [9], [15], and [18].

The key choice to make in a conic approximation is the vector d in the denom-
inator, which can be used to match directions of rapid change of f, thereby giving
a wider region of accurate approximation than does a quadratic polynomial. Once
the denominator is chosen, a natural "infinitesimal" choice of A and g in (1) is to
make the Taylor series of f(xo + p) and q(xo + p) agree through second order. On
the other hand, there seems to be no natural infinitesimal criterion for choosing a
denominator, i.e., a criterion based solely on the behavior of f in an arbitrarily small
neighborhood of x0. Indeed, the collinear scaling algorithms proposed so far use non-
local information, e.g., data from previous iterations of the algorithm, to choose a
denominator.
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3. Karmarkar’s algorithm and collinear scaling. We deal next with Kar-
markar’s algorithm for inequality-form linear programs, as presented in [2] and [6].
This algorithm is equivalent after an affine transformation to Karmarkar’s [11] algo-
rithm on standard-form linear programs; see [2].

Thus we are given the inequality-form linear programming problem:

(4) (L)" minimize cTx Co
subject to (a,x)>b, l<j<m.

We assume that the polytope P of feasible points for the constraints (4) of (L) has
a nonempty interior and is bounded, that a feasible point x0 Int(P) is given, and
that the objective function has c 0 and is normalized to be zero at the optimum,
i.e.,

co min{<c,x>lx e P}.

In particular, x0 is not optimal; hence <c, x0> > co. (More generally, the results of
this section also apply to linear programs with unbounded feasible regions that are
quasi-bounded as defined in [2].)

The Karmarkar potential function associated with (L) is

m

(5) gK(X) m log((c, x) Co) log((aj, x) bj).
i=1

Finding an optimal solution of (L) is essentially the same as minimizing gK(x). The
function gK(x) is actually unbounded below on Int(P), but for any e > 0 there exists
a value A such that any point with gK(x) < A is within an e-neighborhood of some
optimal point.

At any point x0 Int(P) the Karmarkar direction, denoted by VK(xO), is found
as follows. We associate to the constraint set (4) the logarithmic barrier function

m

(6) IB (X) log((aj, x) bj).
j=l

A point x is called the center of the constraint set (4) if

m

Vfs(x) (aj, x) bj
O.

The center xc exists and is unique if P has a nonempty interior and is bounded. This
notion of center is due to Sonnevend [16].

The Karmarkar direction Vg(Xo) is obtained by "centering" x0 by a projective
transformation and by pulling back the gradient of the (normalized) objective function
in the projectively transformed coordinate system. To compute it we proceed in two
steps. First, we translate x0 to the origin by using the coordinate change w x- x0;

second, we apply a projective transformation

Bw
(7) (I)(w)

1 + <h, w>’
such that B is invertible, to obtain new coordinates

y:=O(x)= l+(h,x-x0}"
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The projective transformation inverse to (7) is

B-ly-1(y)
1 (h, S-ly)

whence

(8) X (I)-1 (y)"--- --1 (y)
__

X0 X0 -- B-ly
1 (h, B-y)"

Applying (8) to (L) yields, after clearing of denominators, the transformed linear
programming problem

(9)
(I) (L)" minimize (c*, y) c

subject to (a.,y)_>b., l_<j_<m,

in which

* -T
a:i B (aj ((a.i,xo) bj)h),

* s-T(c ((C, Xo) co)h),
b. bj (aj, xo),,
% co (c, xo).

In [12] and [2, Thm. 3.1], it is shown that there exists a projective transformation (7)
such that the barrier function f(y) for the transformed problem (I)(L) has

(0) vf,(0) 0,
(10b) V2f(0) I,

where I is the identity matrix. Condition (10a) says that 0 (I)(x0) is the center
of (I)(L). In the y-coordinate system the Karmarkar direction is -c*. In the original
coordinate system the Karmarkar direction is its pullback as a tangent vector under
(I)-1 which is

(11) VK(XO) -(BTB)-I(c- ((c, xo) co)h).

The ray determined by this vector is independent of the choice of (I) used to obtain
(10).

Now we turn to the collinear scaling interpretation. Since the Karmarkar potential
function is unbounded below as one approaches the hyperplane {x (c, xl co} on
which the optimum of (L) is achieved, a natural choice of conic approximation to
gK(x) is one whose denominator vanishes on this hyperplane. The Karmarkar conic
approximation qK(xO + P) to gK(X) at x0 E Int(P) has denominator

(12) 1 + (d, p> "=
(c, xo + p> co
<, o> o

so that d ttc, where # 1/((c, xo}- co). The remaining elements of qg are
uniquely determined by requiring that its Taylor series expansion about x0 agree to
second order with that of the Karmarkar potential function gg(xo q-P). One has

(go, P> 1 (p, Ap>
(13a) qK(xo + P) gK(Xo) + +1 + (d,p) 2 (1+ (d,p))2’
where
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go := Vgc(x0),
A :- V2gg(xo) / godT / dg.

Our main observation is the following result.
THEOREM 3.1. For the inequality-form linear program (L), the Karmarkar conic

approximation qg(xo +P) to the potential function gg at Xo is a cupped conic function
with a unique minimizer p* within the open half-space {P (c, xo +p) > co}. The conic
search direction Vq(Xo) p* is the same as the full-dimensional Karmarkar algorithm
search direction Vg(Xo).

Proof. This is a computation. One method of proof is to proceed explicitly by
calculating (I) directly as in [6]. Once (I) is known, (11) gives

BrBvg(xo) -(c ((C, Xo) co)h).

One can then check whether Vg(Xo) satisfies (2) up to multiplication by a scalar, after
substituting the values (12) and (13) arising from the Karmarkar conic approximation.

A second method of proof, which we follow here, derives the theorem from the
main result of [2]. First, observe that both Vg(Xo) and Vq(Xo) are invariant under all
projective transformations admissible in the sense of [12], i.e., their denominators are
nonzero everywhere on Int(P). This holds for Vg(Xo) by [2, Whm. 2.6]. It holds for
vq(xo) because a projective transformation (I) maps normalized objective functions to
normalized objective functions, maps the potential function of (L) to that of (I)(L),
and preserves power series expansions to any order.

By a translation we may suppose without loss of generality that x0 0. Now
consider the projective transformation

X
() (, )/0"

This is an admissible projective transformation, and the transformed polytope (I)(P) is
unbounded. From [2], under this change of variable the Karmarkar direction becomes
the Newton direction at y 0 for the logarithmic barrier function

m

(14) $() o((a.,) .)
j--1

of the transformed constraints (9). Such a logarithmic barrier function is strictly
convex, and hence the quadratic approximation

(1) f.(0) + (f.(0) ) + 1/2(, vf$(0))

to f(y) has a unique minimizer y**, and y** is the Newton step for f (y) at 0, which
is the transformed Karmarkar direction.

Now we directly calculate that the transformed Karmarkar conic approximation
qc(y) is a quadratic polynomial:

(6)
q() := q(-())

f0 + (0, ) + (, A),

with go and A given by (13) since d 0 from (12). Theorem 3.1 of [2] asserts that
the transformed Karmarkar potential function is just f(y) in (14) up to an additive
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constant. Since (16) approximates the transformed potential function gg(-l(y)) up
to second order, it must agree with (15) except for the constant term. Thus y** is a
global minimizer for q(y). Note also that this implies that its inverse image gg(X)
under (I)-1 has a global minimizer on the inverse image

(17) > @}) + >
Hence q(xo / p) is a cupped conic function with minimizer p* in the region (17).

Thus the transformed conic direction matches the transformed Karmarkar direc-
tion, and so the directions VK(XO) and va(xo agree. D

4. Discussion. Subsequent developments motivated by Karmarkar’s algorithm
have focused attention on minimizing various members of the general class of potential
functions

m

(18) y dj log((a:/, x) b.),
j=l

where the coefficients dj may be positive or negative and { <aj, x> -bj } are arbitrary
linear forms on n. This class of functions includes logarithmic barrier functions,
Karmarkar’s potential function, the potential functions of Iri and Imai [10] and of
Freund [7], the primal-dual potential function of Ye [20], and also some intrinsically
nonconvex functions.

When all coefficients {dj} are negative, the function (18) is convex and has an
interior minimizer, which can be found by a Newton-type method, as in [13] and [19].
When exactly one dj is positive, (18) is a Karmarkar-type potential function; a good
choice of conic approximation is obtained by choosing the denominator <ay, x/-bj
corresponding to the positive dj, as in 3. When two or more values of dj are positive,
there is no longer a natural choice of denominator for a conic approximation. One
reasonable possibility is to choose as denominator a linear form <a, x -b from among
the indices j for which dj > 0, such that the hyperplane {x <ay, x> bj } contains a
closest point to the current iterate x0.

Acknowledgments. I am indebted to M. H. Wright and the referees for their
careful reading of the paper and for valuable suggestions.
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AUTOMATIC COLUMN SCALING STRATEGIES FOR
QUASI-NEWTON METHODS*

MARUCHA LALEEt AND JORGE NOCEDAL

Abstract. A class of algorithms is described for unconstrained optimization, based on the
BFGS update formula, which includes an automatic column scaling strategy. The new algorithms
generalize the method of Powell [Math. Programming, 38 (1987), pp. 29-46]. Conditions are given
on the scaling strategies that guarantee global and superlinear convergence on convex problems.

Key words, quasi-Newton methods, minimization, nonlinear optimization, scaling
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1. Introduction. Consider the unconstrained optimization problem

(1.1) min f(x)

where f is a nonlinear differentiable function. This problem is often solved by quasi-
Newton methods with inexact line searches. At the beginning of each iteration , R

symmetric and positive denite matrix B and Rn estimate of the solution vector
are available. The new iterate+ is computed by the following two equations,

(1.2) d -Bg,

(1.3) xk+ Xk + Akdk, k 1,

where gk g(xk) is the gradient of the objective function at xk, and Ak is a steplenh
parameter. In this paper we sume that Ak satisfies the Wolfe conditions

(1.4) f(xk + Akdk) f(xk) + Akgdk,
(1.5) g(xk % Akdk)Tdk Tg d,

where0<< and<<l.
Before starting the next iteration of a qui-Newton method, Bk is updated to

B+ using n updating formula which normally involves B, sk, and yk, where sk
and Yk are defined

8k Xk-i Xk

Yk gk+ gk.

The particular updating formula studied in this paper is the BFGS formula, which is
known to be very effective. It was discovered independently by Broyden [1], Fletcher
[6], Goldfarb [7], and Shanno [13], and is given by

BksksBk YkY[(1.6) Bk+l Bk- 8T’-kSkD "- T
Yk sk
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-1By applying the Sherman-Morrison-Woodbury formula to (1.6), one can express Bk+1

directly in terms ofB, sk, and Yk resulting in an inverse form of the BFGS update.
Powell [11], [12] observed that the BFGS method can take a large number of

iterations to find the minimum of the quadratic function f(x) 1/2xTGx, where G
is a symmetric and positive definite matrix, if the eigenvalues of the initial Hessian
approximation B1 are much larger than those of G. However, if the eigenvalues of B
are approximately equal to or less than those of G, then the BFGS method performs
very well.

For this reason Powell proposed that some kind of scaling be introduced to au-
tomatically improve the magnitude of the matrix Bk with respect to that of G. He
works with conjugate direction matrices Zk, which satisfy B- ZZ. His algo-
rithm is based on the BFGS method, but since the update is modified, it represents a
new quasi-Newton method. The following is a brief description of Powell’s updating
procedure.

Given B- ZZ, one first updates Zk to 2k SO that 22 equals the inverse
BFGS update of B-1. A scaling parameter ak >_ 0 is then computed. Each column of
Zk that is smaller than k is scaled up so that its 2-norm is equal to a. Any columns
larger than or equal to rk remain unchanged. Note that this step is equivalent to post-
multiplying Zk by a diagonal matrix Dk whose ith diagonal element equals ak/llZkeill
if the corresponding column is to be scaled, or equals 1 otherwise. Zk+l is set to ZkDk

--1and the next inverse Hessian approximation, Bk+l, is defined by Zk+zkT+.
Powell showed that if implemented properly, his algorithm possesses quadratic

termination. Our numerical tests with this algorithm indicate that in some cases the
improvement over the BFGS method is substantial. However, Siegel [15] has given
an example that shows that, for a certain choice of (Yk, the algorithm is only linearly
convergent when applied to a two-variable quadratic objective function.

This paper, therefore, investigates whether it is possible to select the scaling
parameter ak so that the superlinear convergence property of the BFGS method is
preserved. We choose to do our study on scaling algorithms based on the direct form
of the BFGS update, with the intention of later generalizing the results to those based
on the inverse form, such as Powell’s. The prototype for the class of algorithms that
we wish to consider is described in 2. It encompasses many scaling algorithms, based
on the direct form, in which scaling down the columns is also allowed. Sections 3
and 4 discuss the global and superlinear convergence properties of these methods.
An implementation that is superlinearly convergent for strictly convex problems is
presented in 5, and we conclude with final remarks in 6.

Notation. Throughout the paper Ilxll denotes the 2-norm of x, IIBII the corre-
sponding induced matrix norm of B, and ei the ith column of the identity matrix.

2. Description of the class of algorithms. We now describe the prototype
for the algorithms with column scaling based on the BFGS method. The description
is based on the direct form of the method; however, it can easily be transformed to
an analogous prototype based on the inverse form.

ALGORITHM 2.1. Prototype for automatic column scaling BFGS algorithms.
(0) Choose a starting point x and a nonsingular matrix V; set k 1.
(1) Terminate if a stopping criterion is satisfied.
(2) Compute

-T -1dk’---Vk Vk gk,

Xk+l Xk ,kdk,
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where Ak is a steplength that satisfies the Wolfe conditions (1.4)-(1.5). (The
stepsize Ak 1 is always tried first and is accepted if admissible.) Compute

8k Xk+l Xk

Yk gk+l gk.

(3) Update Vk to Wk so that WkW[ is the BFGS update of VV[.
(4) Compute the scaling parameters ak >_ 0 and Yk > 0 such that ak <_ rk.

Let w represent the ith column of Wk. Construct C diagonal(c, c2,..., cn),
where ci is given by

k

ci- k if [Iwi[I > k,

1 otherwise.

Compute

V+ WC.

(5) Set k :- k -t- 1 and go to step (1).
To elaborate, each iteration of Algorithm 2.1 is of the form (1.2)-(1.3), with the

Hessian approximation Bk taken as

C2 1W’_ k>l(2.2) B1 VIVT Bk VkV[ Wk-1 k- 1,

The update is performed directly on Vk so that the resulting matrix Wk is such that
WkW[ is the BFGS update of VkV[. Before completing the iteration, the algorithm
updates the scaling parameters o’k and Yk, and scales appropriately any columns of
Wk whose 2-norm falls below (:rk or above Yk, as described in step (4). We impose the
restriction rk

_
rlk so that the conditions in (2.1) are mutually exclusive.

As mentioned earlier, Algorithm 2.1 is based on the direct form of the BFGS
method. However, it is easy to see that this framework can be modified to accommo-
date an algorithm based on the inverse form; such as Powell’s, if we keep Zk V-1

instead of Vk, keep 2k W-1 instead of Wk, and replace IIwll by I111, the norm of
the ith column of 2k. Of course, 2k is such that 2k2’ is the inverse BFGS update
of ZkZ.

It will be shown that one has considerable freedom in choosing ak and rik at every
iteration, while still maintaining global and r-linear convergence for convex problems.
However, as we will show in 4, to obtain superlinear convergence, it is necessary that
the choice of these values be made carefully.

3. Global and r-linear convergence. In this section, we prove that Algorithm
2.1 with an appropriate choice of the scaling parameters is globally and r-linearly
convergent on strictly convex objective functions.

Let tr(B) and det(B) be the trace and the determinant of B, respectively. We
begin with the following two preliminary technical lemmas.

LEMMA 3.1. For any n n matrices A and C, where C is diagonal,

(3.1) tr(ACAT) tr(AAT) + tr[(C- I)(ATA)].
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Proof. The proof is straightforward by observing that for any matrices A and B,
tr(AB) tr(BA). Consequently,

tr(ACAT) tr(CATA)
tr(AAT) + tr(CATA) tr(ATA).

Equation (3.1) follows directly from the last equality.
LEMMA 3.2. Let h(u) In u u for u > O. Given positive constants 1 and 2,

there exist constants 3 and 5a such that

(3.2) x e (0, 1] and y e (0,x] = h(y) h(x) <_ 3,

and

(3.3) x e [52, oo) and y e Ix, oo) = h(y) h(x)

Proof. To show (3.2), we first note that h(u) is strictly concave and its maximum
occurs at u 1. We consider separately the cases when x E (0, min(5, 1)) and when
x e [min(5, 1),5].

If x (0, rain(hi, 1)), we conclude that for any y (0, x],

h(y) h(x) <_ O,

since h(u) is strictly increasing for 0 < u <_ 1. On the other hand, if x [min(5, 1), 1],
then for any y (0, x], we have

h(y) h(x) <_ h(min(5, 1)) h(5).

Thus (3.2) holds in either case with 53 h(min(5, 1))- h(51).
A similar line of reasoning shows that (3.3) holds with 54 h(max(52,1))

h(52).
Let G(x) denote the Hessian matrix of f at x, and let D(2) {x e R" f(x) <_

f(2)} be the level-set of f at 2. We now state the assumptions we make on the
objective function f and the starting point x in order to prove our convergence
results.

ASSUMPTIONS 3. I.
(1) The objective function f is twice continuously differentiable.
(2) The starting point Xl is such that the level set D(xl) is convex.
(3) There exist positive constants m and M such that for all z Rn and all

x D(x),

m]]z][2 <_ zTG(x)z <_ MI]zll 2.

These assumptions readily imply that f is strictly convex in D(x), and that there
is a unique minimizer x, of f in D(x). For any positive definite matrix B, we define
the function

(3.4) (B) tr(B) -ln(det(B)),

which has been used by Byrd and Nocedal [4] and Griewank [9] in their analyses of
quasi-Newton methods. Furthermore, define

sBksk
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so that Ok is the angle between the search direction d} and the steepest descent
direction --gk, and also define

8Bksk(3.6) qk-- SS
We assume that the scaling parameters k and Yk are bounded: for all k,

(3.7) ak _< (Tmax, ]k _> min,
for some positive constants am and min. The following lemma provides the foun-
dation for the proof of global and r-linear convergence. It generalizes a similar result
given by Byrd and Nocedal [4, Thm. 2.1] for the (unscaled) BFGS method.

LEMMA 3.3. Let Xl be a staing point for which f satisfies Assumptions 3.1, and
let B be a positive definite staing Hessian approximation. Let (xk ) be generated by
Algothm 2.1 with ak and Yk satisfying (3.7), then for any p (0, 1), there exists a
constant such that, for any k > 1, the relation

(3.8) cos0j

holds for at least [pk] values of j e [1, k].
Proof. First we note that the symmetric matrices Bk

generated by the algorithm are positive definite, because the Wk- e nonsingular
a consequence of the BFGS update, and the Ck- are nonsingular by construction.

Using the definition (3.4) of , (2.2), and Lemma 3.1, we have

(B+) tr(B+) -ln(det(B+l))
tr(WkCW[) -ln(det(WkCW[))
tr(WkW) + tr((C I)W[Wk) -ln(det(WkW[)) --In det(C)
(WkW[) + tr((C I)WWk) --In det(C)

(ww[) + [( 1), -n],

where wi is the ith column of W}.
Define the set of indices of the columns of W to be scaled up, and the set of

indices of the columns to be scaled down

(3.9) Ik
and

(3.10) Jk {i e [1,]" I111 > }-
Therefore, by (2.1

ak 1 IIwll In(B+) (WW[)+ i1,11 iiw, iiiI

+
iiwll

1 I111 -in ii..wllJ _
)]

iI

+ [(l I1,11 -I1,11) -(n )].
iJ
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We will now invoke Lemma 3.2 with 51 ffmax and 52 ?min. Since Ilwill <_ ak for
i EIk, whereas Ilwill _> ?k for i Jk, we can therefore apply (3.2) to each term of the
first summation, and (3.3) to each term of the second summation to obtain

(3.11) (Bk+l) _< (wkwTk / n3 + n4
for the constants 53 and 53 given by the lemma.

Step (3) of Algorithm 2.1 indicates that the matrix WkW[ is the BFGS update
of Sk. Therefore, as derived in Byrd and Nocedal [4, eq. (2.9)],

(3.12)

(WkW[) (Bk)+ [Mk--lnmk--1] + [1 cos2qk0k I-ln
cos2qk0k ] + In cs2 Ok,

where

T8
mk

Yk k SSk
It has also been shown by Byrd and Nocedal [4] that Assumptions 3.1 imply that

(Mk- Inmk- 1) is bounded from above by a positive constant, say 55. Moreover, the
term in the second pair of brackets in (3.12) is nonpositive. We could use this, and the
fact that (Bk+l) > 0 to show that cosOk cannot converge to 0. Instead, we establish
the stronger results of this lemma, which will readily imply r-linear convergence. From
(3.11) and (3.12) we have

where 56 55 + n(53 + (4) and

(3.13) a=- [(1 q
cos 0

Therefore,

qk )Tlncos20k] >0.
cos2 Ok

k

0 < (Bk+l) _< (B) + 56k E
j=l

and hence

k

(3.14) - E aj < (B1) + 56.
j--1

Choose p e (0, 1) and define Sk to be the set consisting of the indices corresponding
to the [pk] smallest values of aj, for j _< k. Let k maxjes {a }, then

(3.15)
1 1

-k aj - (k

jtS

ajE > + E > 5k(1 p)
j--1 j--1
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Therefore, combining (3.14) and (3.15), we have that for all j

1
aj < (k < (1 p) ((B1) + 6) 0.

Since (3.13) implies that -lncos2 6j < aj, it follows that for all j Sk,

lncos > -0
or

cos0 > e-/ =/3,.

We are now ready to state the global and r-linear convergence theorem for Algo-
rithm 2.1. It should be noted that the scaling parameters ak and r/k are only assumed
to be bounded--the former from above and the latter away from zero.

THEOREM 3.4. Let xl be a starting point .for which f satisfies Assumptions 3.1,
and let B1 be a positive definite starting Hessian approximation. Then Algorithm
2.1, with ak and Yk satisfying (3.7), generates a sequence {Xk} that converges to x,;
moreover,

k--1

and

fk+l f, < rk(fl f,)

for some constant r [0, 1).
Proof. The line search conditions (1.4)-(1.5) and the assumptions on f imply

that (see, for example, Byrd, Nocedal, and Yuan [3, eq. (2.13)]),

(.) f+ f, < [ cos 0] (f f,),

where 67 am(1 -/)/M. Lemma 3.3 shows that cos 0j >/1 for at least [pk] values
of j e [1, k]. Let jk be the largest of these pk] indices. Thus (3.16) implies that

s+ s, _< [ -z] (s s,)

(,) < [ -z] (s s,)
rk(fl --f,),

where r [1 ,7/12] P. The assumptions on f also imply that

(.s) 1/2-11 ,11 < f f,.

Therefore, combining (3.18) and (3.17), we obtain

k=l k=l

k=0

<.
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4. Superlinear convergence. First, we define the following quantities to be
used in this section:

(4.1)

(4.2) k G, sk, k G= Yk,

Yk k(4.3) Mk yk~Tk mk
k

(4.4) k ~Tk
COSk "--]l,kl ]]]]"-’kk"’8k

where G, is the Hessian of f at the minimizer x,.

Byrd_, Liu, and Nocedal [2, Lemma 3.2] have shown that the limiting behavior ofk
and cos 0k is enough to characterize the asymptotic rate of convergence of a sequence
of iterates {Xk} generated by a quasi-Newton algorithm. Their result, which can be
seen as a restatement of the Dennis and Mor [5] characterization, is reproduced in
the following lemma.

LEMMA 4.1. Suppose that the sequence of iterates {xk is generated by algorithm
(1.2)-(1.3) using some positive definite sequence {Bk}, and that Ak 1 whenever
this value satisfies Wolfe conditions (1.4)-(1.5). If xk x, then the following two
conditions are equivalent:

(i) The steplength Ak 1 satisfies conditions (1.4)-(1.5) .for all large k and the
rate of convergence is superlinear.

(4.5) lim cosk- lim k--1.
k---cx)

The next theorem specifies conditions on the scaling parameters ak and k that
allow k and cos 0k, produced by Algorithm 2.1, to exhibit the desirable limiting
behavior of Lemma 4.1. Such conditions involve the following apparently cumbersome
quantities:

iEIk

and

and whether or not they sum finitely. Note that k and #k need not be positive.
Recall that the sets Ik and Jk defined by (3.9) and (3.10) contain the indices of the
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columns that are scaled up and the indices of the columns that are scaled down at
iteration k. We are now ready to state the theorem.

THEOREM 4.1. Let f, Xl, B1, rk, and rlk satisfy the assumptions in Theorem
3.4. In addition, assume that G is Lipschitz continuous at x,. Let {xk} -- x, be
generated by Algorithm 2.1; then if

(4.8) < ,
k--1

(4.) . < ,
k=l

the iterates converge superlinearly.
Proof. From the definition (3.4) of and from (2.2), (3.1), and (4.1), we have

(/)k+1) tr(G:WkCW[G:) -lndet(G:WkCW[G:)
tr(ITdkCl)- In det(17dkl/")- In det(C)

(lkl/)+ [(c/2 1)llG1/2will2- In c/2].
i--1

Then, by the definition (2.1) of ci,

Since WkW[ is the matrix obtained by updating Bk using the BFGS formula,
which is invariant under the transformation (4.1)-(4.4), we have as in (3.12),

(4.11)

(lklkT) (/)k)+ (//k --lnrhk 1)+ (1
\

qk
+ln Ok +lncos2k.cos20 cos2 ]

Therefore, using (4.11)in (4.10), we have
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(4.12)

)qk
+ln.

qk

cos2 k cos2 k + In cos2 k

By Theorem 3.4, we know that the iterates converge to x, r-linearly. Using this
and the Lipschitz continuity of G at x,, it is not difficult to show (see Byrd and
Nocedal [4, p. 735]) that

(4.13) y(/t/ -lnrhj- 1) < oo.
j--1

Moreover, the hypothesis of the theorem guarantees that the last two summations
in (4.12) are bounded above. Therefore, in order for (/k+) to remain positive
as k -+ cx), the sum of the nonpositive terms in the square brackets must also be
bounded. This can only be true if

lim 1
qk

k--*oo COS2 k
In Ok lim lncos2k--0,/

COS2 {k ]

which implies that both k and cos Ok --+ 1. Hence, superlinear convergence follows
from Lemma 4.1.

Next we examine the conditions under which relations (4.8) and (4.9) hold. We
give two sets of such conditions in the following two lemmas. However, before doing
so, we analyze % and #k. Applying the Mean Value Theorem to the function h(u)
ln(u) u, it follows that

(4.14) u)(lnx-x)-(lny-y)=

for some scalar n between x and y. Using this in (4.6), we have that

for some scalar {’i such that

(4.16)

Similarly, using (4.14) in (4.7), we have that

(4.17) #k
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for some scalar i such that

iiwll 2 wl

LEMMA 4.2. If Algorithm 2.1 is appged with ], x, B, a, and satis]ying the
assumptions in Theorem 3.4, then

2 <Amin for all largek = y’yk<oo(a.l)
k--1

and

(4.20) ,max for all large k := k < oo,
k--1

where min and max are the smallest and the largest eigenvalues of G..
Proof. The bound on ak2 in (4.19), and the inequality (4.6), imply that the

in (4.15) are less than or equal to 1 for all large k. Consequently, consideration of
the relation (4.15) shows that k _< 0 for large k, since the term in the parentheses is
nonnegative, while the term in the square brackets is nonpositive.

Similarly, the bound on in (4.20), and the inequality (4.18), imply that the
in (4.17) are greater than or equal to 1, and hence #k <_ 0 for all large k. Thus (4.8)
and (4.9) follow immediately. [:]

This result is interesting because it relates ak and r/k to the curvature of the
problem at the solution. In other words, if the smallest and the largest eigenvalues
of the Hessian at the solution are known, we can design an algorithm that converges
superlinearly for convex problems simply by ensuring that eventually the crk drop
below min and the k rise above ,max. In practice, however, the eigenvalues are
not readily available. Nevertheless, Lemma 4.2 is still of theoretical interest, as we
will use it later to show that a practical computation of the scaling parameters gives
superlinear convergence.

To proceed with the analysis in the remainder of the paper, we define Uk to be the
set of iteration numbers less than or equal to k in which at least one column is scaled
up, i.e., Uk (j <_ k:Ij . Similarly, we define Dk to be the set of iterations where
scaling down occurs. It is clear from these definitions that ’]k__l k -]keU /k and

=1 eD"LEMMA 4.3. If Algorithm 2.1 is applied with f, xl, B, ak, and k satisfying the
assumptions in Theorem 3.4, then

(4.21)

and

(4.22) (max(ilwll2} -)< oo = k < oo.
iJ

kDoo kDoo

Proof. The expressions (4.15) and (4.16)imply that

2)
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Dropping the term 1/a and using

we have

iI

iI

The relation (4.8) follows directly from summing (4.23) over all k e Uoo and applying
the bound (4.21).

Similarly, the expressions (4.17) and (4.18) and the assumption rlk > Ymin imply
that

1

?min i6Jk
(4.24) n< =--(max{llwll2} ).

Summing (4.24) over all k e D and applying the bound (4.22) give (4.9).
5. A superlinely convergent algorithm. In this section we describe a spe-

cifi implementation of Algorithm 2.1, and make use of the theory developed so far
to show that it is globally and superlinearly convergent for strictly convex objective
functions.

ALGORITHM 5.1. Automatic column scaling BFGS algorithm.
(0) Choose x and a nonsingular and lower Hessenberg matrix V; set k 1.
(1) Terminate if a stopping criterion is satisfied.
(2) Find an orthogonal matrix Qk such that Lk := VkQk is lower triangular.

Compute

d -LTL;g,
Xk+l Xk + kdk,

where Ak is a steplength that satisfies the Wolfe conditions (1.4)-(1.5). (The
stepsize Ak 1 is always tried first and is accepted if admissible.) Compute

8k Xk+l Xk

Yk gk+l

(3) Perform the following steps to update Lk to Wk so that WkW is the BFGS
update of LkL"
(3.1) Compute rk Lsk.
(3.2) Find an orthogonal and lower Hessenberg matrix 12k such that kel
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(3.3) Construct Wk -[Wk, Wk2,..., Wk], where w is given by

Lkfkei, i 2, 3,..., n.

(.2)

(4) Compute the scaling parameters: If k 1,

otherwise,

where

and

where

tTk n

Ik-1-- {i e [1, n]" I1-11 < _},

1 [(n-IJk_l l)7_1 +’=
iJu_

k-1J_ {i e [1,n] IIw II > ,-}.
Construct Ck diagonal(c1, c2,... ,cn) where c is given by

(5.4) ci

a if IIwll < ,I111
k

1 otherwise.

Compute

V+ WkCk.

(5) Set k :- k + 1 and go to step (1).
To elaborate, each iteration k begins with the lower Hessenberg matrix Vk, which

defines the Hessian approximation Bk VkV[. We require that Vk be lower Hes-
senberg in order that the lower triangular matrix Lk can quickly be obtained by
postmultiplying Vk by an orthogonal matrix Qk. The matrix Qk is defined implicitly
by a sequence of at most n Givens rotations. Note that since Lk YkQk, we also have
that Bk LkL. This allows us to compute the search direction by two triangular
solves. The new iterate xk+l is computed by means of a Wolfe line search.



650 MAI:tUCHA LALEE AND JOI:tGE NOCEDAL

Next we compute a lower Hessenberg matrix Wk so that WkW is the matrix
obtained by applying the BFGS update to LkL. This procedure, which is due to
Powell [12], is described in step (3). It is easy to verify that Wk constructed by formula
(5.1) has the desired property. Indeed,

Wi W
i:l

YkY n
_TnTrT

T8
-{- E LkkeiVi akk

Yk k i=2

On the other hand, the definitions of Dk and rk (see steps (3.1) and (3.2)) give

(5.6)

LkL LkfkflL
T T TLkflkeei k Lk

i--1

T T nLkLsksk LkLk +E LkfkeieTi T Tflk LkT T8kLkLksk i=2

Solving for the summation in (5.6) and substituting the result into (5.5), we see
that WkW[ is indeed given by the BFGS formula (1.6). To see that Wk is lower
Hessenberg, one need only note the forms of Lk and ilk.

The matrix flk need not be formed explicitly. Given Lk and rk, a downdating
procedure similar to the one described by Goldfarb [8] and Powell [12] can be used to
obtain Wk without forming ilk.

The algorithm then updates the scaling parameters rk and Yk by formulas (5.2)
2 is a weighted averageand (5.3), and scales appropriately columns of Wk. In words, ak

of ak_12 and the square of the norms of the columns that were scaled up in iteration
k- 1. Similarly, y is a weighted average of y2k_l and the square of the norms
of the columns that were scaled down in the previous iteration. Note that k is
nonincreasing, while Yk is nondecreasing. In particular, if Ik_ is empty, that is, if
no scaling up occurred in iteration k- 1, then ak (:rk-1. Similarly, Yk Yk-1 if
Jk- is empty. We now formally state and prove that Algorithm 5.1 is globally and
superlinearly convergent for strictly convex problems, as a corollary to Theorems 3.4
and 4.1.

COROLLARY 5.1. Let f, x, and B1 satisfy the assumptions in Theorem 3.4, and
assume that G is Lipschitz continuous at x.. Then Algorithm 5.1 generates a sequence
{Xk} that converges superlinearly to x..

Proof. Global convergence of the algorithm immediately follows from Theorem
3.4 since rk <_ (1 and Yk >_ Y, and all other assumptions of the theorem are satisfied.

To establish superlinear convergence, we will show that the inequalities (4.8) and
k(4.9) hold. We begin by analyzing the sum of (a-mlnieik {llwi 112}) over all iterations

in which scaling up occurs. Rearranging the definition (5.2) gives us a new equality,

ffk+l)
iIk

which is true for any iteration k >_ 1. Both sides of the equality (5.7) are 0 when
k Uo. (Recall that Ul contains the indices of the iteration numbers less than or
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equal to where scaling up occurs.) Therefore, summing the left-hand side over all
iterations k, we get

k

k:l iEIu kEU iIu

k(5.8) >
kU=

Moreover, summing the right-hand side of the equality (5.7) over any number of
iterations _> 1, we get

Hence, summing the equality (5.7) over all iterations k, and substituting the relations
(5.8) and (5.9)yields

(a min{[[w2}) < na.
kU

Thus the inequality (4.8) is implied by invoking the implication (4.21) of Lemma 4.3.
It remains to be shown that the inequMity (4.9) holds. We consider separately

the ce when there exists an iteration k k such that Yk Amax, the mimum
eigenvalue of G., and the ce when Yk < Amax for all k. Suppose first that Yk Amax
for some iteration k . Since k is nondecreing by the definition (5.3), it follows
that Yk Amax for all iterations k k. Thus we can invoke the implication (4.20)
of Lemma 4.2 to show that the inequality (4.9) holds in this ce. In the other ce,

k 2 2we proceed to alyze the sum of (m,ej {]]w, }- k) over all the iterations in
which scaling down occurs. A new equality can agn be derived by rearranging the
definition (5.3)"

(5.10) (llw[[ )= 2 2n(+ ).
iJ

Recall the definition of Dk, which is the counterpart of Uk. In analogy to the derivation
of the relations (5.8) and (5.9), we can derive the relations:

k 2(5.11) (]w, [[- ) > (m{]w[[2} )
i6J

k=l i@J k@D

7]2 2 n(Amax 7]2)<
k--1

for any _> 1. Summing the equality (5.10) over all iterations k, and substituting the
relations (5.11) and (5.12), yields

k 2 (,max 7112)
kD

Thus, by invoking the implication (4.22) of Lemma 4.3, we have that (4.9) holds.
Because of this fact and the fact that (4.8) holds as shown earlier, we conclude from
Theorem 4.1 that the iterates converge superlinearly. D
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6. Final remarks. We have described in this paper the conditions under which
an automatic scaling algorithm based on the direct form of the BFGS update can
be proven to be globally and superlinearly convergent. It should be noted that rules
for scaling that are more general than those in step (4) of Algorithm 2.1 exist. An
example is to have different values of ak and Yk, say ak and rhk, associated with
each column i of Wk. However, such generalization would complicate the notation
unnecessarily, and would crowd out the important points of the theory that we wish
to convey. Only slight modifications of the proofs are required to accommodate this
generalization.

It is also possible to describe an algorithm similar to Algorithm 2.1 but based
on the inverse BFGS formula, and to give sufficient conditions for its convergence.
Specifically, a theorem similar to Theorem 3.4 can be stated for such an algorithm,
but only when k is set to cx, i.e., when scaling down is disallowed. We have not
been able to prove convergence for a more general choice of k. It remains to be
investigated whether this difficulty is inherent to the nature of the algorithm, or is
due to a deficiency in our method of proof.

A column scaling algorithm that is not a particular case of Algorithm 2.1 has
recently been proposed by Siegel [14]. He also updates a matrix of conjugate directions
to define the iteration matrix, but the scaling rules are quite different from the ones
considered here. Moreover, when a certain criterion holds, the search direction is
determined by dropping a set of columns from the matix of conjugate directions.
Siegel shows that his algorithm is superlinearly convergent and gives an example to
illustrate its practical behavior.

We believe that the choice of the scaling parameters given in Algorithm 5.1 is
adequate asymptotically, but that more aggressive strategies may prove useful away
from the solution. Specifically, in our algorithm, ak is nonincreasing, and k is non-
decreasing. It might occasionally be better to increase ak and to decrease Yk. For
example, a problem may have regions with small curvature far away from the solution,
and large curvature near the solution. In this case it may be advantageous for the
algorithm to increase ak sometimes. A similar argument can be made for a need to
decrease k. The question of how to implement the best scaling strategy is the subject
of our future research. We believe that it would be a mix of an aggressive strategy
in the early iterations and a more conservative one towards the end. In any case, the
theory developed in this paper will prove to be useful for analyzing the global and
asymptotic behavior of any such strategies.
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MULTI-OBJECTIVE CONTROL-STRUCTURE OPTIMIZATION
VIA HOMOTOPY METHODS*
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Abstract. A recently developed active set algorithm for tracing parametrized optima is

adapted to multi-objective optimization. The algorithm traces a path of Kuhn-Tucker points

using homotopy curve tracking techniques, and is based on identifying and maintaining the

set of active constraints. Second order necessary optimality conditions are used to determine

nonoptimal stationary points on the path. In the bi-objective optimization case the algorithm
is used to trace the curve of efficient solutions (Pareto optima). As an example, the algorithm
is applied to the simultaneous minimization of the weight and control force of a ten-bar truss

with two collocated sensors and actuators, with some interesting results.

Key words, active set, bi-objective, control-structure optimization, efficient solutions,

homotopy, multi-objective optimization, optimal curve tracing, probability-one homotopy
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1. Introduction. In recent years there has been considerable interest in simul-

taneous control-structure optimization of space structures [5]. Although the problem
can be solved by sequential optimization of a structure objective (Js) and a control
system objective (Jc), better designs are obtained when both objectives are optimized
simultaneously (e.g., [6]). In the latter approach both objectives are combined into

a bi-objective cost function 5 (Js, Jc). Bi-objective optimization gives the designs

(known as eJcient solutions) where one objective can be improved only at the expense
of the other one. Such a formulation of the problem produces a family of design op-
tions which can be used in the early stages of the design process to guide the evolution
of the design [3].

The optimal solutions to the problem of minimizing the bi-objective cost function

(Js, Jc) can be found by optimizing the convex combination (1 ()Js + Jc of

Js and Jc [3]. Homotopy curve tracking methods can be used to generate the curve

of solutions for ( e [0,!] whenever the curve is smooth (e.g., [9], [13]). However,
the curve of optimum solutions is not necessarily smooth at points corresponding to

changes in the set of active constraints. Therefore it is necessary to locate such points
and restart the tracing algorithm with a new set of active constraints.
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There have been recent attempts to construct algorithms for tracing a path of
optimal solutions. Rao and Papalambros [12] use simple continuation to find the family
of parametrized optima for large changes in a parameter. Lundberg and Poore [7] use

a sophisticated predictor-corrector homotopy curve tracking algorithm to investigate
the dependence of the solution on a parameter and to locate bifurcations and points
of extreme solution sensitivity. The objective of the present paper is to describe the
application of a recently developed homotopy algorithm [10] to tracing optima of bi-
objective optimization problems.

Section 2 develops the control-structure optimization problem, used as a rep-
resentative application of the algorithm. Section 3 briefly recounts some homotopy
theory, although the probability-one aspect of globally convergent homotopy methods
is not used in any essential way here. The heart of the active set hom0topy algo-
rithm proposed here, detecting and correctly managing changes in the active set of
constraints, is described in detail in 4. Section 5 presents numerical results for a

ten-bar truss, which illustrates several subtle and complicated phenomena associated
with bi-objective optimization.

2. Control-structure optimization. The problem of simultaneous structure-
control optimization is formulated as the minimization of the structural weight W and
maximum control force Fmax subject to constraints on the damping ratios i of the
first nm vibration modes of the structure.

The equations of motion of the structure controlled by nc collocated sensors and
actuators are written as

M + Doiz + Ku F,

where M, Do and K are the mass, structural damping and stiffness matrices, respec-
tively, u is the displacement vector, F is the applied control force vector, and a dot
denotes differentiation with respect to time. A simple direct-rate feedback control law

[8] is used for the actuator force vector F given as

where Dc is the control matrix which has nonzero rows and columns at positions
corresponding to components of/t measured by the sensors. Assuming that there is

no structural damping (Do 0), the structure is described by the system

M + Dcit + Ku 0

with the general solution u uoet’t. The stability of the system is controlled by
the real parts of the eigenvalues #i. The stability margins are characterized by the
damping ratios defined as

i=

where a and w are the real and imaginary parts of #i.
We assume that the matrix Dc is positive semidefinite so that the closed loop

system has at least the same stability as the open loop system. Following [8] the goal
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is to have a control system which minimizes the maximum control forces for a given
velocity bound I111 <_ U. The maximum control force applied by the actuators is

Fmax max i1]----- IIDcll mx
j

where the dij are the elements of the control matrix De.
The problem of simultaneous control-structure optimization is the bi-objective

optimization problem

1 minimize (W(a), Fmax (a, Dc)
such that Idiil _-< Fmax,

J

i(a,D)=>0i for i-1,...,nm,

D _-> 0, (D positive semidefinite),
ai=>a0i for i--I,...,

where a is a vector of structural dimensions and W(a) is the structure’s weight. The
curve of all efficient solutions (designs for which neither W(a) nor Fmax can be simulta-
neously improved) can be obtained by minimizing the combination (1 c)W + CFmx
of the two objective functions for all values of c between 0 and 1. To simplify the
later algorithmic discussion of the constraints, the problem can be rewritten as

(2) minimize c(x, o) (1 c) W + ozFmx
(3) subject to G(x) xo xi <= 0, 1,...,

(4) Gj+n (x) <= O, j 1,..., nu,

where x is the nl-vector of design variables including a structural size vector a, the
nonzero elements of the matrix D, and Fmx. The design variables are subject to
the minimum value constraints xi >_- x0i; the constraints (4) correspond to the other
constraints in the problem (1); and a is the parameter assuming all values between 0
and 1. The Lagrangian function and Kuhn-Tucker conditions for this problem are-

n n -n2

(5) L(x, o, .X) c(x, c) + .Xi(xoi xi) +
i=1 j=n -I-1

nlOc OGj
.Xi O, 1,..., nl,+

j=n+l

(7) Gj,,j O, j 1,..., nl + n2,

(8) ,j _-> 0, j 1,..., nl + n2,

(9) Gj <= O, j 1,..., nl + n2.

Equations (6)-(7) form a system of nonlinear equations to be solved for the design
variables xi and the Lagrange multipliers , associated with active constraints of the
form (4) and with the bounds for design variables (3). The solution (x, , A) of these
equations, in the generic case, follows a path (not necessarily monotone in c) that
consists of several smooth segments, each segment characterized by a different set of
active constraints.
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3. Homotopy curve tracking. The system of nonlinear equations (6)-(7) is

solved by a homotopy curve tracking method. By the Implicit Function Theorem, if
F EN+I - EN is C1, the system of equations

(10) F(x, c) =0

has some solution (x0, s0), and the Jacobian matrix DF(xo, s0) of the function F at

(x0, s0) has full rank, then there is some neighbourhood U of (x0, s0) such that there
is a unique curve of zeros of F(x, ) in U passing through (x0, s0). Assuming that
0 is a regular value of F, this full rank of the Jacobian matrix implies that the zero

set of (10) contains a smooth curve F in (N + 1)-dimensional (x, a) space, emanating
from (x0, s0); F has no bifurcations and is disjoint from any other zeros of (10). The
curve F can be parametrized by arc length s:

(11) x=x(s), a c(s).

Taking the derivative of (10) with respect to arc length, the nonlinear system of
equations is transformed into the ordinary differential equations

(12) [F(x(s),a(s)), F(x(s),a(s))] [dx =0,

and

(13)

where Fx and F denote the partial derivatives of F with respect to x and a, respec-
tively. With the initial conditions at s 0,

(14) x(O) xo, c(O)

(12)-(14) can be treated as an initial value problem. Its trajectory is the path F of
optimal solutions Z(s) (x(s), a(s)).

A probability-one homotopy approach would construct a homotopy map pb(a,x;
(), where a E [0, 1) and b is a random parameter vector, such that tracking a zero

curve of Pb would lead to a solution of (10) for fixed a. It would not be necessary to
assume that 0 is a regular value of either F or pb--the supporting theory [15], [16]
says that 0 is a regular value of Pb for almost all b, but F must be C2. Algorithms
based on such homotopy maps Pb are powerful and robust, but provide solutions only
for fixed a, and cannot easily track the entire zero set of (10) (which is the goal here).
Thus, strictly speaking, the algorithm used here is not a modern (probability-one)
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homotopy method but a variant of arc length continuation, on which there is a huge
literature. See the references in [1], [7], or [14]-[17].

A software package HOMPACK [15], [17], which implements several homotopy
curve tracking algorithms, is used to track the zero curve F. The HOMPACK algo-
rithms take steps along the zero curve using prediction and correction to find the next
point. Just to give the flavor of such algorithms, one of the algorithms implemented in
HOMPACK, called the "normal flow" algorithm, is sketched here. In the prediction
phase a Hermite cubic p(s) is constructed which interpolates the zero curve F at two
known points, Z(sl) and Z(s2). The predicted next point is

(15) Z() p(s2 + h),

where p(s) is the Hermite cubic, and h is an estimate of the optimal step (in arc

length) to take along F.
The corrector iteration is

z(k+l) Z(k) [DF(Z(k))J+F(Z(k)), k 0,1,...

where [DF(Z(k))] + is the Moore-Penrose pseudoinverse of the N (N + 1) Jacobian
matrix DF. In practice this pseudoinverse is not calculated explicitly; see [15] for the
details of the Hermite cubic interpolant construction and the corrector iteration.

The optimal step size h is chosen to prevent the corrector iteration from being
too costly. HOMPACK lets the user specify nondefault values used in determining
the step size, for example, the maximum and minimum allowed step size. Lundberg
and Poore [7] have probably the best algorithm to date for determining h. The pc-
rameter a in equations (12)-(14) is a dependent variable, which distinguishes modern
homotopy methods from standard continuation, imbedding, or incremental methods.
The modern homotopy approach is also different from initial value or differentiation
methods, since the controlling variable is arc length s, rather than c.

4. Solution along a segment and transition to the next segment. Since
the active constraints in a segment are fixed, they can be treated as equality con-

straints. Furthermore, along each segment some design variables are fixed at their
lower bound. The vector of these inactive (passive) variables is denoted Xp and need
not be considered as design variables for that segment. The vector of active design
variables xi (i :Y) is denoted as x. Along each segment the Kuhn-Tucker con-
ditions are solved for the active design variables xi (i :Y) and for the Lagrange
multipliers A9 associated with the active constraints of the form (4) (Aj, j /:a). For
each segment there are two types of equations:

(16) VI: Gy(x) O, j

Oc OG(17) V2 + E )J Ox--- o, E Ia.

The active design variables and the Lagrange multipliers associated with active con-
straints (4) are the variables in these equations. The homotopy algorithm needs the
Jacobian matrix of these functions with respect to c, Xa, and Ag.



MULTI-OBJECTIVE OPTIMIZATION 659

As suggested by the discussion in 3, it is explicitly assumed here that 0 is a

regular value of the system defined by (16) and (17), i.e., the Jacobian matrix has
full rank along a segment. Let y (a, Xa, )g). At the start of a segment the set of
active design variables and active constraints for this segment has to be found, so that
the vector y is defined. A set of equations is then generated, with the type of each
variable determining the form of the equation appended to the system of equations.
For a Lagrange multiplier associated with an active constraint of the form (4), the
equation has the form (16), and for an active design variable, the equation has the form

(17). The system of equations for the segment is solved using the previously described
homotopy curve tracking technique. Next the Lagrange multipliers for inactive design
variables are calculated according to (6). In these equations the Lagrange multipliers
associated with active constraints of the form (4) have been computed by the homotopy
method, and the Lagrange multipliers associated with inactive constraints (4) are

known to be zero. At each point of a segment the Lagrange multipliers associated
with the lower bound of the inactive design variables or the active constraints of the
form (4) in the segment should be nonnegative, the value of each Gj, j nl,..., nl+n2
should be less than or equal to zero, and all design variables should be larger than or

equal to their lower bound. If any of the above conditions is not satisfied the segment
is terminated and a new one is started. The transition point to a new segment is called
here a switching point. Depending on the type of termination, the switching point is
the point (which is calculated using a guarded secant method, since the curve tracker
will have overshot) where
1) one of the positive Lagrange multipliers becomes equal to zero, or

2) a previously negative Gj of the form (4) becomes equal to zero, or

3) an active design variable xi(i E :[a) becomes inactive (equal to xoi).
At the beginning of each segment the system of linear equations (6) is solved

for A1,...,Am, m nl + n2, to check which design variables and constraints are
active and to find the initial values of the Lagrange multipliers for the new segment.
First the Lagrange multipliers for inactive constraints are set to zero so that Lagrange
multipliers only for potentially active constraints (those equal to zero) are considered.

Since some of the constraints (4) may be inactive (their values at the switching
point are less than zero), or the derivatives of the constraints (4) with respect to the
design variables can assume values for which some columns or rows in the coefficient
matrix of the system (6) are linearly dependent, the rank of this matrix can be less
than n2. The rank of the coefficient matrix for the system (6) determines the number
of the constraints (4) that are assumed to be active in the next segment.

The QR factorization with column pivoting (or the singular value decomposition)
is used to find the rank r of the coefficient matrix. (Needing to numerically calculate
the rank .is a fundamental weakness, closely related to the need to get the active set
right in any active set algorithm.) Next the system (6) is solved for all subsets of r
columns that are linearly independent assuming that the Lagrange multipliers for the
constraints (4) corresponding to the remaining columns are zero. To get the solution
for each subset at least r design variables are assumed to be active (the corresponding
Lagrange multipliers are set to zero). For each subset of r columns (corresponding
to r constraints) all combinations of r out of n design variables are assumed to be
active. The system is solved in turn for each combination to find all sets of active
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design variables and active constraints (4) such that the Lagrange multipliers are

nonnegative.
Sometimes there are several solutions satisfying the condition that all the La-

grange multipliers be nonnegative. Then for each solution the signs of the derivatives
of the design variables with respect to the arc length s are calculated. A set of active

constraints (4) and active design variables is accepted when the values of these signs
indicate that no active constraint will be immediately violated for increasing values

To calculate the values of the derivatives of the design variables with respect to a,
the Kuhn-Tucker conditions (6)-(7) are differentiated with respect to a. This gives:

(18) A + Z)--+N----a-Oxa0)9

(19)

0(Vc) (ON)Oa - =0,

NTOXa OGg
-d + oa =o,

where xa is a vector of design variables,/kg is a vector of the Lagrange multipliers for
active Gj, Gg is a vector of active constraints Gj, j E Ig, N has components

nij

A is the Hessian of the objective function c,

and Z is a matrix with elements

Zi

After equations (18) and (19) are solved, derivatives of each Gi corresponding to an

active constraint (4) with respect to a are calculated according to

(20) OGj
Oa Oxi Oa’ J ’"iE

For each candidate solution satisfying the Kuhn-Tucker conditions, the signs of the
derivatives with respect to arc length s are then calculated by multiplication by
sgn(da/ds) (determined by the direction in which a segment is to be tracked). The
signs of the derivatives with respect to arc length s are calculated for design variables,
Lagrange multipliers and Gy’s corresponding to active constraints. A solution is ac-

cepted if the derivatives with respect to s of active design variables that are at their
lower bound are nonnegative, the derivatives with respect to s of zero Lagrange mul-
tipliers that correspond to active constraints (4) are nonnegative and the derivatives
of Gy’s that are equal to zero are nonpositive.
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FIG. 1. Ten-bar truss with actuators.

The path of optimal points can be discontinuous [10], [11]. It is possible that
beyond some value of a there are no neighbouring optima. At this point a is fixed
and the problem must be solved by a standard optimization algorithm to find a new

optimum. Tracking a path of optimal solutions can then be resumed at this new point.
It is also possible that beyond a certain value of a no optimum exists, for example,
if the problem becomes unbounded. Furthermore, singular points such as bifurcation
and fold points may occur [7]. Singular points correspond to a rank deficiency of
the Jacobian matrix of the functions given in (16) and (17), which has explicitly been
assumed not to occur. A more detailed description of this segment switching algorithm
is given in Rakowska et al. [10].

Second order optimality conditions [4] are checked to verify that the stationary
points found by solving the Kuhn-Tucker conditions are indeed minima. Second order
necessary conditions are

(21)

where

d 2xaL]d>=O for everydsuchthat (VGi)td=O Vjelg,

V2 1, mE:a.

Recall that N is a matrix whose columns are the gradients of active constraints Gj
(j E Ig). Then a QR factorization of N,

gives a basis (columns of Q.) for ker N (im N) +/-, i.e., a basis for all vectors
d _1_ VGj Vj Ig. Therefore the second order necessary condition (21) is equivalent to

V.Q[ Xa L] 0,2 being positive semidefinite. When the second order necessary conditions
are not satisfied it may still be useful to follow the path of stationary points until the
solutions again become optimal. An alternative way of dealing with nonoptimality
along F is to find a point on another path in the zero set using a standard optimization
algorithm.
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5. Ten-bar truss example. Numerical results are presented here for the ten-bar
truss structure shown in Fig. 1. Numbers in circles indicate joints and plain numbers
label truss elements. The truss is controlled by two pairs of direct-rate feedback
collocated sensors and actuators shown by boxes in the figure. The sensors measure

velocities, and the actuators apply forces at the positions and directions indicated in

Fig. 1. The positions of the actuators have been obtained by an optimization that
determined the most effective locations for controlling the first four modes. The sensor

and actuator pairs are associated with the first (horizontal velocity at joint 1) and sixth

(vertical velocity at joint 3) components of the velocity vector/. The weight of the
10truss (excluding constant masses of 10 kg at the nodes) is given by Ei=I paili, where

ai and li are the cross-sectional area and length, respectively, of the ith truss member
and p is the weight density. The first four modes are required to have at least three
percent damping (0i 0.03), L 354in, and the minimum area gage for all truss
members is a0 0.1085 in2. The optimization problem (2)-(4) then becomes

10

minimize c(a, a)- (1 -a)kE paili + aFmax,
i=1

subject to Gi aoi ai _-< 0, 1,..., 10,

Gll -dll =< O,

G12 -d66 _-< 0,

G13 -Fmax =< 0,

G14 [dill + Idl6l- Fmax _-< 0,

G15 --Id161-t-Id661- Fmax _--< 0,

Gj+15 0.03 j(a, dll, d16, d66) -<_ 0, j 1,..., 4,

G20 d6- d11d66 <= 0,

where a is a vector of truss element cross-sectional areas, is a truss element length
vector, dll, d16, d66 are the nonzero entries of the control matrix De, Fmx is the control
force applied by actuators, and k is a scaling constant taken here to be 0.0261. The
design variables in this formulation include a, dl, d16, d66 and Fmx. Since Fmax is

not a smooth function of the other design variables, adding it as a design variable
removes discontinuities in the derivative of the objective function. Furthermore, the
absolute value function Idijl is not differentiable at zero and so is replaced by a quartic
polynomial (matching the slope of Idjl at -t-dt) near zero:

Idijl - 3
dt ] dt ]

for Idijl <= dr,

where dt is taken to be 5% of a typical value for dij.
The switching points on the path of stationary points are shown in Table 1. For

c 0 the weight is the only objective, hence the cost function is minimized when
all the areas are at minimum gage. The values for d11, d16, d66 and Fmx were

obtained by minimizing the control objective with a standard sequential quadratic
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TABLE 1
Path of solutions for ten-bar truss example.

Seg-
ment

5.

6.

7.

8.

9.

10.

11.

12.

0.00000 3.02251

W

48.46283 1.45844

Event

Fmax, dll, d16, d66 and
G15, G16, G2o are active

0.10921 3.02251 48.46283 1.45844 al becomes active

0.16123 2.74944 50.15051 1.54109 Constraint on 2 becomes active

0.28693 2.74943 50.15056 1.72217 a7becomesactive
0.31255 2.65683 51.66604 1.75732 Constraint on 1 becomes active

0.83345 2.65683 51.66609 2.43892 a4 becomes active

0.86770 2.65520 52.02666 2.48356 a6 becomes active

0.73754 2.60414 58.87609 2.32371 a7 becomes inactive

0.87005 2.59906 59.62525 2.46354 Constraint on 2 becomes inactive

0.93036 2.54966 76.44878 2.51105 a5 becomes active

0.94390 2.53224 86.29556 2.51653 a3 becomes active

0.94940 2.52316 92.48853 2.51763 al becomes inactive

1.00183 2.51446 105.45971 2.51403 a becomes greater than 1

programming algorithm (VMCON [2]). The same solution holds for small values of
a. For a _-> 0.1092 the derivative of the objective function with respect to al becomes
negative and therefore the objective function can be reduced by using a as an active

design variable. The homotopy method is used to follow the path of stationary points
starting with this value of a.

The path shown in Table 1 consists of 12 segments, with the first column in the
table giving a at the beginning of the segment. The last column in the table describes
the event that signaled the switching point at the beginning of the segment. Segments
are terminated when a design variable or a constraint becomes active, or when an
active design variable becomes inactive. Plots of the objective function and its two
components W and Fmax are given in Figs. 2, 3, and 4, respectively.

Plots of the weight and the maximum control force indicate that the best designs
can be obtained for values of a near 0.8. For these values of a the maximum control
force Fmx is reduced by 83% of its maximum decrease (corresponding to a changing
from 0 to 1), whereas the weight is increased only by 20% of its maximum change.

Along Segments 2 and 4 the design variables stay essentially at the same value,
whereas the Lagrange multipliers for active constraints change considerably. At the
end of Segment 5 no new segment for increasing a can be found. However it is

possible to continue the path by decreasing a to obtain Segment 6. The second order
necessary conditions are not satisfied along this segment, so points of Segment 6 are

only stationary points for the problem. The path of optimal solutions is resumed in

Segment 7. The plot of the objective function in Segments 5, 6, and 7 is magnified
in Fig. 5. At points of discontinuity of the path of optimal solutions a standard
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FIG. 2. Objective function c along Segments 0-11 (gray line denotes
nonoptimal stationary points, black line denotes optimal points).
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FG. 3. Weight W (pounds) along Segments 0-11 (gray line denotes
nonoptimal stationary points, black line denotes optimal points).

optimization program (e.g., VMCON) can be used to find a point where the solutions
again become optimal. It can be also worthwhile to follow the path of nonoptimal
stationary points until a new optimal point is encountered, if the nonoptimal segment
is short or if it is difficult to find a point on another optimal branch using standard
optimization. In this work the path of stationary points was followed even if they did
not satisfy the necessary optimality conditions.

At the beginning of Segment 8 the path of the stationary points can again be
tracked only by decreasing the parameter a along a nonoptimal segment. After c

decreases from 0.8700583 to 0.8700568 the path of stationary points turns smoothly
and continues for increasing values of (, becoming optimal again. The two components
of the objective function, the structural weight W and the control force Fma, at the
beginning of Segment 8 are shown in Figs. 6 and 7, respectively. The scale in Figs. 6
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FIG. 4. Fmax (pounds) along Segments 0-11 (gray line denotes station-

ary nonoptimal points, black line denotes optimal points).
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FIG. 5. Objective function c along Segments 4-7; black lines (4: dashed,
5" dotted, 7: solid) denote optimal solutions, gray line (6) denotes nonoptimal
stationary points.
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FIG. 6. Weight W at the beginning of Segment 8 (black line denotes
optimal solutions, gray line denotes stationary nonoptimal points).
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2.5989.

2.5988-

2.5987

0.87005

FIG. 7. Fmax at the beginning of Segment 8 (black line denotes optimal
solutions, gray line denotes stationary nonopt#nal points).

and 7 indicates that the solution undergoes extreme changes in that region with the
logarithmic derivative of the weight with respect to a (percent change in W divided
by percent change in a) being of the order of 300. This requires tracing the curve
with high accuracy.

A similar behavior of the objective function is observed at the beginning of Seg-
ment 9. The path of stationary points exists only for decreasing values of a. The path
turns smoothly after a decreases by about 0.00013 and continues for increasing val-
ues of a. Points corresponding to decreasing values of a are again nonoptimal points
satisfying the first order necessary conditions.

6. Concluding remarks. An active set algorithm for tracing parametrized op-
tima was shown to be effective in tracing the efficient curve in hi-objective optimiza-
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tion. Interesting results were obtained for the combined control-structure optimization
of a ten-bar truss. In particular it was found that the efficient curve is discontinu-
ous and has both low and extremely high variations. Furthermore, for this example,
nonoptimal segments of the curve of stationary solutions bridged the discontinuities
of the efficient curve and thus served as an easy way to continue the tracing process
at such discontinuities.
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CONVEX FUNCTIONS WITH UNBOUNDED LEVEL SETS AND
APPLICATIONS TO DUALITY THEORY*

A. AUSLENDER, R. COMINETTI$, AND J.-P. CROUZEIXi

Abstract. A class of convex functions with unbounded level sets but good behavior at infinity
[Analyse non-lingaire, Gauthier-Villars, Paris, 1989, pp. 101-122] is investigated. Characterizations
and properties are given. The results are then applied to studying sequential approximation schemes
for optimization problems and to duality theory, when the involved functions have unbounded level
sets. In particular, the convergence properties of stationary sequences for the dual of a convex
program are studied, and methods for associating with it a primal sequence converging to a solution
of the primal problem are demonstrated.

Key words, convex optimization, duality, inf-compactness, good asymptotic behavior, relaxed
constraint qualification, algorithms
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1. Introduction. Let us consider an abstract optimization problem

min f(x),

where X denotes a finite-dimensional euclidean space and f is a closed proper convex
function on X.

Many algorithms for solving such a problem will only generate a stationary se-
quence xn, that is, a sequence satisfying

d(O, Of(xn))--.0,

where as usual d(y, S) denotes the distance from the point y E X to the set S c X.
The natural question which arises is whether such a sequence will also be minimizing
or not, and the answer is generally no, as shown in [2]. In fact, in that paper, Auslender
and Crouzeix addressed precisely the problem of characterizing the class of functions
for which all stationary sequences are minimizing: the so-called asymptotically well
behaved convex functions.

In the present paper we identify and investigate a subclass of the asymptotically
well behaved convex functions which appears to be of great relevance in theory and
applications, namely, the class T of closed convex functions for which 0 belongs to
the relative interior of the domain of its Fenchel conjugate.

As we show in the next section, for such functions we have more than a merely
good asymptotical behavior: the set of minima is nonempty and stationary sequences
are not only minimizing, but they converge towards this set.

A first application showing the relevance of the class T in applications is also pre-
sented in 2, and concerns a general convergence theorem for monotone approximation
schemes for optimization problems. We obtain as a particular case a significant result
of [4] in semi-infinite linear programming.

The second application, developed in full detail in 3 and particularized to special
classes of mathematical programs in 4, is related to duality theory. Duality in convex
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programming is a very powerful technique, both theoretically and computationally.
Typically, to solve a primal problem

(P) a- inf f(x),
xEX

one considers a suitable perturbation function " X x U --. IR such that (-, 0) f,
with which one associates the dual problem

(D) = inf h*(u*),
u*EU*

where h* is the Fenchel conjugate of the marginal value function h(u) -infxex (x, u).
The hope is that (D) will be easier to solve than (P) and once an optimal solution
for the dual is found, an optimal solution for (P) can be recovered from it.

We notice that the assumption 0 E ri[dom(h)], which in duality theorems ensures
the equality ( - and the existence of dual optimal solutions, amounts to h* E 7Z.
This observation allows us to complement the classical duality results by asserting that
the functional to be minimized in the dual problem is asymptotically well behaved
and, moreover, every dual stationary sequence approaches the dual optimal set which
is a compact set up to an orthogonal subspace. We show in Theorem 3.1 that these
nice properties are also shared by the "perturbed" dual problems

k(x*) inf *(x*, u*),
u* 6U*

while in Theorem 3.2 we investigate the stability of the optimal solution set of these
problems.

These results represent significant extensions of the ones presented in [1] where
it is shown that in three different practical problems, namely those considered by
Wseng and Bertsekas [7], Censor and Lent [3], and Han and Lou [5], a decomposition
algorithm is used for the minimization of certain dual functionals which fail to be
inf-compact but are asymptotically well behaved.

Another point observed in [1] is that to each stationary sequence u for the dual
functional, one could associate a primal sequence xn converging to the solution of the
primal problem. We shall extend these results to the general framework of duality
theory in convex programming, as an application of Theorem 3.2.

In 4 we sketch the application and meaning of the previous results in some
particular duality schemes that often arise in practice: vertical perturbations, Fenchel
duality, and linearly constrained decomposable problems. In particular we show how
the cases of Tseng and Bertsekas, Censor and Lent, and Han and Lou are recovered.

We complement all the previous results in 5 with a brief discussion of some
algorithmical issues.

Also, a general discussion of the class of asymptotically well behaved convex func-
tions is included in the final section, where we improve the results already presented in
[2], avoiding some technical hypotheses considered in the cited paper, and also giving
simplified proofs of some statements.

In the sequel we shall be working in a finite-dimensional setting so that here and
afterwards X and U will represent arbitrary finite-dimensional euclidean spaces. We
shall assume a certain familiarity with convex analysis, for which we shall basically
follow Rockafellar [6]. In particular we shall denote (., .) and I1" II the usual inner
product and norm in X and U, and B(x, r) the ball centered at x with radius r.
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2. An important subclass of asymptotically well behaved functions.
Given a convex function f E F(X), we say that the sequence xk X is stationary
for f if

d(O, Of(xk)) - 0,

that is, if we can find x Of(xk) such that x --, 0. Then we recall [2] that

f F(X) is said to be asymptotically well behaved if every stationary sequence xk X
is minimizing, that is,

lim f(xk)= inf f(x).
k--,o xEX

This class of functions will be denoted by .
In this section we shall present an important subclass of asymptotically well be-

haved functions which enjoy the additional properties:
(a) its set of minima is nonempty,
(b) every stationary sequence converges towards this set.

This subclass, admitting a very simple characterization, appears in fact very fre-
quently in convex analysis and particularly in duality theory. Let us begin with some
preliminary results.

2.1. Preliminaries. Let a (not necessarily closed) convex function h" U -- IR
be given and denote by E the affine hull of its domain. We shall assume throughout
that 0 dom(h) so that E is in fact a vector subspace of U. Following [4] we associate
with h the function hE given by

hE(u) h(HEU),

where IIE denotes the orthogonal projector from U onto E.
LEMMA 2.1. With the previous notation we have,
(a) dom(hE) dom(h) - E+/- and int[dom(hE)] ri[dom(h)] + E+/-.
(b) h* (u*) h*E(HEu*).
(c) OhE(u) Oh(HEu) N E.

OhE(U) + E+/- if u E
(d) Oh(u)= otherwise.

Proof. Properties (a), (c), and (d) were proved in [4] assuming that h is closed,
but the proof remains valid without this hypothesis. An alternative proof may be
based on property (b), which we show next by direct calculation:

h* (u*) sup (u*, u) h(u)
uEE

sup{u*, HEu) h(HEu)
uU

sup(HEu*, u} hE(u) h*E(HEu*).
uU

The advantage of working with the function hE instead of h is that the former
is continuous on the interior of its domain, which is now nonempty. We obtain for
instance that when h is finite at least at one point of ri[dom (h)], then it never takes
the value -c, so that hE is proper and continuous on the interior of its domain. Also,
the multifunction u --. OhE(u) is nonempty compact valued and upper semicontinuous
on this set. As a consequence, we get the following result.
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PROPOSITION 2.2. Suppose 0 E ri[dom(h)]. Then, for every sequence un -- 0
and u Oh(un) we have

d(u,Oh(O)) --- O and h*(u) -- -h(O) inf h*(u*).

Proof. The proof being obvious when h(0) -oc, we just consider the case when
h(0) is finite. Since Oh(un) is not empty we must have un E, and from Lemma 2.1
we get HEu e Oh(un). The upper semicontinuity of Ohm(.) at 0 e int[dom(h)]
yields at once

d(u, Oh(O)) d(Hu, Ohm(O)) --. 0

as well as the boundedness of the sequence HENS. Therefore, since un E we have
that h*(u) + h(un) (Hu, un) tends to zero, and since h is continuous relative to
ri[dom(h)] and in particular at 0, we conclude h*(u) - -h(O) as claimed.

2.2. The subclass 7. The results in the previous subsection tell us that if a
function h satisfies 0 e ri[dom(h)] (or equivalently 0 e ri[dom(h**)]), then its Fenchel
conjugate h* is asymptotically well behaved, but something else as well: if u is a
stationary sequence for h* then it is not only minimizing (h*(u) -- inf h*(u*)) but
it approaches the solution set Argmin h* (u*) Oh(O) which is a nonempty compact
set up to an orthogonal subspace.

These observations lead us to consider the class 7 of functions f F(X) such
that

(1) 0 e ri[dom(f*)],

which is a subclass of the asymptotically well behaved convex functions defined on
X. In view of [6, Cor. 13.3.4 b], we may also characterize this class by the equivalent
property

foo(v) > 0 for all v e L-, v # 0,

where fo denotes the recession function of f (cf. [6, p. 701), and Lf the constancy
space of f, Lf {v e X" fo (v) f(-v) 0}. Let us recall here the characteristic
property of LI (cf. [6, Whm. 8.8]), namely,

f(x +v) f(x) V v e LI, V x e dom(f).

Let us also point out that the functions f satisfying (1) can also be characterized
(see Lemma 2.1(b)) as images of inf-compact functions under linear transformations,
namely, f(x) f(IIEx) where E aft(dora f*) and f (f* o HE)*, which is indeed
inf-compact.

As we shall see in the sequel, both characterizations (1) and (2) turn out to be
useful depending on the particular features of the problem at hand.

The previous results and discussion show that the stationary sequences of func-
tions in 7 enjoy very interesting features. However, many algorithms do not construct
stationary sequences but approximate stationary sequences. The following theorem
summarizes the above discussion and can also be used to handle these approximate
stationary sequences. We recall that the -subgradient of a convex function f is
defined as

e x*. f(u) > + u- v u e x},
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and that x is an e-minimum of f if and only if 0 E Oef(x).
THEOIEM 2.3. Let f T. Then the problem

(P) a inf f(x)

has a nonempty optimal solution set of the form S g+E+/- where E aff[dom(f*)]
and K is a compact subset of E.

Moreover, ifxn is a sequence such that d(O, Oef(xn)) --. 0 where en -- 0 (possibly
en 0), then

(a) f(x)
(b) d(xn, S) -- O,
(c) the sequence HExn is bounded and all its cluster points belong to S C E K.
Proof. From the discussion that motivated the introduction of 7, the result holds

when en 0 (property (c) follows from (b) given that d(xn, S) d(Hxn, g)).
Let us then consider the general case and select x Of(xn) with x - 0.

Using the Bronsted-Rockafellar theorem we may find Yn such that
and y e Of(y) with IlY- xll -< v/ It follows that y -- 0 so, applying this
result (in the case en 0) to the sequence Yn, we get d(yn, S) --* 0 and f(Yn) --From this it is clear that (b) must hold, and since

< < f(Un) +
assertion (a) follows immediately.

To conclude this subsection, let us point out that often the functions f that are
to be manipulated appear by applying different operations to other simpler functions.
One of the most interesting operations is the infimal convolution. We provide next a
criteria for verifying if a function expressed as the infimal convolution of two convex
functions belongs to 7 or not.

PROPOSITION 2.4. Let f, g F(X) with g T, and denote h fVg their infimal
convolution. Then

(a) if f E T then h T;
(b) conversely, if g is co-finite and h T then f T;
(c) in both cases Lh Lf + Lg.
Proof. From the equality h* f* 4-g* we get dom(h*) dom(f*)C dom(g*),

and therefore using [6, Whm. 6.5] we deduce both in (a) and (b) that

ri[dom(h*)] ri[dom(f*)] C ri[dom(g*)],

so the first two claims are obvious (recall that g is co-finite if and only if dom(g*)
X*). Property (c) follows directly from the previous formula for dom(h*) and the
characterization Lh dom(h*) +/-, as well as the corresponding characterizations for

Lf and Lg.
2.3. Applications. Examples of functions belonging to the class 7 appear nat-

urally in the setting of duality theory. Since this application is so important we shall
develop it in full detail in the next two sections. Let us turn instead to another
setting where the functions in 7 appear to be of importance. Namely, in various
optimization techniques as penalty methods or finite-dimensional approximation to
semi-infinite optimization problems, an original problem of the form

min f(x)
xEX
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is replaced by an infinite sequence of simpler subproblems

It is often the case that the sequence fk monotonically increases towards f. We shall
investigate the relationship between the original and the approximate problems, under
the assumption f E 7. To this end it is useful to have the following result (which can
also be obtained trivially using epiconvergence theory).

LEMMA 2.5. Let fk, f F0(X) with f a nondecreasing sequence converging
pointwise to f. Then, if xk --* x we have

f(x) < lim inf fk (xk ).

Proof. For each neighborhood V of x we have infuev f(y) <_ f(x) for all k
large enough, and since the left-hand side is nondecreasing with k we may pass to the
limit in order to obtain

sup inf fk(Y) < r liminf.fk(xk).
k yV k-.-oo

This inequality holds for all neighborhoods V of x so that

sup sup inf f(y) < r
k V yV

and the lower semicontinuity of f gives f(x) supk f(x)
THEOREM 2.6. Let fk F0(X) be a nondecreasing sequence and f supk fk.
(1) The sequence f is nonincreasing and f* cl(inf f). Moreover, the linear

manifolds Ek =aff[dom(f)] coincide, for large k, with E =aff[dom(f*)].
(2) If f T then fk T for large k. Moreover, if xk is an k-minimizer of fk

with k -- 0 then we have (with S the minimizing set of f) that
(a) fk(Xk) "-- m- minex f(x),
(b) d(xk, S) --. O,
(c) the sequence HExk is bounded and all its cluster points belong to S n E.
Proof. (1) Since Fenchel conjugacy reverses the inequalities (g <_ h =v g* >_ h*) it

follows at once that f is nonincreasing. Now, by direct computation

(if f)* sup f* sup fk f,
k k

so that taking Fenchel conjugate we deduce f* cl(infk f).
From this characterization and noting that a convex function and its closure have

the same affine hull of their corresponding domains (cf. [6, Cor. 7.4.1]) we deduce

E- aff[dm(if f)] aff [Jk dm(f)] Uaff[dom(f)]
k

Since f is nonincreasing, the sets Ek form a nondecreasing sequence of linear man-
ifolds contained in E and whose union gives all of E. The conclusion follows easily:
all the Ek must coincide with E for k large enough.
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(2) Since a convex function and its closure have the same relative interior of their
domains (cf. [6, Cor. 7.4.1]) we deduce from (1),

ri[dom(f*)] ri [ydom(f)]
Thus, f e 7 implies 0 e ri[Ok dom(f)], which can also be written as

Again the linear manifold E has been expressed as a monotone union of convex cones
IR+dom(f), so that for k large enough we must have the equality IR+dom(f)
E- Ek, which amounts precisely to 0 E ri[dom(f)], that is, fk T.

We arrive at the most interesting part of the theorem. Let us take a sequence xk
of sk-minimizers of fk. Thus we have 0 Ofk(xk), and then

(3) 0 < () + ;(0) < .
Since 0 e ri[dom(f*)] we deduce from [6, Thm. 7.4] that f(0) --, f*(0), which
combined with the previous inequality yields fk(xk) ---, --f*(0) m, proving (a).

To show the boundedness of IIExk we choose r > 0 so that the set B {y
E: I[YI[ -< r} is contained in ri[dom(f*)], and we use [6, Whm. 10.8] to assert that f
converges uniformly to f* on B. Now, since E+/- E is the constancy space of fk
for large k, we get fk(HExk) fk(xk) and using (3) we deduce HEXk e O,f(O), SO

that we may write

; (o) + (1],> <_ f; () + ,
which used with y Yk rHExk/IIHExkll gives us

IIn II If; (Yk) + k f; (0)1 [sup f; (y) + k f; (0)].
r r yB

The uniform convergence of f towards f* on B, and the continuity of the latter
relative to ri[dom(f*)] allows us to conclude that the right-hand side above stays
bounded.

Now, take any cluster point x of HEXk and sume with no loss of generality
that in fact it converges to it. Since fk(Hxk) f(Xk) we obtain from (3)

(nExt) f; (0),

so letting k and using the previous lemma we conclude that

f(x) liminffk(Hsxk) lim ek f(0) --f*(0) m

and xE is a minimum of f. This proves (c).
Since (b) is a simple consequence of (c) and the structure of S Of(O) + E,

the theorem h been proved.
In 5 we shall briefly discuss how the previous result applies to penalty methods.

As another application let us consider in [4] the linear semi-infinite proam

(P) a min{(c, x) (at, x) < b, t e T},
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where c, at, x belong to IRn, bt E JR, and T represents an arbitrary index set.
If we denote by M the homogeneous moment cone generated by the at’s, that is,

M cone(at :t E T},

then the main results in [4] are obtained under the assumption

(U) -c ri(M).

As a matter of fact this condition ensures also that the function to be minimized in
(P) belongs to the class 7. More precisely, we have the following.

PROPOSITION 2.7. Let Ct (x (at,x>

_
bt}, C teTCt, and f(x)

(c, x) q- Xc(x). Then f e n if and only if condition (H) is satisfied.
Proof. By general calculus rules of asymptotic functions and cones we have

fo(d) (c, d> + Xcoo (d). Since Co NteT(Ct)o and (Ct)o {d: (at, d> _< 0}
it follows that

LI {d" (c, d) 0; (at, d) 0 V t e T}.

From this equality it follows that L- is the linear space E generated by {c} tA {at
t T}, so that the condition f E 7 expressed in its form (2) turns out to be in this
case

(c,d>>0 for alldCoNE, de0,

which is in turn, by [4, Lemma 2.1], equivalent to hypothesis (H).
Now, it has also been shown (see [4, 4] and references therein) that under the

assumption (H) problem (P) is discretizable in the sense that there exists a sequence
of finite subproblems

(Pk ak min((c, x) (at, x) <_ bt, t e Tk}

with Tk an increasing sequence of finite subsets of T such that tATk T and ak -* a.
If we denote by C the corresponding feasible set of problem (Pk), that is,

c, x) < b,,, e T,},

then the functions f(x) (c, x) + Xck (x) form a nondecreasing sequence converging
towards f(x) (c,x) + Xc(x) and the previous theorem applies: for k large enough,
problem (Pk) has solutions and if xk solves problem (P), then

(b) d(xk, S) - 0 where S is the solution set of (P), and
(c) the sequence HEXk is bounded and all its cluster points are solutions for (P).

These claims amount essentially to [4, Thm. 4.1].
3. Application to duality theory. Let us see how the previous results apply

in the context of convex duality. Let us then fix a closed proper convex function

" X U - ]R and consider the marginal value function

h(u)- inf (x u)
xEX

corresponding to the perturbation of the primal problem

(P) a :- inf (x, 0).
xEX
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It is well known that the conjugate of h is given by

h*(u*)-*(O,u*)

so that the dual problem

(D) fl:- inf 9*(0, u*)
u*EU*

is closely linked with (P) as a h(0) and - -h**(0). In fact, a _> -fl, and when
a < -boo the equality holds if and only if h is lower semicontinuous at 0. In this case
the optimal solution set of (D) is given by U* when fl -boo or Oh(O) when fl < -boo.

The standard duality result asserts that a -fl and (D) has optimal solutions
whenever 0 E ri[dom(h)]. In this sense, Theorem 2.3 complements this result in the
following way: the function qo*(0, .) to be minimized in the dual problem has good
behavior at infinity, every stationary sequence for the dual is a minimizing sequence
which approaches the optimal solution set of (D), and this solution set is either the
whole space U* when -boo (which corresponds to an unfeasible dual), or a compact
set up to an orthogonal vector subspace otherwise.

Furthermore, all these properties hold not only for *(0, .) but for 9*(x*, "), that
is, for all the perturbed dual problems

k(x*) inf 9*(x*, u*).
u*6U*

To see this it suffices to apply the same reasoning not to h but to

hx* (u) inf {9(x, u)- (x* x)}.
xEX

Indeed, the conjugate function of h* is precisely 9*(x*, "). On the other hand, since
dom(h**) dom(h), one has 0 e ri[dom(h*)] as soon as 0 e ri[dom(h)] and this
allows us to apply the previous results to h*. Moreover, it also follows that the space
E aff[dom(hX*)] does not depend on x* and that E+/- is the constancy space of all
the functions 9*(x*, "), that is,

(4) *(x*, u* + v) o*(x*, u*) V v e E+/-.

We summarize this discussion in the following theorem.
THEOREM 3.1. With the previous notation and assuming 0 ri[dom(h)], for each

x* X* it holds that

min qo*(x* u*)-h* (0) k(x*)
*ev*

the minimum being attained, with (nonvoid) optimal solution set given by

U*
(5) S(x*) Oh* (0) OhE (0) + E+/- ifotherwise.k(x*)
Moreover, every stationary sequence u for 9*(x*, ") is minimizing and converges to
S(x*), that is,

(i)
(ii) d(u , S(x*)) --. O.
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The same holds true merely if d(O, O(x*, .)(u))-- 0 where
This theorem is concerned with the perturbed dual problems, but x* E X* is

considered fixed. Now, for an algorithmic approach of the dual problem (D), we
must also study the upper-semicontinuity of the optimal solution set S(x*) at x* 0.
This type of continuity is hopeless in general as the optimal solution sets may be
unbounded. Nevertheless, the projection onto E of this set-valued map has the desired
continuity relative to ri[dom(k)]. In the sequel we shall denote F aff[dom(k)].

In sequential terms, this upper-semicontinuity corresponds to the following situ-
* dom(k) F, and solve the sequence ofation: we take any sequence xn ---, O,xn

problems

min *(x u*).(D)
*eu*

Then, we look for conditions ensuring that any solution u S(x) will satisfy

(a) T*(x, u,) -- k(0)
(6) (b) d(u, S(0)) - 0,

(c) the sequence IIEU is bounded and all its limit points belong to S(0) N E.

In particular, when S(0)N E is reduced to a singleton we will have convergence
of the whole sequence HEu towards this particular solution. The following result
gives such conditions, and moreover it can handle approximate minimization of the
problems (Dn), which may be of algorithmic relevance.

THEOREM 3.2. Suppose 0 ri[dom(h)] and < oc. If x -- O,x F with
k(x) -- k(O) (in particular, ifO e ri[dom(k)]), andu is an n-minimum for o*(x, .)
where en O; then properties (6) (a), (b), and (c) hold.

Proof. Since k(x) <_ *(x, u) <_ k(x) + n and k(x) --. k(0) -/, assertion
(6)(a) is immediate. In order to prove (6)(b) and (c) we observe that d(u, S(0))
d(Hu,S(O)). Suppose Hu is bounded. Since from (4) we have *(x,Hu)--
*(x, u) --, , the lower semicontinuity of * implies that each cluster point v* of

HEU satisfies *(0, v*) _< , that is, v* e S(O)NE, and therefore d(Hu,S(O)) --. O,
which proves (6)(b) and (c).

Now, to prove the boundedness of 1-IEU, we suppose the contrary. Passing to a
subsequence we may assume that IIHEuII -. oc and IIEu/llIIsul - v* for some
nonzero v* e E. Again, *(x,HEu) T*(x, u) converges to/ so it is bounded
above, say by M, and then

((O,v*),O) lim
llI -  ll

e epi (*)o,

which means (*)o (0, v*) <_ 0. But since h(v*) (*)o(0, v*) this is in contradic-
tion to the assumption 0 e ri[dom(h)]-- ri[dom(h**)] ([6, Cor. 13.3.4(b)]).

There are obvious dual versions of the previous theorems, since the roles of h,
and k, * are completely symmetric. In the following discussion it will be useful to
have them stated explicitly, for which we introduce the functions

kU(x*)- inf *(x* u*)-(u* u)
u*EU*

and we denote by k its extension ku o I-IF.
THEOREM 3.3. With the previous notation and assuming 0 e ri[dom(k)], .for each

u U it holds that

-ku(O) h(u) min (x, u),
xEX
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the minimum being attained, with (nonvoid) optimal solution set given by

XM(u) Ohm(O) Ok,(O) + F+/-
if h(u) /cx),
otherwise.

Moreover, every stationary sequence xn for (., u) satisfies

(i) (xn, u) --, h(u),
(ii) d(xn, M(u)) --, O.

The same is true merely if d(O, 09(’, u)(xn)) --. 0 with en --* O. In particular,
k* E 7.

Suppose in addition that 0 E ri[dom(h)]. Then we have g h* T, the optimal
solution set of the dual S(O) is given by (5), and .for every sequence un --* O, un e
dom(h) C E (in particular, ifu is approximately stationary for the dual problem we
can take un e Og(u) with Un -- O) and each n-minimum xn of 9(’, un), where
en --* O, we have

(a) (xn, un) --* a,

(b) d(xn, M(0)) --, 0.

In order to use properties (a) and (b) above for devising algorithms, we must be
able to construct the sequence xn, which solves the perturbed primal problems. This
may be a difficult task, but the following observation may sometimes help.

Remark. Suppose that, by using a suitable algorithm on the dual problem (D),
we get a stationary sequence u and a subgradient un Oh*(u) with un 0 (recall
the dual consists in minimizing h* *(0, .)). Then, finding a solution xn e M(u)
for the perturbed primal problem is equivalent to solving

e (0,

which may be simpler, as when 9* happens to be differentiable (examples where this
holds will be given in the next section).

This remark, together with the previous theorem, gives an answer to the question
raised in the introduction, namely, how to associate with each stationary sequence u
for the dual, a primal minimizing sequence xn that converges to the optimal solution
set of (P).

4. Special classes of perturbations. For making the results of the previous
section readily applicable, we shall discuss in this section the meaning of the hypothesis
0 e ri[dom(h)] and 0 e ri[dom(k)] for some natural perturbation schemes which appear
when formulating convex mathematical programs. We shall also point out where the
previous formulas and results simplify for these particular structures. We shall only
sketch the proofs in this section since they are based on fairly standard arguments in
convex analysis.

4.1. Vertical perturbations. Let us consider a constrained convex primal pro-
gram of the type

(V) c inf(f(x): Ax a, g(x) <_ 0 for i 1,... ,p},
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where the functions f and gi are closed proper convex functions defined on IR, A is
an m n matrix, and a e IRm. We shall denote H dom(f)N [iP=l dom(gi) and we
shall assume that this set is nonempty. We also denote G(x) (gl (x),..., gp(X)).

The vertical perturbation function associated with this problem is given by

99(X, (V, W))- ( f(x)+c ifAx/v--a, G(x) / w <_ O,
otherwise

defined for (v, w) E U lRm lRp, which is a closed proper convex function under the
previous hypothesis. The meaning of conditions 0 e ri[dom(h)] and 0 e ri[dom(k)] is
made clear by the following proposition.

PROPOSITION 4.1. For problem (V) we have
(a) 0 e ri[dom(h)] = (Pv) there exists e ri H such that A a, G() < O.
(b) 0 e ri[dom(k)] : (Dy) f(v) > 0 for all v e n+/- \ {0} such that Av

O, (g)o (v) <_ O. Here L (v f(v) f(-v) O, Av O, (g)(v) (g)(-v)
o,i=

Proof. (a) Defining C {(x, w): x H, G(x)+w <_ 0} and i(x, w) (a-Ax,
we have dom(h) L(C) so that ri[dom(h)] L(ri C). But ri C {(x, w) x
ri H, G(x) + w < 0}, from which (a) follows.

(b) The primal functional is F(x) f(x)+ XB(X) where S {x Ax
a, gi(x) <_ 0, i= 1... p} is the primal feasible set. Then (b) follows by observing that
F(v) fc(v) + XB(V) and S {v: Av O, (g)(v) <_ O,i 1...p}.

When the inequality constraints are linear, that is, G(x) Bx- b with B a p n
matrix and b IRp, part (b) may be improved by showing the equivalence between
0 ri[dom(k)] and

(D) 3 v* e IR", w* e IRp such that w* > 0, Atv / Btw* e ri[dom(f*)].

This condition is certainly satisfied when f is co-finite [6, p. 116] (since in such a case

dom(f*) IRn), and more generally if 0 e int(dom(f*)).
Concerning the remark made after Theorem 3.3 on the computation of a solution

x M(u) of the perturbed primal problem when we have at our disposal a u* such
that u Oh*(u*), we mention the following proposition, still in the case of linear
inequalities.

PROPOSITION 4.2. Assume (Pv) and (D) are satisfied. If (v, w) e Oh* (v*, w*)
then x M(v, w) if and only if

Ax+v--a, Bx/w<_b and xeOf*(-Av*-Bw*).

Proof. From the remark following Theorem 3.3, one gets that x M(v, w) if and
only if

(i) Ax + v a, Bx + w <_ b,
(ii) f(x) + f* (-Atv* Btw*) (v*, v a) + (w*, w b).

Using (i), Fenchel’s inequality, and the fact that w* > O, we may rewrite (ii) as
(ii)’ f(x) + f*(-A’v* Btw*) (v*,-Az) + (w*,-Bz), which is simply x E

Of* (-Atv Btw*). [3

When f is essentially strictly convex we know [6, 26] that f* is differentiable at
every point where Of* is nonempty. We obtain the following as a corollary.

ConoranY 4.3. Assume (Pv) and (D). If f is essentially strictly convex and
(v, w) e Oh* (v*, w* ), then

M(v, w) (Vf*(-Av Btw*)}.
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Moreover, when f is essentially smooth the solution set of the dual problem S(O) is
such that S(O) N E is reduced to a singleton.

Proof. By Theorem 3.3 we know that M(v, w) is nonempty, so the previous
proposition forces Of*(-Av* Bw*) to be nonempty also and the characterization
follows. Now, if f is essentially smooth then its conjugate f*, and therefore h*, are
essentially strictly convex on E and the second assertion follows as well. []

As an application of this result and the remark following Theorem 3.3, suppose f
is strictly convex and (Pv), (D) are satisfied. Then, associated with each stationary
sequence (v, w) for the dual, we have the sequence

xn Vf*(-A v- ),B wn

which is well defined and converges to the unique optimal solution of (V). Also
f(xn) -- (, which is seen by choosing (vn, wn) E Oh*(v, w) tending to zero so that
according to Theorem 3.3 we have f(xn) (Xn, (Vn, Wn)) . Moreover, since the
dual functional belongs to 7 we also have that d((v, w), S(0)) --* 0.

An important special case of (V) concerns linearly constrained decomposable
problems of the form

(L) a inf fi(xi) AlXl +.." + Akxk b
i=1

where fi IRn - IR are closed proper convex functions, Ai are m ni matrices and
a E IRm. For this problem we have the following corollary.

COROLLARY 4.4. For problem (L) we have
(a) 0 ri[dom(h)] , (PL) there exists ri[dom(fi)] such that AII +’-" +

Akk a.

(b) 0 e ri[dom(k)] (DL) there exists t* e ]Rm with Au* e ri[dom(f*)], for
all i 1,...,k.

(c) Assume (PL) and (DL). If u e Oh*(u*) then (Xl,... ,xk) e M(u) if and only

k

Axi + u a
i--1

and xi e f (-Au* for i 1,...,k.

If moreover all the fi’s are essentially strictly convex then

M(u) {(Vf(-Atu*),. Vf(-Atku*))}.

Also, when the fi’s are essentially smooth the solution set of the dual problem S(O) is
such that S(O) E is reduced to a singleton.

Proof. (PL) corresponds obviously to (Pv) of Proposition 4.1. Furthermore,
since f* (x* ’ik__l f(x ), the condition Atv* e ri(dom f*) is equivalent to Av*
ri(domf*) and (DL) is equivalent to (D) without inequality constraints. The rest of
the proof is an immediate consequence of Proposition 4.2 and Corollary 4.3.

An interesting feature of the dual problem in this case is that, when the fi’s are
essentially strictly convex and co-finite, this dual is an unconstrained differentiable
program for which a variety of algorithms can be applied to generate a stationary
sequence.
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4.2. Fenchel duality. This perturbation scheme concerns a primal problem of
the type

(F) a inf f(x) + g(Ax)
xEX

with f and g closed proper convex functions defined on IRn and ]Rm, respectively,
and A is an m x n matrix. The perturbation function is given by

9(x, u) f(x) -b g(Ax -b u),

whose conjugate is

*(x*,u*) f*(-Au* + x*) + g*(u*),

and we may quote the following well-known result [6, p. 330].
PROPOSITION 4.5. For problem (F) we have
(a) 0 e ri[dom(h)] (PF) there exists x e ri[dom(f)] such that Ax e ri[dom(g)].
(b) 0 e ri[dom(k)] (DR) there exists u* e ri[dom(g*)] such that-Au* e

ri[dom(f*)]. []

Let us simply mention that (PF) obviously holds when g is everywhere finite, and
similarly, (DR) is true when f is co-finite. Concerning the analogs of Proposition 4.2
and its corollary, we obtain the following proposition.

PROPOSITION 4.6. Assume (PF) and (DR). If u e Oh*(u*) then

x e M(u) , x e Of*(-A*u*) and Ax + u e Og*(u*).

Moreover, if f is essentially strictly convex, then M(u) {Vf*(-Atu*)}. []

Under assumptions (PF) and (DR) and when f is essentially strictly convex, from
each stationary sequence u for the dual we get the sequence

x, Vf*(-Au),

which will converge to the optimal solution of the primal problem. Moreover, if
un e Oh* (u) converges to zero then f(xn)-bg(Axn-bUn) a, and the distance from
u to the optimal set of the dual problem S(0) tends to zero.

To conclude this section, let us show how the results in [7], [3], and [5] can be
obtained from the ones we have presented.

EXAMPLE 1. In [7], Tseng and Bertsekas are concerned with network flow prob-
lems of the type

}inf fj(xj) Ex O
j--’l

where E is an m x n network incidence matrix, and under the assumptions
(al) Ker(E)q 1-I__1 ri[dom(f)] ,
(bl) each f IR - ]R is closed, proper, co-finite, and essentially strictly convex.

This problem falls into the class of linearly constrained decomposable problems and,
as discussed in [7], the dual turns out to be an unconstrained differentiable program.
Trivially (al) and (bl) give conditions 0 e ri[dom(h)] and 0 e ri[dom(k)], respectively,
as seen from Corollary 4.4.
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EXAMPLE 2. In [3], Censor and Lent are concerned with the minimization of
"log x" entropy under linear constraints, a problem which arises in image restoration
as an alternative to the classical "x log x" entropy. Their problem is

inf logxi’Ax=b,x>0
i=1

where A is an m n matrix and b E ]Rm. Their assumptions are
(a2) there exists x E IR_+ such that Ax b,
(52) ger(A) C ]R {0).

This problem also falls into the class of linearly constrained decomposable problems
with fi(x) -log(x) if x > 0 and fi(x) +cx) otherwise. Conditions (a2) and (b2)
give 0 e ri[dom(h)] and 0 e ri[dom(k)], respectively, as seen from Corollary 4.4 and
Gordan’s transposition theorem. Moreover, in this case the functions fi are essentially
smooth, so the solution set S(0) of the dual is such that S(0) N E is a singleton.

EXAMPLE 3. In [5], Han and Lou consider an abstract problem of the type

inf{q(x):x e C1 C... C)Cm},

where the Ci are closed convex subsets of IRn and q is a finite convex function on IRn.
They assume

(a3) [,m__ ri(C,) # ,
(b3) q is strongly convex,
(c3) q is differentiable everywhere.

Among the various ways to dualize, we have chosen the Fenchel scheme with f(x)
q(x), g(yi,..., y,)= Y’ Xc,(yi) and Ax (x,... ,x) e (IR")m.

Again, conditions (a3) and (53) give 0 e ri[dom(h)] and 0 e ri[dom(k)], respec-
tively, as seen from Proposition 4.5.

5. Algorithmic remarks.
5.1. If we consider the classical mathematical programming problem (V) of

4.1, and if we apply to it an exterior penalty method, then Theorem 2.6 gives us
new convergence results. To be more precise, let us consider the classical quadratic
penalty function

fn(x) f(x) / k Ax- b[[ 2 -t- gi+(x))2 kn --+

Then, under hypothesis (Dv) (see Proposition 4.1) we have from Theorem 2.6,
(1) for n large enough the minimum of fn is attained at some point xn (which

is not evident a priori);
(2) the sequence x, approaches the optimal solution set of (V).

This result is known when f is inf-compact but not under the weaker assumption
(Dv). Let us also mention here that penalty methods are receiving a renewed atten-
tion since it has been shown how to overcome the difficulties raised by the increasing
ill-conditioning associated with the divergence of the penalty parameter.

5.2. In the examples from [7], [3], and [5] presented at the end of the previous
section, the numerical method proposed by the authors in all three cases is the Gauss-
Seidel method applied to the dual problem, with a choice of stepsize given by exact
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minimization in [3] and [5], and a specific choice in [7]. These methods are highly
decomposable in the sense that both the primal and the dual are decomposable.

In [3] the only convergence results presented concern the primal sequences, and
nothing is said about the dual. Now, since the dual sequence is stationary for the dual
and the dual functional belongs to :R, Theorem 3.2 shows that this dual stationary
sequence approaches the dual solution set. Moreover, as mentioned in Example 2, the
set S(0) t E is reduced to a singleton so that the projection of the dual stationary
sequence onto E converges towards this dual optimal solution, while Theorem 3.3
gives the convergence of the primal sequence.

In [5] no convergence result is given. Now, as remarked in [1, Whm. 4.3] the
dual sequence generated by Han and Lou’s algorithm is stationary for the dual, and
therefore, the-results in 3 allow us to conclude that the associated primal sequence
converges towards a primal solution, and that the dual sequence tends towards the
dual optimal set.

In [7] it is proved that the dual sequence generated by their algorithm is minimiz-
ing and that the associated primal sequence converges towards a solution of the primal
problem. We also obtain this result from 3, but we can add that the dual sequence
approaches the dual solution set. Moreover, under the additional assumption that
the functions fj’s are essentially smooth we can associate with this dual sequence its
projection onto E, which will converge to the singleton S(0) E. Let us point out
nevertheless that, by a suitable modification of their original algorithm which takes
into account the specific structure of the problem, Tseng and Bertsekas have recently
proved convergence of the dual sequence without this extra assumption on the fj’s.

5.3. Finally, let us point out that in [1] a variant of the Gauss-Seidel method has
been proposed, which is shown to converge for a subclass of " containing the cases
in [7], [3], and [5]. It is shown that this algorithm generates a stationary sequence, so
that when applied to the dual problems in [7], [3], and [5] it gives a dual sequence that
approaches the dual solution set and a primal sequence converging towards a primal
optimal solution. Moreover, in [3] and [5] we can associate with the dual sequence
another one which converges towards a dual optimal solution. More generally, every
method generating a stationary sequence will enjoy the same properties.

6. More on asymptotically well behaved convex functions. We shall now
improve some theorems in [2] concerning the characterization of the class " of asymp-
totically well behaved convex functions, that is, those functions f F(X) satisfying

d(O, Of(xk)) ---+ 0 == lim f(xk) m "= inf f(x).
k--,c xEX

To this end we shall consider the following quantities, which are defined for each
A>m:

where f’(x; .) denotes the directional derivative of f and the level set S(f) is defined
as usual by (x E X f(x) _< A}. It will also be useful to state and prove the following
lemma.
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LEMMA 6.1. Let ) > m and x S(f) such that f(x) ( +o. If we denote by y
the projection of x onto S(f) then we have f(y) and for some a > O,

e

Proof. The projection y is the unique solution of the minimization problem

min
1

; 11

so that since Slater’s condition is satisfied (,k > m), the optimality condition gives the
existence of a multiplier # >_ 0 such that

0 e (- ) + 0().
Since y belongs to S(f) while x does not, we conclude # > 0 and we may just take
.=

We must show also that f(y) . From feasibility we have f(y) <_ . On the
other hand, for every t El0, 1[ the point x + t(y x) does not belong to S(f) and
therefore

< f(x + t(y- x)) <_ (1 t)f(x) + tf(y),

which, after letting t --. 1, gives us f(y) > .
With this lemma we may now present some relations between the quantities r(A),

k(A), and l(/k)introduced above.
PROPOSITION 6.2. For each > m we have l())
Proof. We must prove the two inequalities > k and < k. The first amounts to

saying that for every x such that f(x) >/k we have

<
d(x,S(f))

which follows from the previous lemma. In fact, it suffices to consider the case f(x) <
+cx and then, taking the projection y of x onto the set S(f), we have for some
a>O,

f(x)- f(y)f’(y;x y)<
II -yll d(x,S(:))

from which the result follows since f(y) .
For the converse inequality we must show that given x with f(x) A and given

x* Of(x) we have

In fact, for every z S(f) we have

0 f(z) f(x) (x*,z

so that x* is on the normal cone to S(f) at x and then, for t > 0 we have d(x +
tx*,S(f)) tllx*ll > 0, the last inequality since x is not a minimum (f(x) > m).
We deduce

f(x q- tx*) f(x) f(x + tx*) A
tllx*ll d(x + tx*, Sx(f)) >
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so that letting t 0 we get the desired conclusion. []

PROPOSITION 6.3. If A’ > A > m, then k()) >_ r(M) >_ k() >_ r(A).
Proof. Since for x* E Of(x) one has (x*,d) <_ f’(x;d) for all d E X, it follows

easily that k _> r. Thus, it suffices to show r(A’) _> k(A). Let us take x’ with f(x’) A’
and let x be its projection onto S(f). Then we may use the lemma and write for
some c > 0

ft (x; x’ x) f(x’) f(x)k(A) ft(x;o(x’-- ,)/11(,’- )11) I1,’- ,11 -< I1,’- ,11

Hence, for every x* Of(x’) we get

and the desired inequality follows. []

COROLLARY 6.4. For > m we have the following alternative characterizations

r(A)= inf inf I1*11,
f()>_ *of()

k(A) inf inf f’(x; x*/llx*ll).
f()>_ *eof()

Proof. This is a consequence of the monotonicity of r and k. []

We may now give the announced characterizations of the asymptotically well
behaved convex functions.

THEOREM 6.5. The following statements are equivalent:
(1) f e 9r.
(2) All stationary sequences xk with f(xk) bounded satisfy f(xk) --* inf f(x).
() () > o Io aU > ..
(4) k(A) > 0 for all > m.
() () > o fo u > ..
Proof. The implication (1) = (2) as well as the equivalence between (3), (4), and

(5) are obvious from the definition of " and the previous results, respectively.
2’o prove (2) = (3) we observe that otherwise there exists A > m with r(A)=0

so we can find sequences x and x e cgf(x) with x 0 and f(x) A > m,
contradicting (2).

The implication (3) = (1) follows similarly. If (1) did not hold we could find
a sgationary sequence that is not minimizing. Extracting a subsequence we could
find A > rn and sequences x and x e Of(xk) such that f(x) >_ A and i
0. The alternative characterization of r in the previous corollary yields r(A) 0,
contradicting (3). []

Remark. The results presented above were shown in [2] under the supplementary
assumption

S;(f) C ri[dom(f)] V A > m.

Also, the proof of the monotonicity of r and k has been considerably simplified.
Furthermore, the proofs presented above have the additional advantage of passing
over, with minor modifications, to the reflexive Banach space setting.
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REDUCING MATCHING TO POLYNOMIAL SIZE
LINEAR PROGRAMMING*

FRANCISCO BARAHONA

Abstract. The question of whether the maximum weight matching problem can be reduced to
a linear program of polynomial size is studied. A partial answer to it is given; i.e., it is shown that the
Chinese postman problem (and optimum matching) reduces to a sequence of O(m2 log n) minimum
mean cycle problems. It is shown that this last problem can be formulated as a linear program of
polynomial size. This gives a polynomial algorithm for matching based on any polynomial method
for linear programming. A combinatorial algorithm for finding minimum mean cycles in undirected
graphs is also given.

Key words, matching, polynomial size linear programming

AIdS subject classifications. 05C70, 05C85, 90C27

1. Introduction. The convex hull of the incidence vectors of matchings in a
graph has been characterized by Edmonds [8], with a system that contains exponen-
tially many inequalities. Subsequently, polyhedra related to several other combina-
torial problems have been characterized. In all these cases the linear systems also
involve exponentially many inequalities.

An important question in the theory of integer programming is whether these
problems can be formulated as "small" linear programs; i.e., linear programs with
a polynomial number of variables and a polynomial number of inequalities. Such
a formulation is called compact. A compact system for optimum arborescences has
been presented in Wong [26] and in Maculan [19]. Ball, Liu, and Pulleyblank [1]
gave a compact system for two terminal Steiner trees. In Barahona and Mahjoub
[5], [6] we presented compact systems for the following problems in series-parallel
graphs: stable sets, acyclic induced subgraphs, and bipartite induced subgraphs. In
[4] we gave compact systems for the max cut problem in graphs with no K5 minor
and optimum perfect matching in planar graphs. If we have a compact system for a
problem, we can solve it in polynomial time by means of any polynomial algorithm
for linear programming.

Given a graph G (V, E), we denote by n the number of nodes and by m the
number of edges. An outstanding open question is whether the optimum matching
problem in general graphs can be formulated as a linear program whose size is bounded
by a polynomial in n. Yannakakis [27] proved that it is not possible by means of a
symmetric system. In this paper we show that the Chinese postman problem (and op-
timum matching) reduces to a sequence of O(m2 log n) minimum mean cycle problems.
We show that this latter problem can be formulated as a linear program of polynomial
size. This gives a polynomial algorithm for matching, whose only nontrivial operation
is solving a linear program of polynomial size. We also give a combinatorial algorithm
for finding minimum mean cycles in undirected graphs.

2. Chinese postman and the minimum mean cycle problem. Edmonds
and Jnhnson [9] gave the first polynomial algorithm for the Chinese postman problem.

*Received by the editors May 25, 1990; accepted for publication (in revised form) June 17, 1992.

IBM T. J. Watson Research Center, Yorktown Heights, New York 10598.
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Given a graph G (V, E), T C_ V, with ITI even, and a set of integer weights w(e) >_ O,
for e E E the problem can be formulated as

minimize w(e)x(e)
subject to

l(mod2), if vET,(2.1) 0(mod2) ifvT,

e {0, e E.

We use i(S) to denote the set of edges with exactly one endnode in S, for S c_ V.
They proved that this problem is equivalent to the linear program

minimize Zw(e)x(e)
subject to

Z x(e)>_l, for every setSC_V with[SNT[odd,
e(s)
x>0.

Their proof is based on a combinatorial algorithm whose complexity is O(n3) for
complete graphs, and O(nm log n) for sparse graphs.

For planar graphs this algorithm can be combined with the separator theorem of
Lipton and Warjan [18] to solve the problem in O(na/2 log n) time; see [3].

After Khachiyan [16] proved that linear programming is polynomial via the el-
lipsoid method, Padberg and Rao [23] gave a combinatorial algorithm to solve the
so-called separation problem:

Given a vector , prove that it satisfies the constraints (2.2) or find a violated
inequality.

The algorithm of Padberg and Rao, combined with the ellipsoid method, also
gives a polynomial algorithm for solving (2.2); cf. Grbtschel, Lovz, and Schrijver
[13], Karp and Papadimitriou [15], and Padberg and Rao [23]. This result is highly
dependent on the ellipsoid method; i.e., replacing the ellipsoid algorithm by any other
polynomially bounded algorithm for linear programming or the simplex method would
not necessarily lead to a polynomial number of iterations.

In what follows we shall prove that the Chinese postman problem reduces to a
polynomially bounded sequence of minimum mean cycle problems.

If is a 0-1 vector that satisfies the equations (2.1), the set F {e" (e) 1} is
called a T-join. If F and F are T-joins then their symmetric difference F/k F is a
set of edge-disjoint cycles. If C is a cycle then F/k C is also a T-join.

Given a T-join F, let us define w by

(2.3) w’(e) -w(e), if e e F_,
w(e), if e F.

We use w(S) to denote -{w(e)’e
If C is a cycle with w (C) < 0, we have

w(F / C) w(F) / w’(C) < w(F).
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As Mei-Ko [20] suggested, a negative cycle with respect to the weights w’ leads
to a better T-join. Finding a most negative cycle is an NP-hard problem. Instead, we
propose looking for a cycle of minimum mean weight; i.e., a cycle C such that

w’_(C) < for every cycle C.

The following "negative cycle" algorithm is very similar to the algorithm of Gold-
berg and Tarjan [11] for minimum cost network flows.

Step 0. Choose any T-join/.
Step 1. Find a minimum mean cycle C.
Step 2. If w’(C) >_ 0 stop.

If w’(C) < 0, set F .- F A C and go to Step 1.

The remainder of this section is devoted to proving that the number of iterations
is polynomially bounded.

Let F be a T-join and F be an optimum T-join. We have that

w(F) w(F) + w’(C1) /... + w’(Ck),

where C1,...,Ck is the set of cycles that forms FAF, and w(Ci) < 0, for 1 _< i _< k.
Let C be a minimum mean cycle. Since

w’(C).. < for 1 _< i _< k,

we have

therefore,

Letting

w’C) < w’(C1) -...--
iC IC11_...__

Iw’(C)l >_ Iw(F)- w(F)l/m.

(2.4) F’ F A C,

we have

Iw(F) w(F’)l <_ (1 1/m)lw(F w(F)l.

We could not see how to tighten inequality (2.5), even by replacing C by a most
negative cycle in (2.4).

Since the weights are integer, t_he number of iterations is bounded by a number
k such that (1- 1/m)lw(F)- w(F)l < 1. Since 1/e > (1- l/m)m, the number k
is O(m log w), where w is a bound for the value of the objective function. In what
follows we shall prove that the term logw can be replaced by a polynomial in n. A
similar argument appears in Orlin [22].

LEMMA 2.6. There is a weight function , with integer coefficients, such that
the algorithm produces the same sequence of intermediate solutions as with w, and



MATCHING AND POLYNOMIAL SIZE LINEAR PROGRAMMING 691

Proof. The weights w and the weights are defined relative to a current T-
join by formula (2.3). In order for the algorithm to produce the same intermediate
solutions, the new weights should satisfy the following inequalities:

if w’(C) _> 0 then ’(C) _> 0,
if w’(C) <_ 1 then ’(C) _< 1, for every cycle C,

if
w’(C) <_ thenIcI Ic’l IcI Ic’l

for every pair of cycles C and C.
We require these inequalities for every T-join.
If we consider the weights as variables, then this is a system of linear inequalities

whose coefficients are bounded by n. This polyhedron is nonempty because the original
weights satisfy these inequalities. Thus there is a rational solution (pl/q,... ,Pm/q),
with IPil integer and bounded by m!nm, for all i. rl

Let us remark that the weights need not be computed. We can state the
following.

THEOREM 2.7. The number of iterations of this algorithm is bounded by
O(m2 log n).

3. The minimum mean cycle problem as a compact linear program. This
section is devoted to showing that the minimum mean cycle problem and the prob-
lem of finding a negative cycle in an undirected graph can be formulated as a linear
program of polynomial size. This is based on the following result of Seymour [25].

THEOREM 3.1. The cone generated by the incidence vectors of.the cycles of a
graph is defined by the system

x(e) x(C\e) <_ O, for each cut C, .for every edge e e C,
x>0.

(3.2)

Consider the linear program

minimize Z w(e)x(e)
subject to

x(e)- x(C\e) <_ 0 for each cut C, for every edge e e C,

x(e) 1,
x>O.

An optimal basic solution of (3.2) gives a cycle of minimum mean weight. It also
gives a negative cycle, if there is any.

We use xC to denote the incidence vector of a cycle C. Finding a characterization
of the convex hull of incidence vectors of simple cycles seems to be a difficult problem.
The system (3.2) defines the convex hull of all incidence vectors of simple cycles divided
by their cardinality; i.e.,

Cony for every simple cycle C

Now we have to give a compact formulation of (3.2). Consider the edge g" {u, v},
and the system of inequalities

(3.3) x(g) x(C\g) <_ 0
x>O.

for each cut C such that E C,
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It follows from the max flow min cut theorem of Ford and Fulkerson [10] that x
satisfies (3.3) if and only if there is a vector y such that (x, y) satisfies

0,

O <_ yij <_ x(e), ife--{i,j},

if iu, iCv,

Therefore, problem (3.2) is equivalent to

minimize Z w(e)x(e)
subject to

x(e) 1,

for all i E V,
< {i, j},0 y

for every edge E.

if i u,
if i v,

if iu,iv,
if i u,
if i v,

This is a linear program with O(m2) variables, O(nm) equations, and O(m2)
inequalities.

It is clear that from the point of view of worst case analysis, Edmonds’s algorithm
is better than the algorithm of 2. The practical efficiency of our algorithm depends
on a good heuristic to find an initial T-join, and on how fast one can solve problem
(3.2) or (3.4). For instance, for solving network flow problems there is no need to write
down the flow conservation equations; they can be treated implicitly. This suggests
that when solving problem (3.4), one should treat those constraints implicitly. The
details of such an implementation are beyond the scope of this paper. We should
mention that Grhtschel and Holland [12] have implemented a cutting plane algorithm
that is not even polynomial but competes well with combinatorial methods.

4. A combinatorial algorithm for minimum mean cycles. In 2 we showed
that the Chinese postman problem (and optimum matching) reduces to a sequence
of minimum mean cycle problems. In this section the reverse direction is shown; i.e.,
that the minimum mean cycle problem reduces to a sequence of Chinese postman
problems. We should point out that Megiddo [21] gave a general procedure for ratio
problems that would yield an O(n6) algorithm in our case.

Given a set of weights w(e) (unrestricted in sign), for e E E, we are looking for a

cycle C such that

<

for every cycle C.
There is a well-known method to solve ratio problems; see [21]. Given a cycle C,

one should find a cycle C that minimizes w(C) AlCI, where w(C)/ICI. If the
minimum is negative then C is better than C. There are two difficulties: first, finding
that minimum is an NP-hard problem; second, we want to find a polynomial bound
for the number of iterations. We propose the following algorithm.
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Step 0. Choose any cycle C.
Step 1. Define (e) w(e) ), for e e E, where
Step 2. Solve

minimize E(e)x(e)
subject to

(4.1) E x(e)=_ 0 (Mod 2), for v E V,

x(e) e (O, 1}, foreeE.

Step 3. If the value of the minimum is zero, stop.
Otherwise, let & be an optimal solution of (4.1). Set C (e "&(e) 1}
and go to Step 1.

Let C be the set given by this algorithm. This consists of a union of edge-disjoint
cycles. Any of those cycles is an optimal solution.

Two lemmas are needed to prove that this is a polynomial algorithm.
LEMMA 4.2. Problem (4.1) reduces to a Chinese postman problem.
Proof. Define E1 {e: z0(e) < 0}, E2 {e: (e) _) 0}, and

d(e) {-(e), ire El, x’(e)- { x(e), ire El,
w(e), if e E2, 1 x(e), if e E E2.

Notice that d >_ 0. Problem (4.1) is equivalent to

(4.3)

minimize dx

subject to

1 (mod 2),Xt(e) 0 (mod 2),
e(v)

for v e V,
x’(e) {0,1}, foreS.

if [5(v) N E2[ is odd,
if 15(v) N E2[ is even,

The following result, which is an adaptation of a lemma of Cunningham [7], gives
a bound for the number of iterations.

LEMMA 4.4. Let C be the set obtained in Step 3 for some valueof , and
w(C)/ICI. If C is the set obtained in the next iteration and w(C) AIC’I < O, then

Proof.

(c,) lc’l + lc’l-
>_ w(C)- lcI + lc’l- lc’l

(Icl- tc’l)(- ).

Thus ICI > IC’l. rl

Now we can state the following.
THEOIEM 4.5. The problem of finding a minimum mean cycle reduces to a se-

quence of at most m Chinese postman problems.



694 FRANCISCO BARAHONA

Thus the complexity of this procedure is O(n5) for complete graphs and
O(nm21ogn) in the general case.

We conclude this section with some simple observations. Assume now that the
edge weights are nonnegative. Consider the following problems.

P1. Find a cycle of minimum weight.
P2. Find a cycle of minimum mean weight.
P3. Find a cycle of maximum weight.
P4. Find a cycle of maximum mean weight.
The directed versions of P1 and P2 can be solved with shortest path algorithms;

see Lawler [17]. Problem P1 also reduces to m shortest path problems. However, P2
reduces to O(m) Chinese postman problems.

It is well known that P3 is an NP-hard problem; however, P4 reduces to O(m)
Chinese postman problems.

5. Minimum mean cuts. Now consider the problem of finding a cut of mini-
mum mean weight. For planar graphs we can use planar duality to reduce the problem
to the minimum mean cycle problem. For graphs with no K5 minor we propose the
following algorithm.

Step 0. Choose any cut C.
Step 1. Define (e) w(e) ), for e e E, where A w(C)/ICI.
Step 2. Find a cut of minimum weight with respect to .
Step 3. If the value of the cut is zero, stop.

Otherwise, let C be the cut just obtained, go to Step 1.

The algorithm given in [2] can be used in Step 2. In this case the problem also
reduces to a sequence of Chinese postman problems. Lemma 4.4 also applies to this
case

The minimum mean cut problem for general graphs is NP-hard, even if the weights
are restricted to be nonnegative.

6. Final remarks. We have seen that matching and minimum mean cycles are
close relatives. A polynomial algorithm to solve one gives a simple algorithm for the
other. It is surprising that a compact formulation for matching is not known and that
the minimum mean cycle problem can be written as a polynomial size linear program.

A simple polynomial algorithm for matching has been given in 2. Its main
operation is solving a polynomial size linear program. This can be done with any
polynomial algorithm for linear programming, for instance, Karmarkar’s method. The
geometric interpretation is as follows. At any iteration we have an extreme point of
the Chinese postman polyhedron and we optimize over the cone associated with this
extreme point.
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HIGHER-ORDER PREDICTOR-CORRECTOR INTERIOR POINT
METHODS WITH APPLICATION TO QUADRATIC OBJECTIVES*
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DAVID F. SHANNO

Abstract. In this paper, the authors explore the full utility of Mehrotra’s predictor-corrector
method in the context of linear and convex quadratic programs. They describe a procedure for doing
multiple corrections at each iteration and implement it within the framework of OB1. Computational
results are provided for the multiple correcting procedure using several strategies for determining
the number of corrections in a given iteration. The results indicate that iteration counts can be
significantly reduced by allowing higher-order corrections but at the the cost of extra work per
iteration. The procedure is shown to be a level-m composite Newton interior point method, where
m is the number of corrections performed in an iteration.

Key words, interior point methods, linear programming, quadratic programming, higher-order
methods, predictor-corrector method, composite Newton method

AMS subject classifications. 90C05, 90C20

1. Introduction. Mizuno, Todd, and Ye [9] introduce the term "predictor-correc-
tor" into the lexicon of interior point methods to describe a particular algorithm
which alternately takes primal-dual affine steps and centered steps. Their predictor
step is the (uncentered) primal-dual affine step (studied by Monteiro, Adler, and Re-
sende [11]), which is corrected by taking a (centering) step toward the central path.
The algorithm, therefore, takes two steps within each interior point iteration. Each
step requires factoring a matrix to obtain the step direction.

Motivated by predictor-corrector methods used in the differential equations liter-
ature, Mehrotra describes another predictor-corrector method in [7], which he derives
using a second-order Taylor series approximation of the primal-dual trajectory in [8].
While Mehrotra’s method also entails solving for two directionsmthe predictor and.
the corrector--in each iteration, it obtains both directions using a single factorization.
Since both the predictor and the corrector are based on the same factorization, there
is little additional work required to compute the corrector. Indeed, Mehrotra’s com-
bined strategy for computing the predictor-corrector direction, centering parameter,
and steplength at each iteration performs remarkably well on a subset of the NETLIB
(Gay [2])problems.

Lustig, Marsten, and Shanno [5] extend Mehrotra’s presentation to include bounds
and also to implement the predictor-corrector method within the framework of the
primal-dual interior point solver OB1 (Lustig, Marsten, and Shanno [4]). Their re-
sults on the full NETLIB test set demonstrate consistent reduction in both iterations
and solution time. Tapia, Zhang, Saltzman, and Weiser [13] show that the predictor-
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corrector interior point method is equivalent to a level-1 composite Newton method
and prove that it has a local convergence rate that is quadratic, under the standard
assumptions. They note that the level-1 composite Newton method, without the inte-
rior point requirement, is cubically convergent under standard assumptions; however,
the interior point aspect of the predictor-corrector method precludes a proof of cubic
convergence. They demonstrate that the cubic convergence rate is preserved if the
interior point requirement is abandoned locally to allow a steplength of one to be
taken near the solution.

In this paper, we explore the full utility of Mehrotra’s predictor-corrector method
in the context of both linear and convex quadratic programs. First, we describe
a procedure for doing multiple corrections at each iteration that is based on the
Lustig, Marsten, and Shanno [5] implementation of the predictor-corrector method
for linear programs, and we show that this procedure is a level-m composite Newton
interior point method as described in Tapia et al. [13]. The procedure is tested using
several strategies for dynamically determining m, the number of corrections in a
given iteration. The results indicate that iteration counts may be reduced by allowing
higher-order correcting but with more work per iteration.

The second part extends the predictor-corrector method to convex quadratic pro-
grams. The quadratic predictor-corrector procedure is implemented within the frame-
work of the quadratic extension (OBN) of OB1 described in Carpenter, Lustig, Mul-
vey, and Shanno [1]. The predictor-corrector implementation (one corrector step) is
compared with higher-order variants and the basic primal-dual method.

Section 2 describes Mehrotra’s predictor-corrector procedure and discusses the
extension of the Lustig, Marsten, and Shanno [5] implementation required to perform
multiple corrections at each iteration. The multiple predictor-corrector procedure is
then shown to be a level-m composite Newton method. Section 3 develops criteria for
determining when to stop correcting. Computational results using several strategies
for correcting appear in 4. The extension to convex quadratic programs is presented
in 5 with computational results reported in 6. The last section contains conclusions
and a discussion of future research.

2. Multiple predictor-corrector as a composite Newton method. We
consider the following linear programming problem in standard form:

minimize cTx

subject to Ax b,
(1) x+s=u,

x,s>_O.

Some or all of the upper bounds u may be infinite, and slack variables s are added
to transform upper bound inequalities to equalities. We assume that A E m,,
b E ’, and c, u, x, s n. The standard logarithmic barrier interior point method
eliminates the remaining inequalities by incorporating them into a logarithmic barrier
term appended to the objective to obtain the following transformed problem:

n n

minimize cTx pZ lnx:i u ln s,
j=l j=l

subject to Ax b,

XW8--U.
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The first-order conditions for (1) are

Ax b
x+s-u

(3) F(x, s, y, z, w) ATy + z w c 0 and x, s, z, w >_ 0,
XZe
SWe

where X, Z, S, and W are diagonal matrices with the elements xj, zj, sj, and wj,
respectively, and y, w, and z are dual variables. Similarly, the first-order conditions
for (2) are

(4)

Ax b
x+s-u

ATy+z--w--c --0.
XZe #e
SWe- #e

The search direction of the standard primal-dual interior point algorithm as de-
scribed in [4] has two components: the "affine" direction and the "centering" direc-
tion. If we let Av (Ax, As, Ay, Az, Aw) and v (x, s, y, z, w), applying Newton’s
method to (3) yields the following system of equations (5), which is solved for the
affine direction Av:

(5) F’(v)(Av)

AAx b- Ax
Ax + As u- x s

ATAy + Az Aw c-- ATy- z + w
ZAx + XAz -XZe
WAs + SAw -SWe

The centering direction Av is the solution to

-F(v).

AAx 0
Ax, + As, 0

ATAy + Az Aw 0
ZAx, + XAz,
WAs + SAw #e

The primal-dual search direction is then Av Av + Av. Alternatively, the di-
rection Av is obtained by applying Newton’s method directly to (4). hus, the
standard primal-dual logarithmic barrier method applies Newton’s method directly
to (4), while the affine variant of the primal-dual interior point method applies New-
tons method to, (3) to obtain only Av. he steps of the primal-dual logarithmic
barrier method include a centering component incorporated through #, whereas the
steps of the affine variant do not. In either case, the step direction in the result-
ing interior point method is obtained by applying Newton’s method to a system of
nonlinear equations---either (3) or (4).

In general, Newton’s method is an iterative procedure that finds zeros of a non-
linear function f(z). At each iteration it

(7) solves f’(xa)Ax=-f(xk) forAx

and sets x+1 xa + aAx.
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The inclusion of 0 < c < 1 makes this a damped Newton method. Since it is of-
ten difficult to compute the requisite derivative in (7), it may be advantageous to
use the same derivative evaluation in several solves. This approach is beneficial if it
reduces the overall number of derivative evaluations without performing an unreason-
able number of extra solves. This is the idea behind the composite Newton method.
At each iteration the damped level-m composite Newton method

sove I’()A () o A0

then solves f(xk)Axi=--f xk + AxJ for Axi, i 1,...,m
j=o

m

and sets xk+ xk + a Ax.
j=o

In this ce, the derivative is employed m+ 1 times to iteratively obtain the direction
before a step is taken. Thus, the composite Newton method performs more solves
within each iteration with the intent of performing fewer iterations and therefore
fewer derivative evaluations overall.

The composite Newton interior point method is presented in [13]. The statement
that they provide allows for to be respecified in each inner iteration, but we state a
slightly less general method which fixes outside of the inner loop and consider the
more general statement later.

ALGORITHM CNM (composite Newton interior point method).
Given vk (xk, sk, yk, zk, wk) with xk, sk, zk, w > O.

Step 1: Solve (5) for the affine direction Av. Let A Av.
Step 2: Compute (vk, A).
Step 3:

For i 1,..., mk do
i--1Solve F’(vk)A -F(vk + =o) + for

where is a vector with 1 in the lt 2n components and 0
otherwise.

end do
Define A m=0

Step 4: Perform ratio test to determine primal and dual steplenhs p and d.
Step 5: Move to the new point vk+ defined by

xk+ xk +

Tapia et al. [13] proved that Mehrotra’s predictor-corrector method is a damped
level-1 composite Newton interior point method. The predictor-corrector method
computes its search direction in two stages. First, it computes the affine direction
and uses it a predictor. The predictor direction is used in two ways: (1) to set the
barrier parameter ; and (2) to correct the centered direction that would be obtained
by applying Newton’s method to (4).
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First, Mehrotra solves (5) for the predictor direction Av, then he computes the
barrier parameter # as a function of both the current point v and Av, and finally, he
uses Av to correct the centered direction that would be obtained by applying New-
ton’s method to (4). Mehrotra suggests computing a combined centering/correction
direction Ave as the solution to the system

AAxc O,
Axc+ As O,

(8) ATAyc + Az Aw O,
XAz + ZAx #e- AXAZe,
SAwc + WAs #e- ASAWe,

where AX, AZ, AS, and AW are diagonal matrices having elements Ax, Az,
As, and Aw, respectively. The full predictor-corrector direction is then

Ay Ay + Aye,
Ax Ax + Axe,

(9) Az Az + Az,
Aw Aw + Aw,
As As + As.

Alternatively, Lustig et al. [5] compute the full direction Av directly by solving

AAx b- Ax,
Ax + As u- x- s,

(10) ATAy + Az Aw c- ATy z + w,
XAz + ZAx #e- XZe- AXAZe,
SAw + WAs #e- SWe- ASAWe,

for Ax, Ay, Az, Aw, and As. System (10) includes the correction terms AXAZe
and ASAWe in the right-hand side of the Newton system for (2).

The systems we solve to obtain the predictor, the corrector, or the full predictor-
corrector direction each involve the same matrix. That is, each of these directions is
obtained based on the evaluation of the same derivative, just as successive directions in
the composite Newton method involve the same derivative. The idea of the predictor-
corrector procedure is to reduce the work required in the primal-dual interior point
procedure by reusing the factorization required to solve the Newton system (5).

This method performs only one correction in obtaining the direction, but can
easily be generalized to perform several corrections in a multiple predictor-corrector
procedure which directly extends (10). Instead of solving this system once at each
step of the primal-duM interior point method, it can be solved repetitively with each
direction corrected based on the previous direction. The number of corrections mk
in an iteration k is dynamically chosen. The resulting procedure is outlined below in
Algorithm MPC, which is invoked at each iteration.

ALGORITHM MPC (multiple predictor-corrector).
Given vk (xk, sk, yk, zk, wk) with xk, sk, zk, wk > O.

Step 1: Solve (5) for the affine direction Av.
Step 2: Compute #(vk, Av).
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Step 3:
For i- 1,..., mk do

Solve the following system for Ave:

(11)

AAx b- Ax
Ax + As u- x s

ATAy + Az Aw c-- ATy-- z + w
ZAx / XAz #e- XZe- AX-IAZ-le
WAs / SAw #e- SWe- AS-IAW-e

end do
Define Av- Av"k

Step 4" Perform ratio test to determine primal and dual steplengths Cp and O/d.
Step 5" Move to the new point vk+ defined by

(12)

We typically solve the system in Step 3 by reducing it to a positive definite
system by expressing all variables in terms of Ay. The matrix in the system for Ay
is then AD2AT, where D (X-1Z + S-W)-1. Solving (12), therefore, requires
a factorization of the matrix AD2AT and a backsolve with the factorization LLT
AD2AT yields Avi. Hence, the predictor-corrector procedure reduces the work of the
primal-dual interior point method by reusing the factorization of AD2AT.

The full statement of MPC requires the definition of #, ap, Cd, ink, and an initial
solution, which we defer until the next section. The remainder of this section is
devoted to proving our main result, which is stated in Theorem 2.1.

THEOREM 2.1. The multiple predictor-corrector algorithm (MPC) is equivalent
to the composite Newton method (CNM).

We say that two algorithms are equivalent if they yield the same sequence of
iterates when started from the same initial point. Therefore, since the statements of
MPC and CNM are identical with the exception of Step 3, the proof of the theorem
requires only that the direction Av obtained by MPC is the same as A? from CNM.
Tapia et al. [13] have shown that Theorem 2.1 is true when mk 1 in every iteration k;
this is a special case of the more general statement in Theorem 2.1. Before proceeding
with the proof of the theorem we recall that

(13)
AAx b- Ax

Ax+As u-x-s
F’(v)(Av) ATAy / Az Aw and F(v) c- ATy- z + w

ZAx + XAz -XZe
WAs + SAw -SWe

and we present the following lemmas.
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LEMMA 2.2. For i >_ 1,

(i).
Proof. By Step 3 of CNM and the definitions of F(v) and F’(v) in (13), we have

that

which immediately implies the result.
LEMMA 2.3. For i >_ 1,

Proof. Multiplying term by term, we have that

(14)

(15)

Step 3 of CNM and (13) provide that

(16) XA2’ + ZZXYC’ #- X + ZXX Z + ZX2 ,
j=o j=o

which implies

i--1 i--1We can add and subtract (-j=o AJ)(j=o A2J)e in the right-hand side of equa-
tion (15) to get
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(18)

x + aS: z + a2 x*z* + (x*a2 +
.=o .i=o .=o

\=o \=o

\=0 \=0

Using (17) to substitute #e for the first three terms yields the result

X + A Z + A2 e.=o .=o
Applying the analogous approach to the S and W equations proves the lemma.

Combining the results of Lemmas 2.2 and 2.3 we have that

Proving Theorem 2.1 requires that we show that the direction A) mY’ =o A)i is
the same as the direction Avm obtained by MPC. To do this we note that A) solves
the system

(20)

AA

ZA]c +
WA + SAgo

Thus, Avm and A9 solve precisely the same system when (-o-1Ai) AVm-l.
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LEMMA 2.4. (=o A)) AvP for all p >_ O.
Proof (by induction). (p 0) Av A0 by definition in CNM. Both Av and

A) are the affine direction.
(p m) Assume that the lemma is true for 1 <_ p <_ m- 1. We must demonstrate

that it is true for p m. By adding up the systems defining each A) we have that
-im__o A0 solves the system

(21)

,o’ + ELo
A(E,:o ’) + E,:o e’ E,:o

mz(,o) +x(o)
w(ELo) + s(=o)

-() + .- +
i=o j=o

Applying (19) to replace F(v + )=o A0J) in (21) yields

(:)

-F(v) + F v +
i=o j=o

b- Ax
x8

c--ATy--zWw
m- j-xz-o2o +{=(- [+ (E=ox )(E=oz)

i--1 j i--1--(E=0X )(=o Z)]))
{m-- j-sw-o$o + , (._ [, + (E=os )(E:ow)

-(E): s)(E): w)])}
Within the braces, the terms cancel do alternating terms in the summation over
i. This implies

-F(,) + ,- , +
i=0 j=o

b- Ax
--X--8

C- ATy- Z + W
m--1-xz- (=o )(2)

b- Ax
U--X--8

C- ATy- Z + W (by the induction hypothesis).
e XZe AXm- AZm- e

e- SWe-

mThus, ’i=o Aoi and Avm are the solution to the same system.
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Proof of Theorem 2.1. The proof follows directly from Lemma 2.4 applied when
p=mk.

3. How much correcting? We now define the parameters used in MPC to
provide a complete statement of the algorithm. The starting solution and the pa-
rameters #, ap, and ad are computed as described in [5]. We briefly review these
definitions and then discuss setting mk in the remainder of this section.

The primal and dual steplengths ap and d are chosen to insure the nonnegativity
of the variables x, s, z, and w. Given v and a direction Av, the ratio functions
rp(V, Av) and rd(v, Av) are defined as

-Axj’ Axe < 0 -As’ As < 0

(2a)
rd(v, Av) min {mjln { _zj"

Azj < 0} ,mjln{. --AwjWJ ,Awj <0}}.
rp(v, Av) and rd(v, Av) are the maximum steps that can be taken before encountering
a boundary in the primal and dual, respectively, whereas ap and (d are the steps that
are actually taken in MPC. They are defined as

(24) an 0.99995 rp(V, Av), (d 0.99995 rd(v, Av).

The barrier parameter # is computed as a function of the complementarity that
would result if a step were taken in the affine direction. The allowable primal and
dual steplengths in the affine direction are

(25) Op0 0.99995 rp(vk, Av), d 0.99995 rd(vk, Av),

and the resulting complementarity would be

(26) gO (x + apAx)T(z + aOdAzO + (s + aOpAsO)T(w -t- aOdAwO).

Then we choose

(27)

or

# IXTzg0 2

(es) ,
where

when xTz -- 8Tw _
1,

(xTz -- 8Tw)(n)
when xTz -- 8Tw < 1,

n if n

_
5000,

(29) (n)-- n if n > 5000,

as defined in [5].
The initial starting point is prescribed according to Mehrotra [7] using the pro-

cedure implemented by Lustig et al. [5].
Now, we consider the definition of mk and begin by noting that when mk 1 for

all k, MPC is the predictor-corrector procedure implemented in [5]. Tapia et al. [13]
suggested allowing the number of corrections to vary at each iteration of the predictor-
corrector interior point method. Our computational results demonstrate that it is not
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only desirable but imperative to the success of a higher-order strategy. An example
in which we run MPC on the problem AG(] with mk 2 in every iteration highlights
this point; the results are summarized in Table 1. Let dp, dd, and du be the primal,
dual, and upper bound infeasibilities at the current point defined as

dp b- Ax,
(30) dd c- ATy z + w, and

du=u-x-s.

The total infeasibility reported in Table 1 is the sum of the absolute infeasibilities
which is Ildplll + lldl] + Ildul] while the total complementarity is xTz + sTw. At
almost every iteration, the second correction degrades performance of the algorithm.
Complementarity and infeasibility often increase with the second correction, and the
steplengths are reduced to the point where the algorithm stalls by iteration 19.

In this section, we examine the critical issue of how much correcting is advanta-
geous. We first consider the effect of correcting from a feasible point and then examine
the general case of correcting from an infeasible point. Based on this analysis, we de-
velop a heuristic strategy for determining when to stop correcting, which defines the
value mk.

3.1. The feasible case. Given that the current estimate to the optimal point
is primal and dual feasible, the directions Av computed in MPC are always feasible
directions; therefore, they satisfy

AAx O,
(31) Ax + As 0,

ATAy + Az Aw O.

LEMMA 3.1. For any (Ax, As, Ay, Az, Aw) that satisfy (31),

AXTAz -- A8TAw O.

Proof. Using (31) to substitute Az Aw- ATAy and Ax -As, we have

AxTAz d- AsTAw AxT(Aw- ATAy) + AsTAw
_AsTAw (AAx)TAy -+- AsTAw

--0o D

In addition to feasibility, the only requirement for optimality is that the duality
gap is zero. When feasible, the complementarity xTz / sTw equals the duality gap
cTx- bTy- uTw. The sole motivation behind performing corrections from a feasible
point is reducing complementarity. We show that correcting to achieve either steeper
decrease in complementarity or a longer steplength is advantageous.

Kojima, Mizuno, and Yoshise [3] showed that with a common steplength a and
without upper bounds, the complementarity decreases linearly at each iteration of the
primal-dual interior point method

A similar result is also true for the more general case of upper bounded variables
and separately chosen primal and dual steplengths. The key observation is that
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TABLE 1
Iteration statistics for problem IGG.

Iteratior"’l

’Iteration 2

Iteratior 3

Iteration 4

correction:
2

Correction:
2

correction:
2

Correction:
2

Itera’ii’5’ ’Correction"
2

Iteration 6 Correction:
2

Iteration 7 Correction:
2

Iteration 8 Correction:

Itera.i0n’ 9

Iteration 10

Iteration 1’1

Iteration

Iteration 13

itration 14

li’eratioh 15

Iteration 16

Iteration 17

Iteration 18

2
Correcti0n’

2
Correction"

2
Correction’

2
C0’rrection"

2
Correction:

2
’correction:

2
correction :"1

2
correcti0n

2
correcti0n"

2
Correction:

2

Total
Comple,.
650 D+09
638 D+09
447 D+09
639 D+09
370 D+09
639 D+09
.370 D+09
.639 D+09
.382 D+09
.644 D+09
.212 D+09
353 D+09
152 D+09
.237 D+09
.747 D+08
137 D+09
.559 D+08
898 D+08
734 D+08
895 D+08
.217 D+08
274 D+08
199 D+08
121 D+08
.141 D+08
.213 D+08
141 D+08
.213 D+08
141 D+08
.213 D+08
141 D+08
.213 D+08
213 D+08
.213 D+08
.212 D+08
.211 D+08

Total
Infeasibilit,
.428 D+08
.411 D+08
.275 D+08
.402 D+08
.227 D+08
.402 D+08
.227 D+08
.402 D+08
.225 D+08
.402 D+08
.101 D+08
120 D+08
.600 D+07
.119 D+08
.404 D+07
.332 D+07
.240 D+07
.328 D+07
.212 D+07
.279 D+07
.871 D+06
.493 D+06
.305 D+06
.377 D+06
.200 D+06
.376 D+06
.200 D+06
.376 D+06
.200 D+06
.376 D+06
.200 D+06
.376 D+06
.376 D+06
.376 D+06
.376 D+06
.376 D+06

Predicted Steplenth
Primal

850 D+00"
.855 D+00
.436 D+00
.515 D-03
.437 D+00
.257 D-07
.437 D+00
.129 D-11
.442 D+00
.702 D-16
.752 D+00
.704 D+00
.497 D+00
.238 D-02
.662 D+00
.723 D+00
.271 D+00
.295 D-02
.355 D+00
150 D+00
.691 D+00
.619 D+00
.372 D+00
.223 D+00
.470 D+00
.552 D-04
.470 D+00
.277 D-08
.470 D+00
.139 D-12
.470 D+00
.570 D-17
.121 D-03
.366 D-34
.604 D-08
.559 D-51

Dual
954 D+00"
.951 D+O0
.677 D+00
.178 D-02
.677 D+O0
.954 D-07
.677 D+O0
.477 D-11
.664 D+O0
.444 D+00
.753 D+00
159 D-02
.716 D+00
.657 D+00
.853 D+00
.498 D-02
.827 D+00
.578 D+00
153 D+00
185 D+00
.948 D+O0
.827 D+00
.285 D+00
.357 D+00
.426 D+00
109 D-03
.425 D+00
.543 D-08
.425 D+00
.271 D-12
.425 D+00
.231 D-01
.302 D-04
.262 D-18
.151 D-08
.104 D-25

xTAz -- zTAx n] xTz and sTAw + wTAs n# sTw. We first consider the
upper bounded case and then demonstrate the effect of separately chosen steplengths.

PROPOSITION 3.2. The complementarity xTz + sTw decreases linearly at each
step of the primal-dual interior point method when a common step ( is used in the
primal and the dual.

Proof.

(= + + + + +
xTz Jr- 8Tw + O(xTAz + 8TAw + AxTz + AsTw)

+o:(AxTAz + AsT

xTz + 8Tw OI(xTz + 8Tw 2n#) -+- a2(AxTAz + AsTAw).
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Using (31) to substitute for Az and applying Lemma 3.1 we have

( +)(+)+ ( +)(+)
xTz -- 8Tw- O(xTz -" 8Tw- 2n).

When separate primal and dual steplenhs are allowed, two ces result. The com-
plementarity is follows.

If (a ad) we have

( +)(+)+ ( +)(+)
xTz + 8Tw + d(xTAz + 8TAw) + p(AXTz + AsTw)

XTZ + sTw ap(XTz + STW 2n) + (ad ap)(XTAz + sTAw)
+pd(AxTAz + AsTAw).

Invoking Lemma 3.1 to eliminate the lt term and observing that

xTAz + sTAw xT(Aw ATAy) + (u- x)TAw
-bTAy + uTAw

a result of (31), we have

( +a)(z + .z) + ( +,a)( +.a)
xTz + sTw- ap(XTz + sTw- 2n) (d- ap)(bTAy- uTAw).

Similarly, when (ad <

( + .,)r( + az) + ( + ,a)( +.)
xTz + sTw d(xTz + sTw 2n) + (an ad)cTAx,

because AxTz + AsTw cTAx.
When d p the final term disappears in both ces, and the new complemen-

tarity is simply stated in Proposition 3.2. If d p, the added term is either the
directional derivative with respect to the primal linear objective (1) or the negative
directional derivative for its dual. When the primal objective is decreeing and the
dual objective is increing, this added term further reduces the complementarity. In
practice, these terms usually, but do not necessarily, further decree complementar-
ity.

The effect of the predictor-corrector procedure on the complementarity can be
analyzed in a similar manner.

PROPOSITION 3.3. The complementaty xTz + sTw decreases linearly at each
step of the MPC algorithm when the same step is taken in the pmal and the dual.

Proof.

( + .a)r(z + .z) + ( +’)( +
xTz + sTw + a(xTAz + sTAw + zTAx + wTAs) +
xTz + sTw + (xTAz + sTAw + zTAx + wTAsi) (by Lemma 3.1)
xTz + sTw [xTz + sTw + (Axi-TAz-1 + Asi-TAw-) 2n] (by (11))
xTz + sTw- (xTz + STW- 2n) (by Lemma 3.1).
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FIG. 1. Allowable steplength at each correction.

Again, allowing separately chosen primal and dual steplengths introduces a di-
rectional derivative term. When (Egp < Egg),

( +)r(+zx) + ( +)(+
xTz r- 8Tw Egp(XTz -- 8Tw 2n#) (Egg- Egp)(bTAyi- uTAwi),

and when (Egg < Egp),

(= + ;zx=)r(z + .zxz) + (, + zx,)r( + .zx)
=rz + .(=rz + rw 2) + (,

Predicting and correcting can affect complementarity only through the step-
lengths, which are a function of the direction, and through the directional derivative
term. (The directional derivative term should be small as the optimum is approached
and when Egg and Egp are close.) Within MPC we test to insure that the same step
is taken in the primal and dual spaces when taking separate steps does not further
reduce complementarity. When the same primal and dual steplengths are chosen,
predicting and correcting affects only the steplength. Multiple correcting from a fea-
sible point with a common primal and dual steplength Eg min(Egp, Egg) is performed
on the problem hFIR0 with the progressive effect of predicting and correcting on the
steplength presented in Fig. 1. It illustrates that predicting and correcting, even from
a feasible point, will not monotonically increase steplength and thereby decrease com-
plementarity. Thus, performing a fixed number of corrections at each iteration may
not be productive.

At each feasible iteration of MPC, we choose the number of corrections dynami-
cally based on the complementarity that would result if a step were taken. Let gi be
the complementarity that would result from taking a step in the direction obtained
after i corrections. We consider performing an (i + 1)st correction only if gi < gi-1
and i is less than some maximum number of corrections. If it is true that gi > gi-1,
we stop correcting and use the direction Avi-1. That is, another correction is consid-
ered only if the previous one decreased the complementarity. Thus, a direction Avm
requires m + 2 backsolves when correcting terminates based on complementarity and
m / 1 backsolves when the maximum number of corrections allowed is m. Both the
desire to avoid extra backsolves and the convergence results of [13] suggest that the
maximum number of corrections should be small in practice.
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3.2. The infeasible case. In the feasible case, complementarity provides a
definitive measure of the value of a correction. When correcting from an infeasi-
ble point, however, this is no longer the case. Based on the definitions given in (30),
note that

AAx dp,
(32) ATAy + Az Awi dd and Ax + As du

for any value of i. Hence, if ap 1, then the new point will be primal feasible and if
Cd 1, the new point will be dual feasible.

Determining mk--the number of corrections to perform at iteration k--must in-
tegrate reducing complementarity with reducing infeasibility. We first consider the
complementarity gO resulting from a step a in the affine direction

gO (x t_ olAxO)T(z -- olAzO) -- (8 -- olA80)T(w -- oAwO)
xTz + sTw- a(xTz + sTw) + a2(AxTAz + AsTAw)
z+ .(z +) + .:(ya a +a).

Note that now the infeibilities also affect the complementarity that would result
from a step. This, in turn, affects the choice of which depends on g0.

When AVc is the correction to the affine direction, we have
The complementarity that would result from a step a in the direction Av is

( +(0 + ))(z +(0 + z))
+( + .(0 +))(+(0 +))

xTz 8Tw
(aa) +.[r(0 +)+r(0 +)+(0 +)

+.[(a0 + )r(a0 + a)+ (0 + a)(a0 +)]
zz + (z + ,) (a a +
+.[(o +) (o+u) +(0+)].

While steplenhs near 1.0 are always beneficial for reducing infeibility and
for reducing complementarity from a feasible point, this is not necessarily true when
reducing complementarity from an infeasible point. Infeibility influences comple-
mentarity explicitly through the additional terms in (33) and implicitly through
The combined effect may be to increase complementarity. Since we ultimately want to
reduce both complementarity and infeibility, we look at the combined infeibility
and complementarity for determining ink. We define

G g{ + (1 -d)ilddll + (1 -ap)(]dp]] +
and attempt an (i + 1)st correction only if is less than the allowable mimum and
G < Gi-. Note that G meures the norm of F(v).

Table 2 provides an example from the problem 6 where estimated complemen-
tarity increes from that of the previous iteration. To compensate, the allowable
steplenh gets smaller with each correction until virtually no step can be taken, and
complementarity does not incree. In fact, when infeibility is small relative to com-
plementarity, using the combined meure G does not prevent this behavior. Thus,
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TABLE 2
Correcting after an increase in complementarity.

Total Total Steplengths
C,0mpl.e.. Infeasibilit] primal dual

previous iteration .2748 D+08 .1939 D+07
-correction .2928 D+08 .1849 D+07 .467 D-01 .215 D+00

2- correction .2756 D+08 .1939 D+07 .120 D-06 .549 D-03
3-correction .2749 D+08 .1939 D+07 .658 D-10 .346 D-07
4-correction .2755 D+08 .1939 D+07 .234 D-16 .123 D-12

within MPC we allow no further correcting if the steplengths at iteration i are both
less than min(p, d) for the previous iteration.

It is interesting to note the effect of the initial point (x, s, yO, zo, wo) on all
iterations of MPC. Let dp b- Axk, d c ATyk zk + wk, and dku u xk sk.
The relationship between iterations of these vectors is exhibited by the following
proposition.

k 0PROPOSITION 3.4. On iteration k o/MPC, dpk "dp, dku "kpdu, and dkd k

for some values Of "Ikp and "7kd satisfying 0 <_ kp <_ 1 and 0 <_ / <_ 1.

Proof. For any value of k > 0, let Cp and d be the primal and dual stepsizes,
respectively, on iteration k. From (12) and (32), it follows that

and

dkp+1 b- Axk+ b- A(xk + p,,X

(1 k k

))d+ u- (xk+ + sk+) u- ((x +cpx )+ -k^_mk

=(1 %)d,

dkd+ C- ATyk+ Z+ + W
C- AT(yk Jr- kdAymk (zkyk + olkdAzmt Jr" (Wk J- okdAwmk)
(1 dk)d.

By setting’vk+ (1 k k _k+--p)’7; and "Yd (1- adk)’7 for k > 0, with /p0 1- p0 and
1-c’,Pthe result clearly follows by induction on k. r

This proposition indicates that the performance of either the primal-dual algo-
rithm or the predictor-corrector algorithm is heavily dependent on the choice of the
starting point (x, s, y0, z0, w0) since the vectors dp, d, and du are affecting the cal-
culations in any iteration where the current iterate is primal and/or dual infeasible.

4. Computational experiments with linear programs. Any savings de-
rived from a multiple predictor-corrector procedure must arise from reducing the
number of interior point method iterations. In this section, we examine the potential
of several correcting strategies to reduce iterations. This is the first step in evaluating
the viability of higher-order methods.

The multiple predictor-corrector procedure described in 2 and 3 has been im-
plemented within OB1 [5]. The maximum number of corrections is a prespecified
parameter, while the actual number at any iteration is determined by the method
described in 3. Numerical experiments were conducted on a representative subset of
the NETLIB problems chosen by eliminating problems with dense columns and se-
lecting every other problem from the resulting alphabetic list. The problems IILOT4,
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PILOT, and GREENBEA were omitted after testing because numerical difficulties pre-
vented solution under several strategies.

Computational tests were performed on a Silicon Graphics 4D/70 workstation
running SGI Unix V3.2 with FORTRAN code, compiled with the MIPS f77 compiler,
using the default optimization and -0limit 1000. Testing was conducted with all
default OB1 options except the steplength reduction factor (DARE) was set to the
predictor-corrector suggested value of 0.99995.

Table 3 provides iteration counts for several correction strategies. The following
are brief descriptions of the strategies tested.

1-correction. This is the base case in which exactly one correction is per-
formed in each iteration as presented in [5].

3-correction. At least one and a maximum of three corrections are performed
at each iteration.

10-correction. At least one and a maximum of ten corrections are performed
at each iteration.

99-correction. At least one and a maximum of 99 corrections are performed
at each iteration.

feasible-99. Exactly one correction is performed at each infeasible iteration.
Once feasible, at least one and at most 99 corrections are performed.

dynamic mu-99. At least one and a maximum of 99 corrections are performed
at each iteration with # dynamically set after each correction.

0.5 heuristic. At least one and at most three corrections are performed at
each iteration. An additional correction is tested only if Cp, Od

_
0.5.

The first four strategies examine the effect of changing the maximum allowable
number of corrections. We examine limits of 3, 10, and an essentially "unbounded"
case of 99. While the iterations do not decrease monotonically as the number of
corrections increase, higher corrections do tend to yield lower iteration counts. There
are, however, instances such as AGG where the 10 and 99 strategies perform more
iterations. Although we consider 99 to be an unreasonably high bound on the number
of corrections, there are several instances where 99 corrections are performed. A
striking example is BEAC01IFD in which 99 corrections are performed in each of the five
iterations.

Overall, the 99-correction strategy increases iterations on 2 problems, leaves 6 un-
changed, and decreases iterations relative to the 1-correction strategy in the remain-
ing 31 problems. The 10-correction strategy increases iterations in 4 cases, leaves 5
unchanged, and decreases the remaining 30. The 3-correction maximum increases it-
erations in 5 problems, causes no change in 8, and decreases 26. The percent change in
iterations for the 99- and 3-correction strategies relative to the 1-correction procedure
are displayed graphically in Fig. 2.

When corrections are performed only after feasibility is attained, there are no
cases in which the number of iterations increases, 27 in which it remains the same,
and 12 in which it decreases. With this strategy, exactly one correction is performed
in each iteration until the relative primal and dual infeasibilities are less than 10-6.
In several problems, this requirement is satisfied just before optimality is attained,
leaving few iterations in which to attempt higher-order correcting. Consequently,
many of the iteration counts stay the same. For this strategy there are no increases
in iterations. This apparently occurs as a result of two contributing factors. First,
there is no longer a tradeoff between reducing infeasibility and complementarity, so
the complementarity provides a definitive measure of the benefit from predicting and
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TABLE 3
Comparing number o] iterations for various strategies.

P}oblem
25fv47
adlittle

ag9
agg3

beaconfd
bnll

boeing1
bore3d

capr
czprol:

degen2
e226

fffff800
fit1 d

ganges
growl 5
grow7

kb2
nesm

pilomov
sc105
sc50a

scagr25
scfxm
scfxm
scrst
scsd6
sctapl
scrap3

share1 b
shell

shipO4s
ship081
ship12s

stai
standm ps
stocfor2
vtpbase
woodw

-correctibn
25
12
24
17
10
27
24
18
18
35
14
22
28
18
16
16
14
15
30
20
10
10
16
17
20
27
12
15
17

21
15
16
18
16
24
22
13
20
732

3’:co’rPectibn
25
lO
24
14
8
24
22
18
17
34
13
21
29
15
13
14
14
19
31
25
10
9
14
14
17
24
10
14
16
20
18
13
13
15
14
24
22
11
22
690

O-correction
25
9
27
13
7
24
24
18
17
31
11
21
28
14
15
12
13
14
31
19
8
8
12
14
17
22
10
13
16
19
18
10
15
14
18
24
22
11
22
666

99-correction .5 heuristic
25 25
9 10
27 28
12 14
5 8
24 24
24 22
18 17
17 16
30 34
13 13
21 25
28 28
15 15
12 13
12 14
12 14
14 19
31 29
19 25
7 10
6 9
13 14
14 15
17 17
22 25
10 10
12 15
16 16
19 21
18 19
10 13
14 13
13 14
13 14
24 24
22 22
11 11
14 24
643 699

dyn mu -99
25
11
24
16
6
25
25
17
17
29
1:3"
19
29
14
13
15
14
14
28
19
8
7
13
15
18
25
10
14
16
24
21
13
16
15
14
24
2O
12
N/A

658

feasible 99
25
12

15
10
27
24
18
18
35
14
22
28
18
16
15
14
15
30
20
10
10
15
16
20
26
10
15
13
20
20
14
16
17
14
24
22
13
2O
714

Only seven digits of accuracy achieved; Based on incomplete data as noted.

correcting Second, feasibility may occur close to optimality, so we are more likely to
observe the local convergence properties of the composite Newton method.

An appealing variant of Mehrotra’s dynamic strategy for choosing # is to reset

# after each correction. That is, compute/ within the predictor-corrector loop by
replacing Steps 2 and 3 of MPC with the following:

For i 1,..., mk do
Compute #i(v, Ave-l).
Solve the following system for Av

(34)

AAx
Ax + As

ATAy + Az Awi
ZAx + XAz
WAs + SAw

b- Ax
U--X--8

c- ATy- z -t- w
ie XZe AXi-1AZi-le
ie_ SWe- ASi-lAWi-le
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25fv47

adlittle
agg

agg3
beaconfd

bnll
boeing1
bore3d

capri

czprob
degen2

e226

fffff800

fitld
ganges
growl5

grow7
kb2

pilotnov
sc105
sc50a

scagr25

scfxml

scfxm3
scrs8
scsd6

sctapl
sctap3

share

shell

shipO4s
ship081
ship12s

stair

standmps
stocfor2

vtpbase

woodw

-40 -30 -20 -10 0 10 20 30

J

corrections maximum

99 corrections maximum

FIG. 2. Percent change in iterations relative to one correction strategy.

end
Define Av Av".

If complementarity is decreasing with correcting, the value of # used to compute
the subsequent corrected direction will be smaller. The iterations that result from
using the dynamic strategy increase in 3 problems, remain the same in 6, and decrease
in 29. W00DW could not be solved with this strategy. The results of Table 3 indicate
that this method for choosing # is generally inferior to the method described earlier.
It is for this reason that we employ the "fixed #" strategy in our basic algorithm.

The composite Newton interior point method can also be adapted to reset # in
the inner iterations. The corresponding substitution in CNM yields the composite
Newton method precisely as stated in [13]. In this case we replace Steps 2 and 3 of
CNM with the following.

For i 1,...,ink do
Compute #i(vk, Avi-z).

i--1Solve F’(vk)AO -F(vk + -:i=o AO.) + #’ for AO
end
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TABLE 4
Percent of iterations in which multiple corrections are performed.

Problem
25fv47
adlittle

agg
agg3

beaconfd
bnll

boeing1
bore3d

capri
czprob
degen2

e226
fffff800

fitld
ganges
growl 5
grow7

kb2
rlism

pilotnov
sc105
sc50a

$cagr25
scfxml
scfxm3
scrs8
scsd6
sctapl
sctap31

sharelb
shell

shipO4s
ship081
ship12s

stai
standmps
stocfor2
vtpbase
wo.odw

3-correction
8%
40%
17%
50%
63%
21%
23%
28%
29%
6%
23%
19%
34%
53%
54%
29%
29%
16%
16%
24%
40%
22%
36%
57%
29%
29%
70%
36%
25%
25%
17%
38%
54%
27%
43%
4%
9%
27%
59%
28%

99-correction
8%
44%
15%
50%
100%
21%
33%
22%
29%
13%
23%
19%
32%
33%
25%
42%
33%
29%
13%
26%
57%
67%
23%
50%
12%
36%
50%
33%
13%
26%
11%
50%
43%
31%
46%
4%
9%
18%
57%
27%

.5 heuristic
4%
40%
11%
50%
63%
21%
23%
29%
38%
6%
23%
12%
29%
53%
54%
29%
29%
16%
21%
240/o
40%
22%
36%
40%
29%
28%
70%
20%
13%
19%
11%
54O/o
54%
43%
21%
4%
9%
27%
33%
26%

d},n mu -99
8%
18%
17%
13%
67%
12%
12%
29%
29%
3%
15%
37%
17%
36%
31%
20%
0%
36%
11%
26%
25%
57%
23%
27%
22%
20%
50%
29%
6%
13%
5%
23%
19%
20%
21%
4%
10%
8%
N/A

19%

Even with the additional generality in these statements of MPC and CNM, a re-
sult analagous to that of Theorem 1 guarantees that the more general MPC algorithm
is still a composite Newton method as stated above.

Reducing the number of iterations reduces the number of matrix factorizations,
but MPC does this at the cost of performing more backsolves per iteration. A practical
implementation must limit the number of backsolves. One way to do this is to keep
the maximum possible corrections small. Thus, it is impractical to allow 99--or even
10---corrections in a realistic implementation. Another approach is to try to anticipate
when an additional correction will be advantageous. Table 4 illustrates that multiple
corrections are performed in a relatively small percent of the total iterations, so an
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-25 -20

agg

agg3

beaoonfd

boeing1

bore3d

capri

ozprob

degen2

fitld

ganges

growl5

grow7

pilotnov

scagr25

scrs8

scsd6

scrap1

scrap3

sharella

shell

shipO4s

ship081

ship12s

standmps

vtpbase

Percent change in the number of iterations and backsolves
3 correction maximum

Correcting only when steps exceed 0.5 versus 0.0

-15 -10 -5 0 5 10 15 20

[] change in iterations

BIi change in backsolves

FIG. 3. Comparison of 0.5 heuristic with 3-correction strategy.

extra backsolve per iteration could often be saved if we could determine when to
attempt an extra correction. Our final correction strategy uses a heuristic rule for
determining when to attempt another correction (up to the maximum). This method
is based on observing the behavior of the previous correction strategies. Each of the
former strategies always attempts another correction if the maximum has not been
reached. We observed that this correction often yields an improvement (relative to
the measures described in 3) only when the allowable steplengths in the previous
direction were relatively long. In the 0.5 heuristic, primal and dual steplengths must
be greater than 0.5 to consider another correction. That is, we attempt correction
i -t- 1 only if Cgp, O/d

__
0.5 in the direction Avi.
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Figure 3 displays a graphic comparison of the number of iterations and the num-
ber of backsolves for this approach with a maximum of three corrections per iteration
versus the 3-correction strategy described previously. Relative to the 3-correction
method, 8 problems increase iterations, 5 decrease, and 26 remain the same. The ad-
vantage of this strategy, however, is seen in the number of backsolves also presented
in Table 5. In 2 cases the number of backsolves increases with the increased itera-
tions, in 3 it stays the same, but it decreases--sometimes dramatically--in each of
the remaining 34 test problems. With respect to the 1-correction method, the number
of backsolves always increases, while the number of iterations increases for 6 cases,
remains the same for 7, and decreases in 26.

The tradeoff between reducing iterations and increasing the number of backsolves
is the critical issue that will determine the viability of higher-order predictor-corrector
methods. In this section, we have presented results demonstrating that iterations can
often be reduced by judiciously performing higher-order corrections. Unfortunately,
this is always at the cost of performing extra backsolves, as seen in Table 5. Thus,
higher-order methods may be promising at least in cases where performing large dense
factorizations is expensive relative to the cost of performing backsolves. Examining
this tradeoff in efficient implementation remains to be addressed in future research.
In view of Proposition 3.4, the starting point may affect the performance of any of
the MPC procedures. Further analysis of these effects remains for future research.

5. Predicting and correcting with quadratic objectives. As suggested in
Mehrotra [8], the predictor-corrector method is easily extended to include convex
quadratic objectives. In this section, we derive the extension of Mehrotra’s predictor-
corrector procedure to quadratic objectives and then present a multiple predictor-
corrector variant.

The quadratic programming problem in standard form is

min cTx + 1/2 xTQx

(35)
subject to Ax- b,

x nt-s -u
x, s >_ O,

where A E ,xn, b E m, C n, X n, U , S ], and Q E x are
positive semidefinite. The related barrier transformed problem is

1
n n

min cTx + - xTQx #Elnxj #Elnsj
j=l j=l

(36) subject to Ax- b,
X- 8--U.

The first-order conditions for (36) are now

Ax b
x+s-u

(37) ATy+z--w--Qx--c =0, and x, s, z, w _> O,
XZe
SWe
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TABLE 5
Number of backsolves.

Problem
25fv47
adlittle

agg
agg3

beaconfd
bnll

boeing1
bore3d

capri
czprob
degen2

e226
fffff800

fitld
ganges
growl5
grow7

kb2
nesm

pilotnov
sc105
sc50a

scagr25
scfxml
scfxm3
scrs8
scsd6
sctapl
sctap3

sharelb
shell

shipO4s
ship081
ship12s

stair
standmps
stocfor2
vtpbase
woodw

3-correction
77
32
75
48
29
77
71
59
56
103
41
67
97
52
46
45
45
58
98
81
32
25
47
50
55
79
36
45
50
64
57
43
46
48
48
73
67
35
79

2236

.5 heuristic
64
3O
68
44
29
68
62
48
48
78
39
68
73
5O
45
38
39
51
78
65
31
25
44
47
51
76
36
42
42
57
53
44
45
45
41
63
55
32
65

1979

-correction
5O
24
48
34
2O
54
48
36
36
7O
28
44
56
36
32
32
28
30
60
40
20
20
32
34
40
54
24
30
34
40
42
30
32
36
32
48
44
26
40

1464

and similarly the first-order conditions for the barrier transformed problem (37) are

(38)

Ax b
x+s-u

ATy + z w Qx c o.
XZe #e
SWe- #e

Whereas the primal-dual method described in Monteiro and Adler [10] and Carpenter
et al. [1] applies Newton’s method directly to (38), the predictor-corrector procedure
first obtains the predictor or a]fine direction by applying Newton’s method to (37).
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This entails solving the system

(39)

AAx b- Ax
Ax / As u- x s

ATAy + Az Aw QAx c- ATy z + w + Qx
ZAx + XAz -XZe
WAs + SAw -SWe

for the direction Av. Having obtained the predictor direction, we can again obtain
the centered correcting direction by solving the system

(40)

AAxc O,
Axe / Asc O,

ATAy + Az Aw QAx O,
XAzc + ZAx tte- AXAZe,
SAw / WAs #e- ASAWe

for Axc, Asc, Ayc, and Az, Aw. Again, the full predictor-corrector direction is
then Av Av / Av. The barrier parameter # is computed precisely as described in

3 using equations (26)-(28). Since the complementarity is defined by xTz + sTw for
both linear and quadratic programs, the extension of the predictor-corrector method
to quadratic objectives is straightforward.

Given that the current estimate to the optimal point is primal and dual feasible,
the directions Av and Ave are feasible directions; a feasible direction Av satisfies

(41)
AAx O,

Ax + As O,
ATAy + Az Aw QAx O.

LEMMA 5.1. For any (Ax, As, Ay, Az, Aw) that satisfy (42), AxTAz-}-AsTAw
AxTQAx.

Proof. Using (42) to substitute Az QAx + Aw- ATAy and Ax -As, we
have

AxTAz T AsTAw AxT(QAx + Aw- ATAy) + AsTAw
AXTQAx A8TAw (AAx)TAy + A8TAw
AxTQAx.

In the linear case, the complementarity reduction from a feasible point (assum-
ing the same steplengths are taken in the primal and dual) for the primal-dual and
predictor-corrector methods differ only as a result of the allowable steplength for
the same #. In the quadratic case, the predictor-corrector procedure offers an extra
advantage. In the primal-dual method the complementarity is changed as follows:
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By convexity we have that the second-order term is nonnegative. In the predictor-
corrector method the change in complementarity is the following:

( + (zx + ))(z +(o +))
+( + (zx0 +))(+(o + zx))

zTz 8Tw
"}-OI(XTAz0 Jr- ZTAX0 Jr" XTAZc Jr" ZTAXc Jr- 8TAw0 -I" WTA80 Jr- 8TAWc "{’- WTASc)
+((0 + ZXx)(zx0 +)+ (zx0 + zx)(zx0 + zx))

xTz + sTw- (xTz + sTw) --(AxTAz + AsTAw 2n#)
+.:((0 + )(zx0 + a)+ (o +)(a0 +))

xTz + sTw (xTz + sTw + AxOTQAx 2n#)
+((0 +)(o+z)+ (0 + zx)r(zx0 + )).

by Lemma 5.1. Since (Av + Ave) is itself a feasible direction, we invoke Lemma 5.1
to obtain

(= + .(zx= + =))(z + .(z +
+( + .(zx, + ,))( + .(zx + ))
xTz + sTw O(xTz + sTw + AxOTQAx 2n#)

+ .=(zx= + zx=)rQ(ZX= +
Although there is still a second-order term increasing the complementarity, there is
now a new first-order term reducing the complementarity. Thus, at least for the case
of small enough steplength, the predictor-corrector method offers better complemen-
tarity reduction than the primal-dual method.

As in the linear case, instead of solving (41) for the combined centering and
correction direction and adding this to the affine direction to obtain the full direction,
we can solve directly for the full direction by solving

(42)

AAx
Ax + As

ATAy -F Az Aw QAx
XAz + ZAx
SAw + WAs

b- Ax
U--X--8

c + Qx ATy z-F w
#e- XZe- AXAZe
#e- SWe- ASAWe

The system (42) can be solved repetitively for updated correction terms yielding the
multiple predictor-corrector procedure for quadratic objectives.

ALGORITHM QMPC (quadratic multiple predictor-corrector).
Given vk (xk, sk, yk, zk, wk) with xk, sk, zk, wk > O.

Step 1: Solve (5) for the affine direction Av.
Step 2: Compute #(vk, Av) using (26)-(28).
Step 3:

For i 1,..., mk do
Solve the following system for Av

(43)

AAx b- Ax
Ax + As u- x s

ATAy -F Az Awi QAx c Jr" Qx ATy z -F w
ZAx + XAz #e- XZe- AX-IAZi-le
WAs + SAw #e- SWe- AS-IAW-e
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FIG. 4. Staircase representation for stochastic network models.

(44)

end do
Define Av Av"

Step 4: Perform ratio test to determine allowable steplengths (p and O/d.
Set a min(ap, ad).

Step 5: Move to the new point vk+l defined by

xk+ xk -}-

8k-I 8
k --oIA8

yk+ yk T say,
Zk-bl Z

k --oIAz
wk+l wk T cAw.

This procedure is a simple extension of MPC for nonzero Q with the main differ-
ence being in the choice of (. Since x now appears in the dual constraints, the same
step is taken in the primal and dual to avoid increasing dual infeasibility.

As in the linear case, the quadratic multiple predictor-corrector procedure is a
level-m composite Newton interior point method. Since complementarity is given by
xTz / sTw in both the linear and quadratic cases, the proof of this is precisely as
presented in 2.

6. Computational results for quadratic objectives. In this section, we
briefly present computational results demonstrating the potential of the predictor-
corrector method for savings in both time and iterations. While the derivations of the
previous section are valid for both separable and nonseparable quadratic problems,
we solve only separable problems. To date, there is no efficient primal-dual interior
point code available for solving nonseparable problems.

Our test problems are derived from financial stochastic network models developed
by Mulvey and Vladimirou [12]. These models possess a staircase structure with
network blocks along the diagonal. They have only a few variables in the objective--
all of which appear nonlinearly. Generally, the objective is a nonlinear utility function,
but for the purpose of experimentation, we have replaced the true nonlinear objective
with an artificial quadratic objective. Any variable xj that appears nonlinearly in
the true objective is included here with cj -1 and qjj 1. The basic structure of
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TABLE 6
Test problem description.

Name
DETERO
DETER4
DETER8
DETER6
DETER5
DETER1
DETER2
DETER7
DETER3

# Scenarios
18
70
36
4o
48
52
80
60
72

# Nonlinears
18
70
36
4O
48
52
8O
6O
72

# Rows
2178
4270
4356
4840
5808
6292
7280
7260
8712

# Columns
5723
10168
11430
12698
15234
16502
18498
19038
22842

TABLE 7
Total time in seconds.

DETER0
DETER4
DETER8
DETER6
DETER5
DETER1
DETER2
DETER7
DETER3

primal-dual
133.29
186.36
282.94
347.06
465.89
495.38
518.45
577.52
757.61

3764.50

correctin
120.59
186.68
280.71
326.09
496.27
428.35
509.12
521.93
698.00

3567.74

the models is depicted in Fig. 4 with a full description given by Lustig, Mulvey, and
Carpenter [6]. Problem sizes are provided in Table 6.

The computing environment is as described in 4. We have implemented the
predictor-corrector procedures within the framework of OBN--the separable nonlinear
extension of OB1 described in [1]. The testing was performed under default OB1
settings except that the optimality tolerance was reduced to 10-7.

Solution times with both primal-dual and predictor-corrector procedures are pre-
sented in Table 7. Table 8 provides iteration counts for the primal-dual method and
several strategies for predicting and correcting. As in the linear case, the predictor-
corrector method with one correction at each iteration offers consistent savings in
both iterations and time. Iterations are reduced for all problems, while total time is
reduced for seven of the nine problems. Because our test problems have extremely
sparse constraint matrices which yield sparse Cholesky factorizations, these timings
may understate the benefit of Mehrotra’s procedure. For these problems, the matrix
factorization is relatively inexpensive. We expect that when dense Cholesky factoriza-
tions are present the savings in computation time will be more dramatic. A graphic
comparison of the predictor-corrector method relative to the primal-dual procedure
is provided in Fig. 5.

The potential for reduction in iterations by predicting and correcting is high-
lighted in Fig. 6, which displays the percent change in iterations for higher-order
strategies relative to one correction. Both the 3- and 99-correction strategies signifi-
cantly reduce the number of iterations on all problems. Once again, the quadratic case
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FIG. 5. Comparison of predictor-corrector to primal-dual.
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FIG. 6. Comparison of multiple correction strategies to one correction.

TABLE 8
Iterations to solution.

DE"ERo
DETER4
DETER8
DETER6
DETER5
DETER1
DETER2
DETER7
DETER3

primal-dual
24
21
24
26
27
27
24
27
29
229

correction
16
16
19
19
24
18
19
19
21
171

predictorTcorrector
3 correction 99 correction

15 10
12
16
17
16
15
13
17
18
139

11
15
14
16
13
11
15
17
122
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demonstrates that there is clearly a potential for reducing iterations via higher-order
correction strategies, but the computational efficacy remains to be demonstrated.

7. Conclusions and directions for further research. The computational
results of 4 and 6 demonstrate the potential for higher-order predictor-corrector
methods to reduce iterations. What remains to be shown, however, is whether or not
reducing the number of iterations can offset the extra work per iteration in an efficient
implementation. We expect that in all but very large dense systems, correcting once
at every iteration will be the preferred strategy.

There are several avenues for improving the multiple predictor-corrector proce-
dure. The most notable is to determine a priori whether or not another correction will
be beneficial. This will avoid two extra backsolves and will eliminate the need to store
previous correction directions. Our .5 heuristic was a simple means to address this
issue. With it we were able to reduce the number of backsolves but we still needed
data structures to store previous correction directions.

It may also be advantageous to consider zero corrections as an option. Partic-
ularly when correcting from an infeasible point, there may be times when taking a
primal-dual step is preferable to taking a correcting step. To do this with Mehro-
tra’s method for choosing p, however, requires an extra backsolve per iteration. That
is, an iteration of MPC would consist of solving for the affine direction, solving for
the primal-dual direction, and then comparing the first corrected direction with the
primal-dual before proceeding with higher-order corrections. One alternative to the
extra backsolve per iteration is to compute a centering direction and then use it for
perhaps several iterations.

While we have demonstrated the potential of higher-order predictor-corrector
methods for reducing iterations, its viability as a generally applicable procedure re-
mains to be shown. A better understanding of when correcting is advantageous and
the interplay of correction and infeasibility is required. In addition, the starting point
may have impact in both of these issues.
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A NOTE ON K-BEST SOLUTIONS TO THE CHINESE POSTMAN
PROBLEM*

YASUFUMI SARUWATARIt AND TOMOMI MATSUI

Abstract. The K-best problems on combinatorial optimization problems, in which K-best
solutions are considered instead of an optimal solution under the same conditions, have been widely
studied. In this paper, the K-best problem on the famous Chinese postman problem is considered
and an algorithm that finds K-best solutions is developed. The time complexity of the algorithm
is O(S(n, m) + K(n + m + logK + nT(n + m, m))) where S(s, t) denotes the time complexity of
an algorithm for ordinary Chinese postman problems and T(s, t) denotes the time complexity of a
post-optimal algorithm for non-bipartite matching problems defined on a graph with s vertices and
edges.

Key words, combinatorial optimization, Chinese postman problem, K-best problem, T-join
problem, matching theory, graph theory

AMS subject classifications. 05C38, 05C45

1. Introduction. The Chinese postman problem was first proposed by Mei-ko
Kwan in [8]. The problem is interpreted as follows (see [10]). The postman delivers
mail along a set of streets and he must traverse each street at least once, in either
direction. He starts at the post office and must return to this starting point. The
Chinese postman problem finds a tour which enables the postman to walk the shortest
possible distance.

It is well known that the above problem is reformulated as follows. Let G be a
graph whose edges correspond to the streets in the city. A (nonnegative) length (we
call a weight) of the street is associated with each edge. If an Eulerian graph arises
from G by parallelizing some edges, then an Eulerian cycle of this graph yields a
postman’s tour of the original. Thus, the problem finds an Eulerian graph of minimum
total weight which is obtained by replacing some edges in the graph G by a set of
parallel ones.

Now we give a formal description of the problem. Let G (V, E) be an undirected
connected graph without loops or parallel edges. Denote by w E a nonnegative
weight function, where + is the set of nonnegative rational numbers. Then the
Chinese postman problem is formulated as:

minimize wx w(e)x(e),
eEE

subject to x(e) >_ 1, Ve E,
x(e) iseven, VvV,

eE,(v)
x EZ,
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where Z+ denotes the set of nonnegative integer numbers and 5(v) denotes the set
of edges incident with the vertex v. The variable x(e) denotes the number of times
the edge e is traversed in the postman’s tour. The Chinese postman problem is a
well-solved problem [8] and Edmonds actually presented a polynomial time algorithm
by transforming the problem into a non-bipartite matching problem [5], [6].

Here we consider the K-best Chinese postman problem, which finds K distinct
..,Kfeasible solutions v1 2, such that w <_ w2 <_... <_ wK <_ w for any

feasible solution xP - wl,w2,..., wg. In this paper, the solutions x,x2,..., XK are
called K-best solutions. The K-best problem was first introduced by Murty, and he
developed an algorithm for finding K-best solutions of the assignment problem [12].
In 1972, Lawler generalized Murty’s algorithm for finding K-best solutions of general
0-1 integer problems [9]. However, it is hard to extend Lawler’s algorithm for the
Chinese postman problem, since the variables are not 0-1 valued in this problem.

In 2, we introduce some properties of a solution for the 2-best Chinese postman
problem instead of considering K-best solutions directly. In 3, we develop a polyno-
mial time algorithm for the 2-best Chinese postman problem. In 4, we construct an
algorithm for K-best Chinese postman problems as an extension, which finds K-best
solutions by solving 2-best Chinese postman problems iteratively.

2. Properties of a solution of the 2-best Chinese postman problem. In
this section, we first show a property of K-best solutions of the Chinese postman
problem. The property induces an alternative formulation of the Chinese postman
problem which is applicable for solving the K-best Chinese postman problem.

Since the weight of each edge is nonnegative, there exists an optimal postman’s
tour for the Chinese postman problem such that each edge is traversed at most twice.
The following lemma is an extension of this property.

LEMMA 2.1. The Chinese postman problem has K distinct feasible solutions, x2,..., xg which satisfy the following two conditions:
(1) wx _< ’WX2

__
WX

g
W, .for any feasible solution ’ , x2,..., g,

(2) k 1, 2,..., K, xk(e) <_ 2k for all e e E.
Proof. Let (xl, x2,..., xk-) be a sequence of k 1 feasible solutions satisfying

the conditions (1) and (2). Since the edge weights w(e) are nonnegative, there exists
a feasible solution xk such that the sequence (x,x2,... ,xk) satisfies the condition
(1). Now consider the case that the sequence (x,x2,... ,xk) violates the condition
(2). Let e’ E E be an edge with k(e’) > 2k. Since k is feasible to the Chinese
postman problem, it is clear that the solution:

if e d,
if e ep,

is also feasible and c’(e’) >_ 2k- 1 > 2(k- 1). Thus the solution ’ is distinct from the
solutions 1, 2,..., k-. From the assumption that w is nonnegative, the solutions
1, 2,..., k-, are k-best solutions. By applying this procedure iteratively, we
can construct a sequence of K feasible solutions satisfying the conditions (1) and

The above lemma shows that when we solve K-best Chinese postman problems,
it is sufficient to consider the set of finite number of feasible solutions satisfying
(e) _< 2K for all e E E.

In the rest of this paper, we consider the following problem, rather than the
problem described in the previous section, for simplicity of the notation. We call the
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following problem CPP in this paper:

(CPP)" minimize wx Z w(e)x(e),
eEE

subject to b>_x_>a,
(e) is even

(e)is odd
e(.)
E Z,

Vv e V1,

Vve V\ y,

where w E is a nonnegative weight function, a and b are nonnegative integer
vectors in Z, and V1 denotes a subset of vertices. Clearly, an optimal solution
of the ordinary Chinese postman problem is obtained by setting a (1, 1,..., 1)T,
b (2,2,... ,2)T, and V1 V. When we need K-best solutions of the ordinary
Chinese postman problem, it is sufficient to replace b by (2K, 2K,..., 2K)T. It is
easily seen that in the case a _< b _< a + 1, this problem becomes the T-join problem
[6], [11].

As in the ordinary Chinese postman problem, an optimal solution of CPP has
the following property.

CLAIM 2.2. If CPP has a feasible solution, then it has an optimal solution *
such that, for all edges e e E, x* (e) is either a(e) or a(e) q- 1.

Proof. From the assumption that w is nonnegative, the proof is clear. [:]

When an integer vector x E Z is feasible to CPP and it satisfies the conditions
that x(e) is either a(e) or a(e)+ 1 for each e e E, we say x is a matching-type solution

of CPP. Edmonds and Johnson [6] developed a polynomial time algorithm for the
T-join problem and an optimal solution obtained by the algorithm is a matching-type
solution.

Given an optimal CPP solution x*, a feasible solution x"d of CPP is called a
second-best solution of CPP with respect to x* if wx* <_ wx2nd <_ wx holds for all
feasible solutions x x*. In the rest of this section, we show some properties of a
second-best solution of CPP.

For a given edge e E, let uc be the 0-1-valued vector indexed by E such that

uC(e,)_ { 0 ife’e,
1 if e e.

We now have the following two lemmas.
LEMMA 2.3. Let * be a matching-type optimal solution of CPP. If a second-best

solution x2nd of CPP with respect to x* exists and satisfies xd(e) >_ x*(e) + 2 for
some edge e E, then x * + 2ue is also a second-best solution of CPP (with
respect to *).

Proof. Since b(e’) >_ max{2nd(et),*(e’)}

_
xt(e’)

_
,(et)

_
a(e’)for every

e E, x is a feasible solution of CPP.
Since wx >_ wxnd is obvious, it is sufficient to show the reverse inequality. By

the definition of xd, it is clear that x2nd 2u is feasible to CPP. Then, it follows
that wx2rid w(x2rid 2u) + 2wu >_ wx* + 2wu w(x* + 2u) wx’. D

LEMMA 2.4. Let x* be a matching-type optimal solution of CPP. Assume that
there is a second-best solution x2n with respect to x* satisfying, for any e E,
X’d(e) < x*(e)q-2. Then there also exists a second-best solution x that is of matching
type.
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Proof. If x2nd is of matching type, there is nothing to prove. Suppose that
there exists an edge e with b(e) >_ x2nd(e) > a(e) + 1. Since x(e) < x*(e) + 2 and
x*(e) <_ a(e) + 1, x(e) <_ a(e) + 2 holds; thus it implies x(e) a(e) + 2.

Here we consider the case x*(e) a(e). Then we have x(e) a(e) + 2
x*(e) + 2, which contradicts x2nd(e) < x* (e) + 2.

Now we just have the case x*(e) --a(e)+ 1. Let x xn 2ue. With respect
to x, the parity of the degree of each vertex is the same as x and b _> x _> a
holds by x(e)- a(e). It implies that x is feasible to cPP. Clearly, x* x’ since
x* (e) a(e) + 1 a(e) x.’(e). By the definitions of x and x, wx WX2rid. In
this way, we can decrease the number of edges satisfying x"(e) > a(e) + 1 from x2

and in the sequel, a matching-type second-best solution is obtained. [:]

Summarizing the lemmas above, we have the following theorem, which shows the
existence of a second-best solution possessing the properties in Lemma 2.3 or 2.4.

THEOREM 2.5. Assume that there exist an optimal and a second-best solution of
(]PP. Let x* be a matching-type optimal solution of CPP. Then, there always exists
a second-best solution with respect to * such that either x is of matching type
Or xn x* + 2ue for an edge e E E.

Given a matching-type optimal solution x* of CPP, we call a second-best solution
x x* + 2ue for an edge e E E a non-matching-type second-best solution (with
respect to x*).

Now we show a simple property of a matching-type second best-solution of CPP.
It plays an important role in our algorithm when a matching-type second-best so-
lution of (PP exists. Let x* be a matching-type optimal solution of (PP and
x a matching-type second-best solution with respect to x*. Then it is clear that
-1 <_ xn(e)- x*(e) _< 1 for any e W. Denote by G(x*,x) a graph induced by
the edge subset (e E Ixnd(e) x*(e) 0. For each vertex v V,

is even, and it implies that

ee(v)

ee(v)

is also even.
Therefore, the graph G(x*,x) satisfies the requirement that the number of

edges incident with each vertex be even, i.e., that it be Eulerian.
Now we have the following lemma.
LEMMA 2.6. Let x* be a matching-type optimal solution of CPP. Assume that

there exists a matching-type second-best solution with respect to x*. Then we can con-
struct a matching-type second-best solution x such that the graph G(x*, x) consists

of a single elementary cycle.
Proof. From the assumption, there exists a matching-type second-best solution

x’ with respect to x*. The case that G(x*, x) consists of exactly one elementary
cycle is trivial. If not, the graph G(x*, x) contains at least two elementary cycles
since G(x*, x) is Eulerian. Let C c_ E be one of such cycles. Let

d(e) { 1 if e e C and x*(e) a(e),
1 if e e C and x* (e) a(e) + l,
0 ife C,
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and x’-x*+ d. From the definitions of G(x*,x
min{x* (e), x2nd(e)}

_
X (e)

_
max{x* (e), x2d(e)}

_
b(e) for any e E E. Then,

it is clear that ’ is also feasible to CPP. Obviously wd >_ 0 since if wd < 0 then
wx ww* / wd < ww*, which leads to a contradiction. If wd O, then ww wx*
and we can choose x as a second-best solution. By the definition of x, it is clear
that G(x*, x’) consists of one elementary cycle. Now consider the case wd > 0. Let
x" xd d. Then x" is feasible to CPP and wx" wxEd wd < wxd. Since
x" x*, this is a contradiction.

The above lemma leads to an algorithm for finding a matching-type second-best
solution, if it exists.

3. An algorithm for finding a second-best solution of CPP. In this sec-
tion, we describe an algorithm for finding a second-best solution of CPP.

Given a matching-type optimal solution x*, we define a weight function on E
as:

.(e),
+

Denote by C any elementary cycle in G. For a matching-type solution x, let x/ C
be the integer vector in Z such that"

x(e)+l ifeeC
xAC(e)= x(e)-I ifeeC

x(e) if e C.

and x,(e) a(e),
and x,(e) a(e) + 1,

P(G, x* the problem

P(G,x*) minimize E (e),
eEC

subject to C C.

An elementary cycle C* obtained by solving P(G,x*) is called a minimum ele-
mentary cycle; then x*/ C* is a matching-type second-best solution of CPP. Here,
from Theorem 2.5, we can develop the following algorithm that finds a second-best
solution with respect to a matching-type optimal solution x*.

ALGORITHM 2-BEST.
Inputs: Graph G (V, E), weight function w, lower bound a, upper bound b,

vertex subset V1, and a matching-type optimal CPP solution x*.
Output: A second-best solution xnd, if it exists; and else say "none exist".
Step 1. Define a weight function on E as:

o(e) { w(e) if x* (e) a(e),
-w(e) if x* (e) a(e) + 1.

Step 2.1 Solve P(G, x*) and obtain a minimum elementary cycle C* c_ E’.
If a minimum elementary cycle exists, set Wc. -]Ec* (e); else, set

It is clear that x/ C is also a matching type. If a matching-type second-best
solution exists, then according to Lemma 2.6, we can construct one by finding an
elementary cycle C c_ E (e E la(e + 1 <_ b(e)} that minimizes -]eec (e).
Let ( be the set of elementary cycles in the graph G’-- (V, E). Now we denote by
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Step 2.2 Find an edge e* e E" {e’ e E *(e’)+ 2 _< b(e’)} such that
w(e*) min

e’ E"
If E" , set We. 2w(e*); else, set We* .

Step 3. In the ce that We. W. , then say "none exist" and stop.
If We. We., then set d . + 2Ue*; otherwise, set d * A C*.
Output d and stop.

To show the computational effort of the above algorithm, let n IVI and m IEI.
In Step 2, the problem P(G, *) can be solved in polynomial time since the problem
finding a minimum elementary cycle on a graph without negative cycle is reduced to
the minimum-cost perfect matching problem (for details, see Lawler [10, 6.2]). In
the above algorithm, we already have a minimum-cost perfect matching. Hence, it is
sufficient to apply a post-optimal algorithm for non-bipartite matching problems [1],
[3], [4] in Step 2. The computational effort required in other steps is less than O(n+m).
The overall complexity of the above algorithm is O(m + n / nT(n + m, m)), where
T(s,t) denotes the time complexity of a post-optimal algorithm for non-bipartite
matching problems on a graph with s vertices and t edges.

4. An extension of the algorithm to K-best CPP. In this section, we de-
velop an algorithm that finds K-best solutions of CPP. Our algorithm is based upon
the binary partitioning method, which is used in [2] and [7] for solving some K-best
problems. More precisely, we partition all the feasible solutions of the given CPP
into two subsets iteratively. Such a partition is realized by constructing two CPPs.

For the convenience, the problem CPP with graph G, weight function w, lower
and upper bound a, b, and vertex subset V1 is denoted by CPP(G, w, a, b, V1). We
assume that an optimal solution * and a second-best solution =nd of CPP(G, w, a,
b, V1) are obtained.

Since * =nd, there exists an edge e e E such that *(e) - nd(e). With
respect to the edge e, we define the two integer vectors a’, b’ indexed by E as:

a’ (e’) min{a * (e), (e)} + 1,
if e’ e,
if e’ e,

b(e’),b’(e’) mill{a, (e), a2nd (e) },
if e’ = e,
if e’ e.

In our algorithm, two problems OPP(G, w, a, b’, V1) and CPP(G, w, a’, b, V1) are
constructed and maintained. Then it is clear that each feasible solution of the original
problem CPP(G, w, a, b, V1) is feasible to exactly one of two problems
CPP(G, w, a, b’, V1) and CPP(G, w, a’, b, V1). In addition, when the solution *
is feasible to one of these two problems, then is feasible to another one. Here
we denote these two problems by CPP(G, w, al, bl, V1) and CPP(G, w, a2, 52, V1 ),
and we may assume that * is feasible to CPP(G,W, al,bl,V1) and 2. is fea-
sible to CPP(G,w, a2, b2, V1) without loss of generality. From the definition of
these two problems, it is obvious that * is a matching-type optimal solution of
CPP(G, w, al, bl, V1) and is a matching-type optimal solution of CPP(G, w, a2,

b2, Yl). Thus, the conditions of Theorem 2.5 are maintained and Algorithm 2-Best
finds second-best solutions of these two problems, respectively.

By using the best first search rule, the following algorithm is applied.
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ALGORITHM K-BEST.
Inputs: Graph G (V, E), weight function w, lower bound a, upper bound b,

vertex subset V1, and positive integer K.
Outputs: Sequence of K distinct solutions xl,x2,...,xK feasible to

CPP(G, w, a, b, V1) such that wx <_ wx2 <_ <_ ilOX
K

__
lll)X for any fea-

sible solution x : x1, x2,..., xK, if it exists; else say "none exist".
Step 0. Solve CPP(G, w, a, b, V1) and find a matching-type best solution x*.

Find a second-best solution x2nd of CPP(G, w, a, b, V1) with respect to x*.
Set 7)- ((C,PP(G, w,a,b, Vi),x*,:r2’d)}.
Output x* as xl (a best solution).
Set k- 2.

Step 1. If k > K, then stop:Else if 7 q}, then say "none exist" and stop.
Step 2. Let (CPP(G, w, 5, b, V),x*, xn) be an element of :P such that

,IIwx’ min(wx" (CPP(G, w, a’, b’, V1), x’, :P}.

Output x as xk (a kth-best solution).
Delete (CPP(G, w, , b, V1 ),x*, x from 7).

Step 3. Construct two problems

CPP(G, w, a, b, V1) and CPP(G, w, a2, b2, V1).

Step 4.1. Find a second-best solution x’ of CPP(G, w,
If no second-best solution exists, then go to Step 4.2.
Else, add (CPP(G, w, al, 51, V1), x*,

Step 4.2. Find a second-best solution x" of CPP(G, w, a2, b2, V1).
If no second-best solution exists, then go to Step 5.
Else add (CPP(G, w, a2, 52, V1), xd,

Step 5. Set k k + 1, and go to Step 1.

Now we discuss the memory requirement and the time complexity of the above
algorithm.

In each iteration, we delete one CPP from the set of problems :P and add at most
two CPPs to 7); i.e., the number of problems in the set P increases by at most 1.
Hence, the memory requirement of the algorithm is less than O(K(n -}- m)).

By applying Edmonds’s technique in [5], the ordinary Chinese postman problem
is reduced to a non-bipartite matching problem and we can obtain a matching-type
optimal solution of CPP(G, w,a,b, V) in polynomial time [1], [3], [4]. Here we
denote the computational efforts required to obtain a matching-type optimal solution
in Step 1 by S(n, m). In 3, we described an O(m + n + nT(n + m, m)) algorithm for
solving a 2-best CPP, where T(s, t) denotes the time complexity of a post-optimal
algorithm for non-bipartite matching problems defined on a graph with s vertices
and t edges [1], [3], [4]. Since the number of problems in the set P is bounded by
O(K), we can find a triplet (CPP(G, w, , b, V1), x*,x) and delete it from 7 in
Step 2 in O(n + m + log K) time. Two triplets are added in Steps 4.1 and 4.2 with
O(n + m + log K) computational efforts, by using a comfortable data structure. The
above algorithm outputs one solution and solves two 2-best CPPs in each iteration.
Thus overall time complexity is O(S(n, m) - K(n - m - log K + nT(n + m, m))).

5. Conclusion. In this paper, we treat the 2-best Chinese postman problem that
finds a second-best solution of the problem. We also consider the K-best solutions
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of the problem as an extension of the 2-best problem. We developed an algorithm to
solve the problem.
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GENERATING FENCHEL CUTTING PLANES FOR KNAPSACK
POLYHEDRA*

E. A. BOYDt

Abstract. The author recently proposed a class of cutting planes for integer programs called
Fenchel cuts which distinguish themselves from more conventional cuts in that they are generated by
directly seeking to solve the separation problem rather than by using explicit knowledge of the poly-
hedral structure of the integer program. An algorithm for generating Fenchel cuts is presented and
described in detail for the separation problem associated with knapsack polyhedra. Computational
results are presented for a collection of real-world integer programs to demonstrate the effectiveness
of the cutting planes.

Key words, cutting planes, integer programming, knapsack polyhedron

AMS subject classification. 52B12

1. Introduction. In a 1983 paper [6], Crowder, Johnson, and Padberg demon-
strated the effectiveness of using strong cutting planes to solve integer programs.
They were able to solve all but one of a collection of integer programs to optimality in
under 15 minutes even though "most [of the problems] were originally considered not
amenable to exact solution in economically feasible computation times" ([6, p. 828]).
The largest, most difficult problem required only slightly less than an hour to solve.
Their work sparked renewed interest in the possibility of solving large integer pro-
grams with no special structure to optimality.

While the work by Crowder, Johnson, and Padberg represents an important suc-
cess story, successful research on cutting plane methods extends far beyond this single
work. Phenomenal computational results have also been achieved on a number of im-
portant specialized problem classes using cutting planes..Early work by GrStschel [11],
Padberg and Rinaldi [20], and others led to the solution of much larger traveling sales-
man problems than had ever been solved previously and ongoing work on this prob-
lem continues to yield substantial performance improvements. Cutting plane methods
have even begun to find their way into publicly available general purpose algorithms
such as IBM’s OSL and Georgia Tech’s MINTO [22], [23].

The most fundamental problem arising in the use of cutting planes to solve integer
programs is the separation problem--the problem of finding an inequality that is
valid for the polyhedron defined by the convex hull of all feasible integer points but
that is violated by the optimal solution to the linear programming relaxation of the
problem. Commonly, separation algorithms are devised for known classes of valid
inequalities with good theoretical characteristics, usually facet classes. In practice,
good separation algorithms are far more scarce than known classes of cutting planes
and in general they appear to be more elusive.

We recently proposed a class of cutting planes called Fenchel cuts which differ
from more conventional cutting planes in that they focus directly on the separation
problem without reference to an underlying class of cutting planes. Fenchel cuts are
generated by maximizing a piecewise linear concave function v(A), with cutting planes
corresponding to values of A for which v(A) > 0. It can be shown that Fenchel cuts
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are the deepest cuts that can be generated for a problem in a well-defined sense and
that if the maximum value of v(A) is nonpositive then no cutting plane exists. Fenchel
cuts and their relation to another class of cutting planes associated with Lagrangian
relaxation are described in [3].

In this paper we present an algorithm for generating Fenchel cutting planes for
knapsack polyhedra. The algorithm can be applied to general integer programs by
using cutting planes generated from the knapsack polyhedra associated with each
individual constraint of an integer program. The computational value of an exact
separation algorithm is then demonstrated by provably optimizing a linear function
over the intersection of the knapsack polyhedra defined by the constraints of the
integer programs used by Crowder, Johnson, and Padberg in [6], a result that has not
been achieved prior to this paper.

2. Fenchel cuts. Theoretical aspects of Fenchel cuts are developed in [3] and [5].
In this section, we outline sufficient theory for the developments presented in this
paper.

Consider the following problem.

max cx
s.t. Qx q,

Rx <_ r,(P) Ax a,
Bx <_ b,
x integer.

Let F (x Ax a, Bx <_ b, x integer} and let PF denote the convex hull of F. We
assume for simplicity of exposition that 7)F is bounded. Further, let be feasible for
the constraints of (P) with the exception of the integrality restriction. Conceptually,
& can be thought of as a point generated by solving the linear programming relaxation
of (P). The cut generation procedure to be described seeks an inequality that is not
satisfied by & but that contains :PF and therefore the feasible region of (P).

As but one example, F might be defined by upper and lower bound constraints
on the variables together with a single constraint taken from the original problem
(e). This collection of relaxations F, one defined by each row of (P), is exactly the
collection of relaxations used by Crowder, Johnson, and Padberg in [6].

Let the rows of D span the nullspace of A. We define f(A) and v(A) as follows.

f(A) max{ADx x E F},
v(A) XD&- f(A).

The following is proved in [3].
THEOREM 2.1. There exists a value for which v(A) > 0 if and only if there

exists a hyperplane )tDx < f(A) separating from 7F.
The practical implication of Theorem 2.1 is that the question of whether or not

there exists a cutting plane separating & from OF can be answered by investigating
whether or not the function v(A) achieves a positive value. For any fixed value of )

the inequality

ADx 4_

is valid for PF, and this inequality separates 7F from if and only if v($) > O. Due
to connections with Fenchel duality such cuts were deemed Fenchel cuts.
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The following theorem, also proved in [3], makes note of important theoretical
properties that simplify finding values of A for which v(A) > 0.

THEOREM 2.2. The function v(A) is piecewise linear and concave. Specifically,
v(ik) can be expressed as

v() min{D- Dx x e

where E(:PF) is the set of extreme points of
From the definition of v(A) we have the following observation.
OBSERVATION 1. For any scalar w > O, v(w)) -wv()).
The immediate implication of this observation is that if v(A) achieves a positive

value it achieves a positive value on any full-dimensional set containing the origin in
its strict interior. In fact, it is not difficult to verify the following observation.

OBSERVATION 2. v(A)/llADII is the distance from c to the plane ADx
when )D

_
f(A) separates and PF, and the negative of this distance when it does

not.
Thus, solving the maximization problem

max v())
s.t. eh={" I[Dl[_<l}

generates the deepest cut separating a point 2 from :PF. In practice, it is easier to
attempt to maximize v(A) on a linearly defined domain h {A PA _< p}. Fur-
ther, through the appropriate choice of domain it is possible to affect the polyhedral
characteristics of the generated cut. By Theorem 2.2, it follows that the problem
of maximizing v(A) on a linearly defined domain can be solved by introducing the
variable z and solving the following linear program.

max z
(G) s.t. z <_ AD&- ADx, x E(PF),

A A {A" PA _< p}.

Given an optimal solution [A,] to (G), A maximizes v(A) on the domain A {A"
PA _< p} and has value v(A) . This particular formulation for the problem of
maximizing v(A) will be studied in the following sections.

In summary, Fenchel cuts are generated by seeking to maximize the function v(A)
on any domain that is full dimensional and contains the origin in its strict interior.
Any value of A with v(A) > 0 corresponds to a cutting plane, and if the maximum
value of v(A) is zero then this represents a proof that there exists no cutting plane
separating from

The way in which Fenchel cuts are generated is fundamentally different from the
way in which most cutting planes are generated, and as such they provide unique the-
oretical and computational possibilities. Most cutting planes are derived from classes
of theoretically studied facets for given problems and the effectiveness of these cut-
ting planes is governed by the existence of good separation algorithms for generating
violated cuts. In contrast, separation is the essence of Fenchel cuts.

3. Fenchel cuts for knapsack polyhedra. While Fenchel cuts are broadly
applicable, if they are to prove effective in practice it must be possible to quickly
maximize or nearly maximize v() since cutting plane routines are normally called
many times in the course of algorithms for solving integer programs. Thus, it becomes
necessary to discuss the application of Fenchel cuts to a specific class of polyhedra. In
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this paper, we focus on the problem of generating Fenchel cuts for knapsack polyhedra,
formally defined as

7 conv(x nix <_ bi, 0 <_ x <_ 1, x integer},

where a and x are n-vectors. For simplicity of exposition we assume that a > 0 since
this is easily achieved by complementing variables. In the following two sections we
describe how to efficiently generate Fenchel cuts for knapsack polyhedra.

3.1. Domain restrictions. One very important way in which maximizing v(A)
can be accelerated is through a more thorough analysis of the domain on which maxi-
mization actually occurs. As noted in Observation 2, maximizing v(A) on the domain

IIADII _< 1 has the attractive theoretical property of generating a hyperplane for :P
that is as deep as possible in a well-defined sense. Further, if the rows of D are chosen
so that they are orthonormal the domain IIADII _< 1 reduces to the simple domain
I]A]I _< 1. Nonetheless, the nonlinearity is unattractive for obvious reasons, especially
when Observation 1 presents the opportunity of choosing a linearly defined domain.
From the standpoint of implementation, two natural alternative choices for the do-
main A are the L unit sphere and the L unit sphere, and a strong theoretical case
for these domains is made in [5].

The key to accelerating cut generation, however, comes from domain restrictions
which can substantially reduce the dimension of the space in which v(A) must be
maximized. The following theorem demonstrates how the domain can be restricted
for the specific polyhedron :P while still guaranteeing the generation of a cutting
plane if one exists.

THEOREM 3.1. Let v() be defined by , assume >_ O, and let D I. Then
the following are true.

1. There exists a >_ 0 which maximizes v(A) on the domain I111 <_ 1.
2. If &j 0 then there exists a ) with ) 0 which maximizes v()) on the

domain I111 <_ 1.
3. If &j 1 and there exists a value of ) for which v()) > 0 then there

exists a value of with for which v(A) > 0 on the domain II)11 <_ 1.

Proof. (1) Since all of the coefficients in the knapsack constraint defining the
polyhedron :P are positive by assumption, if y E :P then for any x _> 0, x _< y, it
follows that x E P. Suppose maximizes v(A) on the domain I111 _< 1 but that
A-j < 0 for some_ index_ j. Let 5 :P be a maximizing value of x associated with
; that is, f(A) 5. If 5j > 0 then-’xj P obtained from by setting x 0
has 5 > AS; that is, 5 cannot be a maximizing value of x associated with A. Thus,
assume x 0 and consider formed from by setting A-- 0. Clearly, 5 must

be a maximizing value of x associated with as well as with A. If not, then there
exists an P such that > 5, and letting :P be with 0 it follows
that > -; that is, is not a maximizing value of x for . Thus,
v() & A- _< ’& ’ v(’). Using this technique to eliminate any Aj < 0
it follows that there exists a value of >_ 0 which maximizes v(A) on the domain

(2) Let >_ 0 maximize v(A) on the domain IIAII _< 1, let 5 e :P be a maximizing
value of x associated with A, and assume &j 0 but Aj > 0. Let be A with Aj 0.

Since x _< A- is valid for :P and since _> 0 it follows that x _< 5 is valid for all
x P, although it may not be a face ofP. Letting 5 :PF be a maximizing value of



738 E.A. BOYD

x for ’ it follows from the validity of’x <_ 5 that ’’ _< 5. Clearly, since& ’&
under the assumption that &j 0, it follows that v() &-A-- <_ ’&-’5’ v(’).
Using this technique to eliminate any Aj > 0 when 0 it follows that if & 0
then there exists a A with Aj 0 which maximizes v(A) on the domain IIAII <_ 1.

(3) Let A _> 0 maximize v(A) on the domain IIAII _< 1, assume that v(A) > 0,
and let 5 E /) be a maximizing value of x associated with . Further, suppose
&i --j 1 but Ai Aj, and assume without loss of generality that Ai > Aj.
Let ’ be with Aj Ai and let E :P be a maximizing value of x associated

with ’. Clearly, ’& & 4-(’j A--)&j & 4- A-’j A-- since &j 1. Similarly,

’5’ A--’ 4- (’ )5 <_ 5’ 4- A-’ j <_ 5 4- A-’j where the first inequality
follows from the fact that -’xj_< 1 and the second inequality follows from the definition

of. Thus, v(’) ’-’’ >_ (&4-A-’ A)- (A-4-A-’j -) &- v() > 0.

While v(’) > 0, it is not necessarily true that ll ’ll < 1. However, multiplying

’ by 1/11’]1 it follows from Observation 1 that v(’/ll’ll > 0 while I1(-’/11’11)11
-lo [:l

In point of fact, Theorem 3.1 is true when IIAII _< 1 is replaced by the interior of
the unit sphere of an arbitrary norm, but we do not dwell upon this point. Instead,
we note that an immediate corollary of this theorem is that for any full-dimensional
set A containing the origin in its strict interior a slightly weaker version of the above
theorem remains true; namely, if there exists a value of A for which v(A) > 0 then it is
always possible to find a value of A for which v(A) > 0 under the domain restrictions
of Theorem 3.1, although not necessarily a value that maximizes v(A) on A. The proof
follows by simply taking a value of A satisfying the domain restrictions of Theorem 3.1
and scaling it so that it is contained in A. By Observation 1, it follows that if v(A) > 0
then the scaled value of also has a positive value. We state this corollary in an
equivalent but computationally more suggestive form.

COROLLARY 3.2. Let v(A) be defined by T), assume >_ O, and let D I.
Further, let A be any full-dimensional set containing the origin in its strict interior,
let So be the set of indices for which O, and let $1 be the set of indices for which

1 with k SI some fixed index. If there exists a value of A for which v(A) > 0
then there exists a value of A A for which v(A) > O, where

A=(A" AA
AO
A 0
A Ak

The ability to restrict some values of A has an extremely important impact on
finding values of A for which v(A) > 0, as will be seen in the section on computational
results. In practice, when & is a subvector of a solution to a larger linear program,
many of the &i are either 0 or 1. By Corollary 3.2 the search space can have its
dimension reduced by one for each variable &i 0 and by one for each variable &i 1
other than i k and still be guaranteed of finding a value of A for which v(A) > 0
if one exists. This reduction of dimension translates into reduced time to maximize

The restriction A >_ 0 has the side effect of greatly simplifying how the L unit
sphere can be represented. Together with the constraints A _> 0 the L1 unit sphere can
simply be represented by the constraint -in__ Ai _< 1 since all remaining constraints
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become redundant. As a computational convenience, we consider A defined as

A= ,- ,<_, ,<_1
i=1

where is any constant satisfying 0 < / <_ n. In the presence of the constraints, >_ 0, if 1 the domain A corresponds to the L unit sphere intersected with
the nonnegative orthant, while if n the domain A corresponds to he L unit
sphere intersected wih the nonnegaive orthant. We use this set A ogether with he
additional domain restrictions outlined in Theorem 3.1 in the computational results
presented later in this paper.

g.2. Maxm.ng v(,). Before embarking upon a discussion of an algorithm for
maximizing v(,) for knapsack polyhedra 7, i is useful to address the problem of
maximizing v(,X) for a general polyhedron PF. The piecewise linear concavity of v()),
together with the ability to choose a convex domain, provide necessary theoretical
properties for maximi.ing v()). In addition, as with the maximization of Lagrangian
dual functions, it is possible to prove that a subgradient of v() is generated whenever
a value of v()) is calculated. It is therefore possible to seek to maximize v(,) using
subgradient techniques, generali.ed programming, or other well-established nondiffer-
entiable opgimiation techniques. In practice, however, subgradient echniques and
generali.ed programming very commonly demonstrate extremely poor convergence.
Often this convergence is sufficiently bad to render these methods effectively use-
less. (The ineffectiveness of these methods is discussed in 4 and serves as a primary
motivation for the work described in this paper.)

The practical motivation for the use of subgradient techniques and generali.ed
programming is that they require only an oracle that for any value of , returns
v(A) and an associated extreme point x of F defining v(A). An algorithm for
optimizing a linear function on :PF serves this purpose. However, when it is possible
to parametrically optimize a linear function on 7F, this stronger oracle makes it
possible to develop a more efficient algorithm for maximizing v(A) than algorithms
based on subgradient techniques or generalized programming.

Formally, we address the problem of maximizing v(A) by developing an algorithm
for solving the problem (G) (introduced in 2) which makes use of the following oracle.
For purposes of exposition we refer to the constraints PA _< p as the A constraints
and all the remaining constraints as the X constraints.

Problem FPARAM. Let [A, ] be a feasible vector for (G), let Sx be a subset of the
X constraints satisfied at equality by [A, ], and let SA be a subset of the A constraints
satisfied at equality by [A, ]. Given a direction [d, 1] such that [A, ] + Old, 1] satisfies
all of the constraints Sx and SA for all >_ 0, find the largest value of such that
[, ] / [d, 1] does not violate any of the constraints in (G), and a constraint that is
violated for > .

An algorithm for maximizing v(A) that makes use of an oracle for solving Prob-
lem FPARAM is presented in Fig. 1. This algorithm is fundamentally an active set
method, and although it is not immediately apparent, it is identical to the primal
simplex algorithm if [A, ] is initially an extreme point of the polyhedron defined by
(G) and if the choice of the ascent direction in step 2 is limited to edges of this polyhe-
dron. A detailed description of this algorithm using the primal simplex interpretation
can be used to formally establish that the procedure maximizes v(A) after a finite
number of iterations. As described, the algorithm is somewhat more flexible than the
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1. Initialize. Choose a vector [A, 3] feasible for (G), a subset Sx of the X constraints satisfied
at equality by [A, ], and a subset SA of the A constraints satisfied at equality by [,k, ].

2. Choose an ascent direction [d, 1] such that [A, 3] -+- 8[d, 1] satisfies all of the constraints Sx
and SA for all 8 >_ 0. If no such direction exists, stop; [,k, 3] is optimal for (G).

3. Solve Problem FPARAM for and let [, 3] [, 3] + [d, 1]. Include the constraint that
defined in the appropriate set Sx or SA and remove from Sx and SA those constraints that are
not satisfied at equality by the new [A, 3]. Go to step 2.

FIG. 1. Algorithm to maximize v(A).

primal simplex algorithm and instead of dwelling upon this interpretation we choose
simply to make some instructive observations about the algorithm.

The termination criterion given in step 2 follows from the fact that the candidate
solution [A, ] is feasible for (G) and satisfies optimality conditions for a relaxation of
(G). The direction [d, 1] chosen in step 2 is an ascent direction for the relaxation of
(G) defined by the constraints Sx and SA, but may not be a true ascent direction
for (G). Specifically, there may be X or A constraints that are candidates to be in
the sets Sx and SA that are not in these sets, so that any positive step length moves
outside the feasible region of (G). The algorithm for solving Problem FPARAM in
step 3 answers the question of how long a step may be taken in the direction [d, 1]
without violating any of the constraints in (G). As just noted, this step length may
be 0. The algorithm presented in Fig. 1 can thus be seen to be an ascent algorithm
which makes use of an oracle for generating step length.

Clearly, a good algorithm for solving Problem FPARAM will not generally exist
for an arbitrary subproblem polyhedron 7)F. However, as a general observation, the
ability to optimize a linear function on :PF is indicative of a subproblem structure
that will allow the Problem FPARAM to be solved as well. This is the case for the
knapsack polyhedron, and the remainder of this section examines an instance of the
algorithm presented in Fig. 1 as applied to this polyhedron.

Using the domain A described in the previous section together with the constraints
A > 0, the problem (G) becomes

max z
s.t. z- A(D&- Dxi) <_ O, x E E(PF),

n <-
o<),<1,

where is any constant satisfying 0 < / <_ n.
include the constraints

In actuality, when solving (G) we

Aj=0, jES0={j" &j=0},
Aj=Ak, jeSl={j" &=l}, kS1,

since this was the entire point of the previous section. However, we ignore these
constraints for the purposes of describing the algorithm for solving (G) since they
complicate the description but add nothing conceptual; the algorithm is simply per-
formed as stated in the subspace defined by these additional equalities.

nIt will prove useful in the following discussion to refer to the constraint =1 A <:
as the/3 constraint, keeping in mind that this constraint and the variable bounds

jointly comprise what are referred to as the A constraints. We describe the algorithm
for solving (G) by describing each of the three steps outlined in Fig. 1.
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Implementation of step 1. The initial value of A is chosen so that it satisfies
the constraint and the bounds on ). The value is initialized to v(A), and Sx
is initialized so that it contains some X constraint defining v(A). Throughout the
algorithm, the ascent direction is always chosen so that the condition v()) is
maintained. SA is initialized to the empty set.

Implementation of step 2. Conceptually, step 2 can be performed by solving the
following linear program.

(H) max z
s.t. Sx and SA.

Since [A, ] satisfies all of the Sx and SA constraints at equality by the operation of
the algorithm to maximize v(A), by Farkas’s lemma either [A,] is optimal for (H)
(and therefore (G)) or there exists a direction [d, 1] such that [A,] + Old, 1] satisfies
all of the constraints Sx and SA for all 0 _> 0. In practice, the need to invoke a linear
program solver to solve (H) each time step 2 is performed is alleviated by maintaining
sets Sx and SA such that together they contain a collection of at most n+ 1 constraints
with linearly independent normals. Recall that A E IRn so that (G) is a problem in
In-I-1.

The importance of this condition is that it provides an easy way to determine if
a direction of ascent relative to the constraints in Sx and SA exists at [A, ], and it
is an easy condition to maintain throughout the algorithm. Conceptually, if there are
less than n + 1 constraints, then if an ascent direction exists one can be found in the
nullspace of the matrix comprised of the gradients of the Sx and SA constraints. In
this case, the constraint returned from a solution of Problem FPARAM in step 3 is
simply included in the appropriate set Sx or SA. Linear independence of the new
sets Sx and SA is guaranteed by the choice of ascent direction from the nullspace
of the initial constraints and the definition of Problem FPARAM. If there are n + 1
constraints then if an ascent direction exists, one of the directions defined by the
nullspace of some subset of n constraints is an ascent direction. In this case, the
constraint returned from a solution of Problem FPARAM in step 3 is again included
in the appropriate set Sx or SA, but in addition the constraint that is not included in
defining the direction of ascent is removed from these sets. Again, linear independence
of the new sets Sx and SA is guaranteed by the choice of ascent direction and the
definition of Problem FPARAM.

In summary, given the stated properties on Sx and SA, step 2 of the algorithm
can be completed quite efficiently. In effect, one pivot is required to prove that [, ]
is optimal or to find a direction of ascent relative to the constraints in Sx and SA. Of
course, while this approach overcomes a potentially long sequence of pivots each time
step 2 is performed, if the point [A, ] is highly degenerate in (G) then a potentially long
sequence of steps 2 and 3 combined could occur in which a value of 0 is returned
from step 3. In fact, without taking appropriate measures step 2 could encounter the
same sets Sx and SA encountered previously. This possibility is discussed further in

4.
Implementation of step 3. Before discussing the algorithm for solving Problem

FPARAM it is useful to consider the simpler problem of maximizing a linear function
on :P. It is well known that optimizing a linear function on P is an NP-complete
problem. It is also well known that this problem can be solved using dynamic pro-
gramming. In the formulation of the dynamic program with defining the linear
function to be maximized, the recursive relation is given by
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if g(j- 1, k) > g(j 1, k- aj) + then
g(j, k) g(j 1, k)
pr(j, k) (j 1, k)

else
a(j, k) a(j k- +
pr(j, k) (j 1, k aj)

where g(j, k) conceptually represents the optimal solution to the problem

s.t. E3=I atxt <_ k,
O<_xt <_l,
xt integer,

and the predecessor array pr(j, k) implicitly defines the x values by

x=0 if pr(j, k) (j l, k)
x 1 if pr(j, k) (j 1, k aj).

The value g(n, bi) is thus the optimal solution value associated with maximizing Ax
on

In general, each stage j of the dynamic program can have as many as bi states
k and thus this dynamic programming formulation is only pseudopolynomial in the
size of the problem it seeks to solve. However, using appropriate data structures it is
not necessary to consider such a large number of states, and in practice the dynamic
programming recursion can be solved very quickly.

The recursive relation presented in Fig. 2 is a modification of the basic dynamic
programming recursion which presents a tie-breaking rule in the presence of a param-
eterizing vector d. An additional array h(j, k) is used which is conceptually defined
so that h(j, k) ’=1 dt5t where the vector 5 [51,..., 5j] is the optimal solution
defined by pr(j, k). The relevance of this array is that g(j, k) g(j, k) + Oh(j, k) over
the range of for which A + Od has the same optimal predecessor array pr(j, k) as
when 0. The array h(j, k) is actually used to calculate this range on , as the
proof of the following theorem demonstrates.

THEOREM 3.3. If the algorithm presented in Fig. 2 is used to maximize Ax on
PiE given a parameterizing vector d, then Omax > 0 and for 0 <_ <_ Omax the optimal
predecessor array pr(j, k) remains optimal when A + Od is maximized on 7.

Proof. Clearly, the recursive relation of Fig. 2 yields an optimal predecessor array
since if g(j 1, k) # g(j 1, k- aj) + Aj the arrays g(j, k) and pr(j, k) are chosen
in exactly the same way as in the unmodified recursive relation, and if g(j 1, k)
g(j 1, k- aj) + Aj then pr(j, k) can be chosen arbitrarily while yielding an optimal
predecessor array.

The optimal predecessor array pr(j, k) remains optimal as long as for each (j, k)
with pr(j, k) (j- 1, k) it is true that

g(j 1, k) + h(j 1, k) >_ g(j 1, k a.i + A + O[h(j 1, k a.i + d.i],
and for each (j, k) with pr(j, k) (j- 1, k- aj) it is true that

g(j 1, k) + Oh(j i, k) <_ g(j 1, k hi) + + O[h(j 1, k aj) + dj].

The value

[g(j 1, k) g(j 1, k aj) %j]/[h(j 1, k aj) + dj h(j 1, k)]



FENCHEL CUTTING PLANES 743

Given:
ma knapsack polyhedron
--a linear function )x to maximize on
--a direction d for parametrically altering

Initialize:
(0, k) 0
h(0, k) 0
r(0, k) =0
0mo,

Recursive Relation:
if g(j 1, k) > g(j 1, k aj) + then

g(j, k) g(j 1, k)
h(j, k) h(j 1, k)
pr(j, k) (j 1, k)
O [g(j 1, k) g(j 1, k aj) Aj]/[h(j 1, k aj) + dj h(j 1, k)]
if 0 > 0 then 0max min(0max, 0}

else if g(j 1, k) < g(j 1, k aj) + Aj then
g(, ) ( ,- a) +
h(j, k) h(j 1, k a - dpr(j,k) (j- 1, k- aj)

[g(j 1, k) g(j 1, k aj) Aj]/[h(j 1, k a) - dj h(j 1, k)]
if > 0 then Omax min(Omax, 0}

else if h(j 1, k) > h(j 1, k aj) -F dj then
g(j, k) g(j 1, k)
h(j, k) h(j 1, k)
pr(j, k) (j 1, k)

else
a(, ) a( , a) +
h(j, k) h(j 1, k aj q- d
pr(j, k) (j 1, k a

FIG. 2. Recursive relation for optimizing () -Od)x on 7F

satisfies these expressions at equality, and it follows that in either case the largest
that can be made without violating the appropriate inequality is if > 0 and oc
if < 0. When g(j 1, k) y g(j 1, k- aj) q- it is not possible for to be 0 so
the maximum allowable increase in must be strictly positive in each case. When
g(j 1, k) g(j 1, k- hi) + the expressions reduce to

Oh(j- 1, k) _> O[h(j- 1, k- a) / d]
and

Oh(j 1, k) <_ O[h(j 1, k- aj) - dj].

Alternatively stated, when g(j 1, k) g(j 1, k- aj) + then the optimal prede-
cessor array pr(j, k) remains optimal for any _> 0 if and only if for each (j, k) with
pr(j, k) (j- 1, k) it is true that

h(j 1, k) >_ h(j 1, k hi) + dj,

and for each (j, k) with pr(j, k) (j- 1, k- aj) it is true that

h(j 1, k) <_ h(j 1, k- a) + dj.

It can be seen that when g(j 1, k) g(j 1, k- aj) + the modified recursive
relation of Fig. 2 chooses the predecessor of (j, k) to satisfy these last conditions and
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that 0max > 0 represents the maximum allowable increase in 0 defined by pairs (j, k)
for which g(j 1, k) g(j 1, k- aj) - )U" The desired result follows, v!

The importance of Theorem 3.3 is that it can be used to show how the recursive
relation presented in Fig. 2 solves Problem FPARAM.

THEOREM 3.4. Problem FPARAM associated with TF can be solved using at
most a finite number of evaluations of the recursive relation presented in Fig. 2.

Proof. Consider the X constraint z

_
A(&- 5) where 5 maximizes x on 7

and is determined by applying the recursive relation presented in Fig. 2. Clearly, this
constraint is a candidate to be in the set Sx associated with the point [A, ] since

v(A) A(& 5) is maintained throughout the course of the algorithm. It can be
determined if [, ] -t- 0max[d, 1] satisfies this constraint by determining if + 0max

_
( + Omd)(& 5) v( + 0maxd). If not, that is, if + Omax > v( - 0maxd), then
since [A, ] + 0max[d, 1] satisfies all of the Sx constraints for all _> 0 by assumption it
follows that the X constraint associated with 5 is not in Sx and therefore the value

0, together with this X constraint, represent a solution to Problem FPARAM.
Thus, suppose + 0ma

_
V(. + 8maxd) SO that [A, ] + 8[d, 1] satisfies all of the

X constraints for 0 <_ 0 <_ 0mx. Let 0imax be the largest value of 0 _> 0 such that+Od
satisfies all of the A constraints. All of the constraints in SA must be satisfied for any
0 _> 0 by assumption and thus 0imax can be determined by finding when A + Od first
violates each of the remaining constraints and taking the minimum of these values.

AIf 0ma _< 0max then 0 0hmax, together with the A constraint that defined 0maxA,
represent a solution to Problem FPARAM.

Thus, suppose that 0maxA > 0max and let =-A + 0maxd. By Theorem 3.3 there

+Odexists a 0ma > 0 such that the predecessor array pr(j, k) remains optimal when
is maximized on P and so the process just described can be repeated using this new
value of/k. Finite termination of the procedure is ensured by recognizing that 0max is

chosen so that applying the recursive relation at corresponds to a nondegenerate
parametric simplex pivot. D

4. Computational results. The algorithm described in the previous section
was tested by applying it to the collection of 0/1 integer programs studied by Crowder,
Johnson, and Padberg in [6]. A summary of these problems is shown in Table 1.
Problems from this test set were chosen for a number of reasons. First, they represent a
collection of real-world problems and thus exhibit characteristics that are not generally
exhibited by randomly generated problems. Second, the problems have been solved
to optimality and thus it is possible to measure how much of the gap has been closed
between the optimal value of the original integer program and its linear programming
relaxation. Finally, the problems are rapidly becoming a standard test set of integer
programs. Crowder, Johnson, and Padberg argued that under the assumption that
an integer program was sparse the polyhedron 7) defined by the convex hull of feasible
integer points often would be reasonably well approximated by im= :p. This claim
was strongly supported by their computational results.

The algorithm in which the cut generation algorithm of the previous section was
embedded proceeded as follows. The linear programming relaxation of a given integer
program was first solved to obtain an optimal solution &. A pass was then made
through the constraints, during which a Fenchel cut was sought for each of the sub-
problem polyhedra P. Any Fenchel cuts that were found were then appended to the
original problem formulation and the process was repeated. On subsequent passes not
every polyhedron/) was examined for a Fenchel cut since some of these polyhedra
were clearly not defining active constraints near the optimal solution. However, in
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TABLE 1
Summary of problems.

Name
P0033
P0040
P0201
P0282
P0291
P0548
P2756

Variables Constraints Nonzeros VLp rip

33
40

201
282
291
548

2756

15
23
133
241
252
176
755

98
110

1923
1966
2031
1711
8937

2520.6
61796.5
6875.0

176867.5
1705.1
315.3

2688.7

TABLE 2
Cut summary using generalized programming.

Name
P0033
P0040
P0201
P0282
P0291
P0548
P2756

AGapl.O

27.03%
89.36%
74.83%
51.27%
2.47%

AGap2.0

33.78%
94.39%
76.91%
75.00%
3.00%

AGap3.0

96.14%
95.24%
82.81%
3.00%

AGapT

87.42%
100.00%
33.78%
98.59%
99.43%
84.34%
86.16%

3089.0
62027.0
7615.0

258411.0
5223.8
8691.0
3124.0

tminutes on an IBM RISC Station 550

vp Tt Cuts
3017.50 .14 53

62027.00 .01 4
7125.00 2.88 30

257261.97 20.70 466
5203.87 16.70 142
7379.28 4.16 320
3063.75 22.05 509

every problem except problem P2756 the algorithm did not terminate until a pass
had been made in which it was demonstrated that no cutting plane existed for any
polyhedron/). Thus, in these instances the algorithm provided a proof that the
most recently determined optimal solution & for the linear programming relaxation
of the problem was optimal over [i17 Initially it was not clear that this would
be achievable within reasonable computation times, since the polyhedra :P are as-
sociated with NP-complete problems. The algorithm used by Crowder, Johnson, and
Padberg for generating cuts, even if solved exactly rather than heuristically as is done
in [6], does not provide a proof of optimality over [i17

Computational results for the algorithm described above are shown in Tables 2,
3, 4, and 5. Each table corresponds to a different way of solving (G) associated with
cutting plane generation. The basic domain for which all of the results are generated
is

AO
A 0

where So (i" &i O} and

A= A" A_<, 0_<A<_I
i--1

with equal to 0.5 or n 4- 1. The constraints A 0, i E So were included from the
outset since without this restriction the generalized programming algorithm was so
slow that for practical purposes it was incapable of solving (G). The results in Table 2
correspond to solving (G) using generalized programming on the basic domain, while
in Table 3 (G) is solved using the ascent algorithm described in 3.2. The results in
Table 4 correspond to using the ascent algorithm of 3.2 together with the additional
domain restriction that A A whenever & &j 1, as described in 3.1. Finally,
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TABLE 3
Cut summary using ascent algorithm.

Name
P0033
P0040
P0201
P0282
P0291
P0548
P2756

AGapl.O

96.62%
97.37%
82.09%
2.47%

AGap2"0

97.14%
98.87%

3.00%

AGap3.0

97.52%
99.15%

3.00%

AGapT

87.42%
lOO.OO%
33.78%
98.59%
99.43%
84.34%
86.16%

Vp Tt Cuts
3017.50 .04 65

62027.00 .01 4
7125.00 .08 30

257261.97 9.53 524
5203.87 5.63 149
7379.28 1.58 377
3063.75 16.78 483

tminutes on an IBM RISC Station 550

TABLE 4
Cut summary using ascent algorithm with domain restrictions.

Name AGap1"0

P0033
P0040
P0201
P0282 97.06%
P0291 99.27%
P0548
P2756

AGap2.0

97.86%

AGap3.0

98.32%

AGapT

87.42%
100.00%
33.78%
98.59%
99.43%
84.34%
86.16%

vp T Cuts
3017.50 .04 62

62027.00 .01 4
7125.00 .16 54

257261.97 4.61 688
5203.87 1.53 269
7379.28 .51 547
3063.75 .74 621

minutes on an IBM PISC Station 550

TABLE 5
Cut summary using ascent algorithm, domain restrictions, and variable fixing.

Name
P0033
P0040
P0201
P0282
P0291
P0548
P2756

AGapl.O AGap2.0 AGap3.0 AGapT

87.42%’
100.00%
33.78%
98.59%
99.44%
84.34%
86.16%

vp T Cuts
3017.50 .02 54

62027.00 .01 2
7125.00 .31 50

257261.97 .31 371
5204.17 .13 130
7379.28 .55 430
3063.75 .53 432

fminutes on an IBM RISC Station 550

in Table 5 results are given for the same algorithm and domain as in Table 4, but in
addition some very basic variable fixing techniques based on reduced cost information
are also used. While we do not discuss these techniques here, this last table is included
to demonstrate the best times achieved by the author while provably optimizing over

In each of these tables, the column labeled Cuts is the total number of cuts
appended to the problem. The columns labeled AGap1", AGap2", and AGap3"
represent the percentage by which the gap between VLP and rIP Was reduced in
1, 2, and 3 minutes, respectively, with AGapT representing the percentage ’by which
this gap was closed in T minutes, where T is given in the table. In addition, the
column Vp gives the value of the linear programming relaxation after T minutes.
For all of the problems except P2756 the values Vp represent the provably best gap
reduction that can be achieved using only cutting planes associated with the individual
knapsack constraints. This result was not achieved for problem P2756 since two of
the constraints were large enough that v(A) could not be maximized in reasonable
computation times with the existing ascent algorithm. All computational tests were
performed on an IBM RISC Station 550.

As can be seen, the use of the ascent algorithm and the additional domain re-
strictions introduced in Table 4 both had a significant impact on the running time of
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the algorithm. As would be expected, the number of cutting planes found in Tables 2
and 3 are roughly the same, but there is an increase in the number of cutting planes
in Table 4. In spite of this, the running times reported in Table 4 are faster due to
the smaller dimension of the problems being solved to generate these cutting planes.
The reason for the increased number of cuts is that the domain restriction introduced
for the results in Table 4 nullifies any guarantee that a maximizing value of v(A) will
be found on the basic domain and thus that a "deepest" cut will be generated; the
guarantee is only that a positive value of v(A) will be found on the restricted domain
if a positive value of v(A) exists on the basic domain. While domain restrictions are
seemingly innocuous on the surface, if used without care they can lead to very poor
results. In early computational experiments, all Ai with i 1 were set equal to a
fixed constant value, and it can be shown that in doing so a positive value of v(A)
is guaranteed to be found if one exists. However, fixing the value of the A in this
way leads to a very undesirable scaling of the coefficients in the associated cutting
plane, and computational experiments demonstrated that such cutting planes were
very weak. The results in Table 4, however, show that the domain restriction A Aj
when j can be quite effective. These results illustrate the fundamental im-
portance of domain issues, and many theoretical aspects of the choice of domain are
discussed in detail in [5].

One issue that proved to be a significant obstacle to the speed of the ascent
algorithm was degeneracy. Degeneracy expresses itself as a value of 0 returned by the
algorithm for solving Problem FPARAM. Common wisdom is that degeneracy is best
dealt with simply by ignoring it. However, for the functions v(A) associated with the

:P of the test problems this proved to be a very bad idea in some instances. Long
sequences of degenerate pivots were sometimes observed that severely impeded the
progress of the algorithm.

The perturbation method and Bland’s anticycling rule were both considered as
potential ways of overcoming the problem of degeneracy. Beyond the practical inef-
ficiency of these two approaches they both require that the active constraints at the
degenerate vertex be known explicitly and this is not the case for (G). While it is
possible to use these techniques while simultaneously refining the known collection
of active constraints at the vertex, this requires continually adding constraints to the
set Sx returned from the function for solving Problem FPARAM. This works against
the effort to maintain a small set Sx and the correspondingly small amount of work
required to complete step 2 of the algorithm.

To overcome the problem of degeneracy it was decided to choose the steepest edge
in step 2 of the algorithm rather than an arbitrary ascent direction; specifically, the
direction of ascent [d, 1] was chosen as the edge that maximized 1/ll[d 1]1 I. Recent
evidence supporting the practical efficiency of steepest edge pivoting rules can be
found in [2] and [8], and recent theoretical results on the use of steepest edge pivoting
rules to resolve degeneracy can be found in [4]. The computational expense associated
with this approach, of course, is that the edge of ascent associated with each variable of
positive reduced cost must be calculated, and finding each edge entails solving a square
linear system in Sxl variables (ISxl/ 1 if the constraint is included in (H)). If only
reduced cost information is used to choose the entering variable and the associated
edge of ascent, then only one linear system must be solved beyond the system solved
to calculate the dual variables. In practice, while steepest edge was much better at
resolving degeneracy it was also so computationally expensive that it was only used
after a sufficiently long sequence of degenerate pivots was encountered, that is, after
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a sufficiently long sequence of O’s was returned by the algorithm for solving Problem
FPARAM. This strategy of using a degeneracy mechanism only when needed proved
to be the best strategy by far.

The generalized programming algorithm used to generate the results presented
in Table 2 proceeded as follows. The problem (G) was approximated using all of the
A constraints and some subset of the X constraints; initially, one arbitrarily chosen
X constraint was used. The resultant linear programming approximation to (G) was
then solved to obtain a vector [A, ]. The linear function Ax was then maximized on

7 to determine v(). If v() it follows that [, ] is feasible and optimal for a
relaxation of (G) and must therefore be optimal for (G). In this case the algorithm
terminates with the Fenchel cut Ax _< f(A). If v(A) < the X constraint associated
with the x e E(:P) satisfying x v() is violated by [, ]. In this case, the new
X constraint associated with x is included in the approximation of (G) and a new
optimal solution to this approximation is sought.

A number of modifications were made to the basic generalized programming al-
gorithm in an effort to improve its performance. A simpler version of the dynamic
programming algorithm for maximizing v(A) was required for the generalized program-
ming algorithm than for the ascent algorithm since generalized programming requires
only v(A) and no parametric information. Constraints were selectively dropped from
the approximation to (G) when they had not been active at the optimal solution for a
fixed number of iterations. This kept the size of the approximation to (G) relatively
small without affecting the number of iterations required to maximize (G) and as a
consequence reduced the time spent in the linear programming routines used to solve
the approximation to (G). Finally, a version of the CPLEX callable library that makes
use of the dual simplex algorithm was used to solve the sequence of linear programs
encountered as successive constraints were appended to the generalized program.

With the modifications just described the generalized programming algorithm was
extremely efficient. Significant time was spent developing this algorithm before we
felt that the potential of the generalized programming approach had been reached. In
fact, it was the limitations of this approach that led u.s to develop the ascent algorithm
described in this paper. To fully appreciate the improvement of the ascent algorithm
over the generalized programming algorithm it is necessary to recognize that the
generalized programming algorithm represented an extremely efficient implementation
using a state-of-the-art linear programming code. The difference in running times
between the two algorithms thus represents a fundmental difference in the algorithms
themselves and not their implementations. In fact, there remain areas of potential
improvement for the ascent algorithm that have not been investigated.

Initially a major effort was made to develop an ascent algorithm based on sub-
gradients, but subgradient techniques were abandoned when they proved hopelessly
inadequate. Even when a reasonable sequence of iterates Ai could be generated--and
this in itself was not always easy to accomplish--the empirical rate of convergence
was generally so poor that the algorithm was useless for all practical purposes. Sub-
gradient algorithms are so intuitive, simple to code, and generally well regarded in the
literature that it took us a long time to realize how inadequate they can be. However,
it was a full appreciation of the information that subgradient techniques disregard.
namely, an intelligent choice of ascent direction--that led to the algorithm presented
in this paper.

5. Conclusions. An algorithm for efficiently generating Fenchel cuts for knap-
sack polyhedra has been presented. Two main aspects of this algorithm were high-
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lighted that were profoundly important for its efficient implementation. First, the
algorithm was based on an intelligent ascent procedure rather than subgradients or
generalized programming. Second, domain restrictions were outlined showing that the
dual maximization problem necessary to generate Fenchel cuts could be performed in
a space of reduced dimension. An implementation of this algorithm was then applied
to generate cutting planes for a collection of integer programs and to provably op-
timize over the intersection of the knapsack polyhedra defined by the constraints of
these problems.

The ascent algorithm presented in this paper achieved good performance by taking
advantage of the underlying combinatorial structure of the subproblem defining the
dual maximization problem, rather than disregarding this fundamental information,
as alternative techniques do. It is more than conceivable that for some subproblems
there exist efficient combinatorial methods for choosing the ascent direction in step 2
of the ascent algorithm, or even efficient combinatorial methods for solving the dual
maximization problem itself. The types of combinatorial problems that arise in this
context deserve further attention.

While this paper has focused on the specific problem of generating Fenchel cuts
for knapsack polyhedra, it is important to recognize that most of the ideas are directly
applicable in other contexts. The ascent algorithm can be applied whenever an algo-
rithm for solving Problem FPARAM exists, and domain restrictions similar to those
discussed in this paper should be derivable for many classes of problems. Further,
the ascent algorithm can be used to solve dual problems that arise in applications of
Lagrangian relaxation whenever an algorithm for solving Problem FPARAM exists.
Finally, while the implementation is more complex, the basic ideas presented in this
paper are directly applicable to the separation problem for mixed-integer knapsack
polyhedra. This is an important direction for further research.

6. Acknowledgments. The author would like to acknowledge the Computa-
tional Optimization Center in the Department of Industrial and Systems Engineering
at Georgia Tech for making computational resources available for the results presented
in this paper.
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PRIMAL-DUAL PROJECTED GRADIENT ALGORITHMS
FOR EXTENDED LINEAR-QUADRATIC PROGRAMMING*
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Abstract. Many large-scale problems in dynamic and stochastic optimization can be modeled
with extended linear-quadratic programming, which admits penalty terms and treats them through
duality. In general, the objective functions in such problems are only piecewise smooth and must be
minimized or maximized relative to polyhedral sets of high dimensionality. This paper proposes a
new class of numerical methods for "fully quadratic" problems within this framework, which exhibit
second-order nonsmoothness. These methods, combining the idea of finite-envelope representation
with that of modified gradient projection, work with local structure in the primal and dual problems
simultaneously, feeding information back and forth to trigger advantageous restarts.

Versions resembling steepest descent methods and conjugate gradient methods are presented.
When a positive threshold of e-optimality is specified, both methods converge in a finite number of
iterations. With threshold 0, it is shown under mild assumptions that the steepest descent version
converges linearly, while the conjugate gradient version still has a finite termination property. The
algorithms are designed to exploit features of primal and dual decomposability of the Lagrangian,
which are typically available in a large-scale setting, and they are open to considerable parallelization.

Key words, extended linear-quadratic programming, large-scale numerical optimization, finite-
envelope representation, gradient projection, primal-dual methods, steepest descent methods, conju-
gate gradient methods

AMS subject classifications. 65K05, 65K10, 90C20

1. Introduction. A number of recent papers have described "extended linear-
quadratic programming" as a modeling scheme that is much more flexible for problems
of optimization than conventional quadratic programming and that seems especially
suited to large-scale applications, in particular because of the way penalty terms can
be incorporated. Rockafellar and Wets [1], [2] first used the concept in two-stage
stochastic programming, where the primal dimension is low but the dual dimension
is high. It was developed further in its own right in Rockafellar [3], [4], and carried
in the latter paper into the context of continuous-time optimal control. Discrete-
time problems of optimal control, both deterministic and stochastic (i.e., multistage
stochastic programming) were analyzed as extended linear-quadratic programming
problems in Rockafellar and Wets [5] and were shown to have a remarkable property
of Lagrangian decomposability in the primal and dual arguments, both of which can be
high-dimensional. These models raise new computational challenges and possibilities.

A foundation for numerical schemes in large-scale extended linear-quadratic pro-
gramming has been laid by Rockafellar in [6] and elaborated upon for problems in
multistage format in [7]. The emphasis in [6] is on basic finite-envelope methods, which
use duality in generating envelope approximations to the primal and dual objective
functions through a finite sequence of separate minimizations or maximizations of the
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Lagrangian. These methods generalize the one originally proposed in [1] for two-stage
stochastic programming and implemented by King [8] and Wagner [9]. They center on
the "fully quadratic" case, where strong convexity is present in both the primal and
dual objectives, relying on exterior schemes, such as the proximal point algorithm, to
create such strong convexity iteratively when it might otherwise be lacking.

Here we propose new algorithms which for fully quadratic problems combine the
idea of finite-envelope representation with that of nonlinear gradient projection. In
these methods the envelope approximations are utilized in a sort of steepest descent or
conjugate gradient format in the primal and dual problems simultaneously. A type of
feedback is introduced between primal and dual that takes advantage of information
jointly uncovered in computations, which in practice greatly speeds convergence. Both
algorithms fit into a fundamental scheme for which global convergence is established.
Under a weak geometric assumption akin to strict complementary slackness at opti-
mality, the steepest descent version is shown to converge at a linear rate, while the
conjugate gradient version has a finite termination property.

Both versions differ significantly from their traditional namesakes not only through
the incorporation of a primal-dual scheme of gradient projection, but also in handling
objective functions that generally could involve a complicated polyhedral "cell" struc-
ture not conducive to explicit description by linear equations and inequalities. They
treat the underlying constraints without resorting to an active set strategy, which
would not be suitable for problems having high dimensionality in both primal and
dual.

An important feature is that the computations are not carried out in terms of
a large, sparse matrix, such as might in principle serve in part to specify the two
problems, but through subroutines for separate minimization and maximization of the
Lagrangian in its primal and dual arguments. This framework appears much better
adapted to the special structure available in dynamic and stochastic applications, and
it supports extensive parallelization. To make this point clearer, and to introduce facts
and notation that will later be needed, we discuss briefly the nature of extended linear-
quadratic programming and the way it differs from ordinary quadratic programming.

From the Lagrangian point of view, extended linear-quadratic programming is
directed toward finding a saddle point (fi, 0) of a function

(i.i) v.Qv v.Ru over U V,L(u, v) p.u + -u.Pu + q.v

where U and V are nonempty polyhedral (convex) sets in IRn and Im, respectively,
and the matrices P E IRnn and Q :mm are symmetric and positive semidefinite.
(One has p lRn, q ]Rm, and R ]Rmn.) Associated with L, U, and V are the
primal and dual problems

minimize f(u) over all u e U, where f(u):--sup L(u,v),
vEV

maximize g(v) over all v E V, where g(v):= inf L(u, v).
uEU

We speak of the fully quadratic case of (T’) and (Q) when both of the matrices P and
Q are actually positive definite.

Standard quadratic programming would correspond to Q 0 and V ]Rnl
lRm2. Then f would consist of a quadratic function plus the indicator of a system
of ml linear inequality constraints and m2 linear equations, the indicator being the
function which assigns an infinite penalty whenever these constraints are violated.
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Other choices of Q and V yield finite penalty expressions of various kinds. This is
explained in [4, 2 and 3] with many examples. For sound modeling in large-scale
applications with dynamics and stochastics such as in [1], [2], and [5], it appears wise
to use finite rather than infinite penalties whenever constraints are "soft." Extended
linear-quadratic programming makes this option conveniently available. To the extent
that constraints in the primal problem are "hard," they can be handled either by plac-
ing them in the definition of the polyhedron U or through an augmented Lagrangian
technique which corresponds to an exterior scheme of iterations of the proximal point
algorithm, as already mentioned.

THEOREM 1.1 [4] (properties of the objective functions). The objective functions
f in () and g in () are piecewise linear-quadratic: in each case the space can be
partitioned in principle into a finite collection of polyhedral cells, relative to which the
function has a linear or quadratic .formula. Moreover,.f is convex while g is concave.
In the fully quadratic case of (7)) and (), f is strongly convex and g is strongly
concave, both functions having continuous first derivatives.

THEOPEM 1.2 [4], [1] (duality and optimality). (a) If either of the optimal values
inf(7) or sup() is finite, then both are finite and equal, in which event optimal
solutions and exist .for the two problems. In the fully quadratic case in particular,
the optimal values inf(P) and sup() are finite and equal; then, moreover, the optimal
solutions and are unique.

(b) A pair (, ) is a saddle point of L(u, v) over V V if and only if solves
(7o) and solves (), or equivalently, f()= g().

Current numerical methods in standard quadratic programming, and the some-
what more general area of linear complementarity problems [10], where U lR,
V IR, and Q is not necessarily the zero matrix, are surveyed by Lin and Pang [11].
Other efforts in recent times have been made by Ye and Tse [12], Monteiro and Adler
[13], and Goldfarb and Liu [14].

None of these approaches is consonant with the large-scale applications that at-
tract our interest, because the structure in such applications is not well served by
the wholesale reformulations that would be required when penalty expressions are
involved. Although any problem of extended linear-quadratic programming can in
principle be recast as a standard problem in quadratic programming, as established
in [1, Thm. 1], there is a substantial price to be paid in dimensionality and loss of
symmetry, as well as in potential ill-conditioning. If the original problem had n primal
and m dual variables, and the expression of U and V involved m and n constraints
beyond nonnegativity of variables, then the reformulated problem in standard format
would generally have n + n + m primal and m + m dual variables, and its full con-
straint system would tend to degeneracy (see [1, Proof of Thin. 1]). The dual problem
would be quite different in its theoretical properties from the primal problem, so that
computational ideas developed for the one could not be applied to the other.

Any problem of extended linear-quadratic programming can alternatively be
posed in terms of solving a certain linear variational inequality (generalized equa-
tion) as explained in [6, Thin. 2.3], and from that one could pass to a linear com-
plementarity model. Symmetry and the meaningful representation of dynamic and
stochastic structure could be maintained to a larger extent in this manner. But linear
complementarity algorithms tend to be less robust than methods utilizing objective
function values, and an increase in dimensionality would still be required in handling
constraints, even if these are simply upper and lower bounds on the variables. Fur-
thermore, such algorithms typically have to be carried to completion. They do not
generate sequences of primal-feasible and dual-feasible solutions along with estimates
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of how far these are from being optimal, which is highly desirable when problem size
borders on the difficult.

While much could be said about the special problem structure in dynamic and
stochastic applications [5], [7], it can be summarized for present purposes in the asser-
tion that such problems, when formulated with care, satisfy the double decomposability
assumption [6]. This means that for any fixed u E U it is relatively easy to maximize
L(u, v) over v E V, and likewise, for any fixed v V it is relatively easy to minimize
L(u, v) over u U, usually because of separability when either of the Lagrangian ar-
guments is considered by itself. These subproblems of maximization and minimization
calculate not only the objective values f(u) and g(v) but also, in the fully quadratic
case where L is strongly convex-concave, the uniquely determined vectors

(1.2) F(u) argmax L(u, v) and G(v) argmin L(u, v).
vEV uEU

The issue is how to make use of such information in the design of numerical methods.
Some proposals have already been made in Rockafellar [6]. Other ideas, which involve
splitting algorithms, have been explored by Wseng [15], [16]. Here we aim at adapting
classical descent algorithms with help from convex analysis [17].

In this paper we make the blanket assumption of double decomposability, taking
it as license also for exact line searchability [6]: the supposition that it is possible
to minimize f(u) over any line segment joining two points in U, and likewise, to
maximize g(v) over any line segment joining two points in V. We focus on the fully
quadratic case, even though standard quadratic programming is thereby excluded
and a direct comparison with other computational approaches, apart from the finite-
envelope methods in [6], becomes difficult. Our attention to that case is justified
by its own potential in mathematical modeling (cf. [2] and [4]) and because strong
convexity-concavity of the Lagrangian can be created, if need be, through some outer
implementation of the proximal point algorithm [18], [19], as carried out in [1] and
[8]. The questions concerning such an outer algorithm are best handled elsewhere,
since they have a different character and relate to a host of primal-dual procedures in
extended linear-quadratic programming besides the ones developed here; cf. [1], [2],
and [6]. In particular, such questions are taken up in Zhu [20].

The supposition that line searches can be carried out exactly is an expedient to
allow us to concentrate on more important matters for now. It is also in keeping with
the exploration of finite termination properties of the kind usually associated with
conjugate gradient-like algorithms, which is part of our agenda. One may observe
also that because of the piecewise linear-quadratic nature of the objective functions
in Theorem 1.1, line searches in our context are of a special kind where "exactness"
is not far-fetched.

A common sort of problem structure which fits with double decomposability is
the box-diagonal case, where P and Q are diagonal matrices,

(1.3) P diag[al,..., an] and Q diag[/l,...,/m],

the entries aj and i being pozitive (for fully quadratic problems), while U and V are
boxes representing upper and lower bounds (not necessarily finite) on the components
of u-- (u,...,un) and v (vl,...,vm):

U [u-, u+] x... x [u, Un+] and V IVY-, Vl+] x... x Ivan, V+m].
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In this case, we have for each u E U that the problem of maximizing L(u, v) over v E V
to obtain f(u) and F(u) decomposes into separate one-dimensional subproblems in
the individual coordinates: for i- 1,..., m,

(1.5) maximize qi-rouj .vi-

i--1

1 2iv subject to v- <_ v <_ v+.

Likewise, the problem of minimizing L(u, v) over u U for given v V, so as to
calculate g(v) and G(v), reduces to the separate problems

(1.6) [pj ] 1 2subject to u-<uj<_ uminimize vr0 .u + -5(uj
i--1

Clearly, there exist very simple closed-.form solutions to these one-dimensional sub-
problems. No actual minimization or maximization routine needs to be invoked. Often
there are also ways of obtaining the answers without explicitly introducing the ro’s.

In notation, we shall refer consistently to

(1.7)
fi the unique optimal solution to (:P),
V the unique optimal solution to (),

these properties meaning by Theorem 1.2 that

(1.8) (fi, 9) the unique saddle point of L on U V,

or equivalently in terms of the mappings F and G that

(1.9) F(fi) and fi- G(V).

Furthermore, we shall write

(1.10) IlulIP [u.Pu]1/2 and IIlIQ [v.Qv]1/2,
(w, u)p w.Pu and (z, V)Q z.Qv

for the norms and inner products corresponding to the positive definite matrices P
and Q. It is these norms and inner products, rather than the canonical ones, that
intrinsically underlie the analysis of our problems, and it is good to bear this in mind.
Just as the function f, if it is C2 around a point u, can be expanded as

f(u’) f(u) + (Vf(u), ut- u) + (ut- u, V2f(u)(u’- u)) + o(llut- u]]2),
it can also be expanded as

l(u’) l(u) + (vel(u), u,- u)e + 1/2(u,- u, vl(u)(u’ u))e + o(11’ 11)

for a certain vector Vpf(u) and a certain matrix Vf(u); similarly for g in terms of
VQg(v) and Vg(v). Clearly,

(1.11)
Vpf(u) P-:Vf(u),
Va() Q-:Va(),

V,f(,u)- P-:V2f(u),
va(.) Q-:V,a(,).
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In appealing to this symbolism we shall be better able to bring out the basic structure
and convergence properties of the proposed algorithms.

We now cite from [6] several fundamental properties on which the algorithmic
developments in this paper will depend.

PROPOSITION 1.3 [6, p. 459] (optimality estimates). Suppose and are ele-
ments of U and V satisfying f()-g() <_ e, where e >_ O. Then and 0 are e-optimal
in the sense that If() f()l <- e and Ig(O) g()l <- e. Moreover, I1 Gll B <_
and I1 IIQ <- v.

PROPOSITION 1.4 [6, pp. 438, 469] (regularity properties). The functions f and
g are continuously differentiable everywhere, and the mappings F and G are Lipschitz
continuous:

(1.12)
Vf(u) VuL(u, F(u)) p / Pu RTF(u),
Vg(v) VvL(G(v), v) q Qv RG(v),

where in terms of the constant

1 1
(1.13) "I(P, Q, R) :- IIQ-5RP- II,

one has

(1.14)
IIF(u’)- F(u)IIQ <_ /(P, Q,R)Ilu’-ul[p for all u and u’,
IIG(v’) G(v)llp <_ /(P, Q, R)llv’ viiQ for all v and v’.

The finite-envelope idea enters through repeated application of the mappings F
and G. The rationale is discussed at length in [6], but the main facts needed here are
in the next two propositions.

PROPOSITION 1.5 [6, p. 460] (envelope properties). For arbitrary uo E U and
vo e V, let Vl F(uo) and ul G(vo), followed by v2 F(ul) and u2 G(v).
Then in the primal problem,
(.)

f(u) >_ L(u, Vl) .for all u, with L(uo, vl) f(uo) and VL(uo, Vl) Vf(uo),
f(u) >_ L(u, v2) for all u, with n(ul, v2)- f(ul) and VuL(ul, v2)- Vf(ul),

while in the dual problem
(1.16)

g(v) < i(ul, v) for all v, with i(ul, vo) g(vo) and Vv/(u, vo) Vg(vo),
<_ Va( i).

PROPOSITION 1.6 [6, p. 470] (modified gradient projection). For arbitrary uo
U and vo e V, let vl F(uo) and ul G(vo), followed by v2 F(ul) and u2 G(v).
Then

(1.17)

(1.18)
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so from the definition of u2 and v2 one has that

(1.19)
u2 uo P-projection of Vpf(no) on U no,
v2 vo Q-projection of VQg(vo) on V vo.

Proof. The first equation in (1.17) expands L(.,Vl) at u0 in accordance with
(1.15), and the rest of (1.17) re-expresses this via (1.10) and (1.11). Since u2 :-
argminev L(u, vl), u2 is thus the I1" liP-nearest point of U to uo-Vpf(uo), so u2-uo
is the I1" IIp-projection of-Vpf(uo) on U- u0. The assertions in the v-argument are
verified similarly.

The formulas in (1.19) give the precise form of (nonlinear) gradient projection
that is available through our assumed ability to calculate F(u) and G(v) whenever
we please. It is this form, therefore, that we shall incorporate in our algorithms.
The reader should note this carefully, or a crucial feature of our approach, in its
applicability to large-scale problems, will be missed. Although the gradients of f
and g exist and are expressed by the formulas in Proposition 1.4, we do not have
to calculate them through these formulas, much less apply a subroutine for gradient
projection. In particular, it is not necessary to generate or store the potentially huge or
dense matrix R. To execute our algorithms, one only needs to be able to generate the
points ul, u2, v, and v2 from a given pair u0 and v0. As explained, this can be done
through subroutines which minimize or maximize the Lagrangian individually in the
primal or dual argument; cf. (1.2). For multistage, possibly stochastic, optimization
problems expressed in the format of [1], [2], and [6], such subroutines can easily be
written in terms of the underlying data structure (without ever introducing R!).

In obtaining our results about local rates of convergence, a mild condition on the
optimal solutions fi and V will eventually be required. To formulate it, we introduce
the sets

(1.20)

(1.21)

which are called the critical faces of U and V in (:P) and (Q) [6]. They are closed
faces of the polyhedral sets U and V, and they contain the optimal solutions and
9, respectively, by virtue of the elementary conditions for the minimum of a smooth
convex function (or the maximum of a smooth concave function).

DEFINITION 1.7 (critical face condition). The critical face condition will be said
to be satisfied at the optimal solutions fi and if fi E ri U0 and V E ri V0 (where "ri"
denotes relative interior in the sense of convex analysis).

We do not add this condition as a standing assumption, but it will be invoked
several times in connection with the following property of the envelope mappings F
and G, which is implicit in [6, Thm. 5.4] in its proof, but is stated here explicitly.

PROPOSITION 1.8 (envelope behavior near the critical faces). There exist neigh-
borhoods of t and with the property that if the points uo U and vo V belong to
these neighborhoods, then the points

Vl F(uo), u G(vo), v2 F(u), u2 G(v)

will be such that U and u2 belong to the primal critical face Uo, while vl and v2 belong
to the dual critical face Vo. Under the critical face condition, the neighborhoods can
be chosen so that u and u2 actually belong to ri Uo, while v and v2 belong to ri Vo.
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Proof. We adapt the argument given for [6, Thm. 5.4]. From (1.9) and the con-
tinuity of F and G in Proposition 1.4, we know that by making u0 and v0 close
to fi and we will make U and u2 close to fi and Vl and v2 close to . For each
vector w IRn, let M(w) be the closed face of the polyhedron U on which the func-
tion u - w.u achieves its minimum. This could be empty for some choices of w,
but in the case of t0 VuL(, ) it is U0, which contains . The graph of M as a
set-valued mapping is closed (as can be verified directly or through the observation
that M is the subdifferential of the support function of U; cf. [17, 13, 23]), and M
has only finitely many values (since U has only finitely many faces). It follows that
M(w) c M(ff) Uo when w is in some neighborhood of z0. We can apply this in
particular to w VuL(ul, vo), noting that this vector will be close to t0 when u0 and
v0 are sufficiently close to and V. The point ul minimizes L(u, vo) over u 6 U and
therefore has the property that VuL(ul, vo).(u- u) <_ 0 for all u 6 U, which means
u 6 M(w). Therefore, u 6 U0 when u0 and v0 are sufficiently close to and .

Parallel reasoning demonstrates that v 6 V0 under such circumstances. If the
critical face condition holds, then as ul and v approach and V they must actually
enter the relative interiors ri U0 and ri V0. The same argument can be applied now to
reach these conclusions for u2 and v2. U

2. Formulation of the algorithms. The new methods for the fully quadratic
case of problems (:P) and () will be formulated as conceptual algorithms involving
line search. The convergence analysis will be undertaken in 3, 4, and 5, and the
numerical test results will be given in 6.

In what follows, we use [w, w2] to denote the line segment between two points
w and w2, and we use as the running index for iterations.

The main characteristic of the new methods is the coupling of line search proce-
dures in the primal and dual problems with interactive restarts. To assist the reader
in understanding this, we first formulate the method analogous to steepest descent,
where there are fewer parameters and the algorithmic logic is simpler.

ALGORITHM 1 (Primal-Dual Steepest Descent Algorithm (PDSD)). Construct
primal and dual sequences {u} c U and {v} C V as follows.

Step 0 (initialization). Choose a real value for the parameter _> 0 (optimality
threshold). Set :-- 0 (iteration counter). Specify starting points fi0 U and 0 V
for the sequences {fi} c U and {0} c V that will be generated along with {u} and

Step 1 (evaluation). Calculate

obtaining as by-products 3’ F(fi), fi G(),
obtaining as by-products fi G(O’), ’ F(fi’).

Step 2 (interactive restarts). Take

if f(2)
otherwise (this is an interactive primal restart),
if g(?) >_ g(O’),
otherwise (this is an interactive dual restart).

(In an interactive primal restart, the calculation of G(v) yields the new g(v). Like-
wise, in an interactive dual restart, the calculation of F(u) yields the new f(u).)
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Step 3 (optimality test). Let

2 "= f u if f(u) < f(u), and 3 := [ v if g(v) >_ g(v),
( u’ if f(u) >/(u’), [ v’ if g(v) < g(v).

If f() -g(O)

_
, terminate with fi and being -optimal solutions to (:P) and ().

Step 4 (line segment search). Search for

-[-I .= argmin f(u) and +i .= argmax g(v).

Return then to Step 1 with the counter increased by 1.

Basically, the idea in this method is that if the point fi calculated as a by-product
of finding the projected gradient (1.19) in the dual problem gives a better value to
the objective in the primal problem than does the current primal point fi, we take it
instead as the current primal point (and accordingly recalculate the projected gradient
in the primal problem). Likewise, if the point )’ calculated as a by-product of finding
the projected gradient (1.19) in the primal problem happens to give a better value to
the objective in the primal problem than the current dual point , we take it instead
as the current dual point (and accordingly recalculate the projected gradient in the
dual problem). Here it may be recalled that fi minimizes over U the convex quadratic
function L(., )), which is a lower approximant to the objective function f in (P) that
would have the same minimum value as f over U if were dual optimal. By the
same token, ’ maximizes over V the concave quadratic function L(fi, .), which is
an upper approximant to the objective function g in () that would have the same
maximum value as g over V if fi were primal optimal.

Once the issue of triggering a primal or dual interactive restart (or both) settles
down in a given iteration, we perform line searches in the directions indicated by the
projected gradients in the two problems. If U were the whole space IRn, the primal
search direction would be the true direction of steepest descent for f (relative to the
geometry induced by the Euclidean norm I1" IIP on IRn). Similarly, if Y were the whole
space ]Rm, the dual search direction would be the true direction of steepest ascent for
g (relative to the geometry of the Euclidean norm I1" IIQ on IRm). However, even in
this unconstrained case there would be a difference in the way the searches are carried
out, in comparison with classical steepest descent, because instead of looking along
an entire half-line we only optimize along a line segment whose length is that of the
gradient, i.e., we restrict the step size to be at most 1. (Also, we call for an "exact"
optimum because the objective is piecewise strictly quadratic with only finitely many
pieces. Clearly, this requirement could be loosened, but the issue is minor and we do
not wish to be distracted by it here.)

The restriction to a line segment instead of a half-line is motivated in part by the
fact that the line segment is known to lie entirely in the feasible set. A search over
a half-line would have to cope with detecting the feasibility boundary in the search
parameter, which could be a disadvantage in a high-dimensional setting, although
this topic could be explored further. Heuristic motivation for the restriction comes
also from evidence of second-order effects induced by the primal-dual feedback, as
discussed below. It turns out that under mild assumptions the optimal step sizes
along a half-line would eventually be no greater than 1 anyway.

The interactive restarts may seem like a merely opportunistic feature of Algo-
rithm 1, but they have a marked effect, as the numerical tests in 6 will reveal. When
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interactive restarts are blocked, so that the algorithm reverts to two independent pro-
cedures in the primal and dual settings (through a sort of computational "lobotomy"),
the performance is slowed down to what one might expect from a steepest-descent-like
algorithm. On the other hand, when the interactions are permitted the performance
in practice is quite comparable to that of more complicated procedures which attempt
to exploit second-order properties. The feedback between primal and dual appears
able to supply some such information to the calculations.

In order to develop a broader range of interactive-restart methods, analogous not
only to steepest descent but to conjugate gradients, we next formulate as Algorithm 0
a bare-bones procedure which will serve in establishing convergence properties of such
methods, including Algorithm 1. The chief complication in Algorithm 0 beyond what
has already been seen in Algorithm 1 comes through the introduction of cycles for
primal and dual restarts. With respect to these cycles an additional threshold param-
eter is introduced as a technical safeguard against interactive restarts being triggered
too freely, without assurance of adequate progress.

ALGORITHM 0 (General Primal-Dual Projected Gradient Algorithm (PDPG)).
Construct primal and dual sequences (u C U and (v C V as follows.

Step 0 (initialization). Choose an integer value for the parameter k > 0 (cycle
size) and real values for the parameters e >_ 0 (optimality threshold) and i > 0
(progress threshold). Set u 0 (iteration counter), kp :- 0 (primal restart counter),
and kd :----- 0 (dual restart counter). Specify starting points fi E U and )0 E V for the
sequences (fi} C U and () C V that will be generated along with (u} and (v}.

Step 1 (evaluation). Calculate

obtaining as by-products 3’ F(2), 2’ G(3),
obtaining as by-products 2 G(3’), 3 F(2’).

Step 2 (interactive restarts). Take

u := 2, v’ := 3’, u 2 if f(2) _< f(2’), or f(2) < f(2’)+di and kp < k,
u := u, v’ := 3’, u G(v’) otherwise (this is an interactive primal restart),
v ,u 2,v := 3 if g(O) > g(O’), or g(3) > g(O’) 5 and kd < k,
v v’, u’ 2,v := F(u’) otherwise (this is an interactive dual restart).

(In an interactive primal restart the calculation of G(v[) yields the new g(v[). Like-
wise, in an interactive dual restart the calculation of F(u) yields the new f(u).)
Set

kp := 0 if an interactive primal restart occurred in this step,
kd :-- 0 if an interactive dual restart occurred in this step.

Step 3 (optimality test). Let

::u iff(u)_<f(u’), and b’:v ifg(v)>_g(v),
u’ if f(u’) > f(u’), l, v’ if g(v) < g(v’).

If f() g()

_
e, terminate with fi and ) being e-optimal solutions to (:P) and (Q).

Step 4 (search endpoint generation). Take

e :---U
U according to an auxiliary rule

v := v
v’ V according an auxiliary rule

if kp =-0(mod k),
otherwise,

if kd =-- 0(mod k),
otherwise.
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Step 5 (line segment search). Search for

+1 :__ argmin f(u) and ?--1 := argmax g(v).

Return then to Step 1 with the counters v, kp, and kd increased by 1.

By specifying the auxiliary rules in Step 4 for generating the search interval end-
points u and v in iterations where kp or kd is not a multiple of k, we obtain particular
realizations of Algorithm 0. An attractive case in which these rules correspond to a
"conjugate gradient" approach with cycle size k will be developed presently as Algo-
rithm 2. Before proceeding, however, we want to emphasize for theoretical purposes
that Algorithm 1 is itself a particular realization of Algorithm 0.

PROPOSITION 2.1. Algorithm 0 reduces to Algorithm 1 when the cycle size is
k 1 (except for a slight difference in iteration v 0).

Proof. In returning from Step 4 of Algorithm 0 to Step 1, the counters kp and kd
are always at least 1. It follows that if k 1 the condition in Step 2 with progress
threshold 5 will never come into play after such a return. Thus, the only possible effect
of this threshold will be in iteration v 0, where a restart will be avoided unless it
improves the objective by at least i. In Step 4, kp and kd will always be multiples of
k, so we will always have uve u and v’ v. Thus the counters kp and kd become
redundant and the auxiliary rules moot. [:]

In Algorithm 0 in general, kp counts iterations in the primal problem from the
start or the most recent interactive primal restart. An iteration that begins with kp
being a positive multiple of k is said to be one in which an ordinary primal restart takes
place (whether or not an interactive primal restart also takes place), because it marks
the completion of a cycle of k iterations not cut short by an interactive primal restart.
Every iteration involving an ordinary or interactive primal restart ends by searching
the line segment [u, u], where u-u is the negative of the current projected gradient
of f in (1.19). The dual situation is parallel in terms of the counter kd and the notion
of an ordinary dual restart.

The role of the parameter 5 > 0 is to control the extent to which the algorithm
forgoes interactive restarts and insists on waiting for ordinary restarts. Interactive
restarts are always accepted if they improve the corresponding objective value by
the amount 5 or more, but there can only be finitely many iterations with this size of
improvement, due to the finiteness of the joint optimal value in (7) and () (Theorem
1.1). When such improvement is no longer possible, interactive restarts are blocked
in the primal until an ordinary restart has again intervened, unless one is already
occurring in the same iteration; the same holds in the dual. This feature ensures that
full cycles of k iterations will continue to be performed in the primal and dual as long
as the algorithm keeps running, which is important in establishing certain properties
of convergence.

Recall that the point u minimizes over U the lower envelope function L(u, vl)
as a representation of f(u) at u (Proposition 1.5), which has VuL(u, v) Vf(u).
Even apart from the projected gradient interpretation, therefore, there is motivation
in searching the line segment [u, u] in order to reduce the objective value f(u) in
primal. The same motivation exists for searching Ivy, v] in the dual.

As a matter of fact, we shall prove in Proposition 5.1 that on exiting from Step 5
(line segment search) of Algorithm 0, the point fi+l G(O+) will be the minimum
point relative to U for the envelope function

fv (u) :-- max L(u, v) <_ max L(u, v) f(u).
v[v, .1 vv
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When the algorithm reaches Step 2 in the iteration, it will compare the point /1
resulting from the just-completed line search in the primal with the point fi+l result-
ing from minimizing the lower envelope function fv(u), and it will take the "better"
of the two as the next primal iterate. In the dual procedure there are corresponding
comparisons between +i and )+l.

We focus now on a specialization of Algorithm 0 in which, in contrast to Algo-
rithm 1, the cycle provisions are crucial and the auxiliary rules nontrivial. The rules
emulate those of the classical conjugate gradient method (Hestenes-Stiefel).

ALGORITHM 2 (Primal-Dual Conjugate Gradient Method (PDCG)). In the im-
plementation of Algorithm 0, choose a cycle size k > 1 and use the following auxiliary
rules to get the search intervals in Step 4. Unless kp =_ 0(mod k), set

e[U-1(2.1) w, :-- Vpf(u) p. o ),

(2.2) N := (0, <w, u-U>p}/<w, ue

(2.3) ub := ( + Z$-)/(1 + Z),

(2.4) [u, u] := ( L,Ca[Uuu otherwise,ifiuca u]]p _> 1,

U)p if (w, u- U)p > O,
otherwise,

u iwhereL={uelR’lu=u+A(ca-u) 0<A< [[uca-u[[ }. Similarly, unless
kd O(mod k), set

(2.) := -va()+ va(-),

{ b b

(.7) c := (v + Zv-l)/(1 +
v > 1,[v,va] if] cg v]Q_(2.8) IvY, v] := L Y otherwise,

if (w, v-i V>Q > 0,
otherwise,

Vv ,ibee L (v ’ Iv v + (v v), 0 <_ <_ vll }.
Note that because the auxiliary rules are never invoked in iteration u 0 (where

kp 0 and kd 0), the points indexed with v- 1 in the statement of Algorithm 2
are all well defined. Another thing to observe is the fact that in (2.2) and (2.6) we
actually have

u-- I
Wu V--(2.9) <w, u U>v >_ 0 and d, v>Q >_ O.

These inequalities follow from (2.1) and (2.5) and the monotonicity of gradient map-
pings of convex functions. In Proposition 4.4 we shall prove that under the critical
face condition the inequalities in (2.9) hold strictly in a vicinity of the optimal solution
if the critical faces are reached by the corresponding iterates.

On the other hand, it is apparent from (2.3) and (2.7) that
(2.10)

Ug U U U "p (Ue u) and vc v v v +d (Ue
(1/ ,) (1+ f)

Hence, the search direction vector in the primal is, in fact, a convex combination of
the P-projection of-Vpf(uo) and the search direction vector in the previous primal
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iteration. Similarly, the search direction vector in the dual is a convex combination
of the Q-projection of VQg(vo) and the search direction vector in the previous dual
iteration.

We shall prove in Theorem 4.5 that under the critical face condition, the primal
iterations in Algorithm 2 reduce in a vicinity of the optimal solution to (7)) to the
execution of the Hestenes-Stiefel conjugate gradient method if the critical face U0 is
eventually reached by the primal iterates, and similarly for the dual iterations. From
this we will obtain a termination property for Algorithm 2, which will be invoked by
an interactive restart of the algorithm.

Algorithm 2 departs a bit from the philosophy of Algorithm 1 in utilizing un-
projected gradients in (2.1) and (2.5) instead of just projected gradients. These un-
projected gradients are available through (1.11) and (1.12) (also (1.15) or (1.16)),
and for multistage optimization problems in the pattern laid out in [7] they can still
be calculated without having to invoke the gigantic R matrix. An earlier version of
Algorithm 2 that we worked with did use the projected gradients exclusively, and it
performed similarly, but there were technical difficulties in establishing a finite termi-
nation property. Future research may shed more light on this issue. The same can be
said of another small departure in Algorithm 2 from the philosophy one might hope
to maintain in a "conjugate gradient" method: the introduction on occasion of step
sizes possibly greater than 1 relative to [u, ug] or Ivy, v’g] (although not, of course,
relative to the designated intervals [u, u] or IvY, v]) through the second alternatives
in (2.4)or (2.8).

3. Global convergence and local quadratic structure. This section estab-
lishes some basic convergence properties of Algorithms 0, 1, and 2. It also reveals the
special quadratic structure in (:P) and () around the optimal solutions fi and 9 in
the case where the critical face condition is satisfied, which will be utilized in further
convergence analysis in 5.

PROPOSITION 3.1 (feasible descent and ascent). (a) In Algorithm 0 (hence also
in Algorithms 1 and 2) the vector u u gives a feasible descent direction for the
primal objective function f at u (unless u-u O, in which case u ). Similarly,
the vector v- v gives a feasible ascent direction for the dual objective function g at

v (unless v v O, in which case v 9).
(b) In Algorithm 2, the vector ucg u gives a feasible descent direction for the

primal objective f at u unless u . Similarly, the vector vcg v gives a feasible
ascent direction for the dual objective g at v unless v 9. Thus, Algorithm 2 is
well defined in the sense that, regardless of the type of iteration, as long as it does not
terminate in optimality, the vector u u gives a feasible descent direction at u in
the primal while the vector v- v gives a feasible ascent direction at v in the dual.

Proof. (a) We know that u minimizes L(u,v) over u e U, where L(u, v) is
given by formula (1.17). We obtain from this formula that unless u u, implying

u is optimal for the primal, we must have Vf(u).(u- u) < 0. Descent in this
direction is feasible because the line segment [u, u] is included in U by convexity.
The proof of the dual part is parallel.

(b) The argument is by induction. From the optimality test in Step 3 we see that
the algorithm will terminate at (, 9) if either u in the primal or v 9 in the
dual. (For instance, if u , then v 9, so that f()- g() 0.) Suppose neither

u nor v is optimal. Proposition 3.1(a) covers our claims for the initial iteration of
each primal or dual cycle. Suppose that the claims are true for iteration 1- 1 of a
primal cycle, 0 < < k, which corresponds to.iteration - 1 of the algorithm as a
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whole. We have (u-u).Vf(u) < 0 by part (a) and (-1-u).Vf(u)
_

0 through
the line search. (Note that we get this inequality instead of an equation because the
search is over a segment rather than a half-line; the minimizing point could be at the
end of the segment.) Hence

uV (u u).Vf(u) + (/,e-1

1+$

The vector ucg -u 0, therefore, gives a descent direction, so the segment L in
(2.4) is nontrivial. From (2.3), we see further that uca is a convex combination of two
feasible points u E U and u-1 E U. Hence the point uca is feasible, i.e., uca U,
and the direction of uca -u is a feasible direction in the primal at u The vector
Ue -u therefore, gives a feasible descent direction for f at u since it results from
a scaling of the vector uca -u. Iteration of the primal cycle thus again satisfies the
claim. The case of dual cycles is handled similarly.

THEOREM 3.2 (global convergence). In Algorithm 0 (hence also in Algorithms 1
and 2) with optimality threshold > O, termination must come with e-optimal solutions
and 0 in just a finite number of iterations. With O, unless the procedure happens

to terminate with the exact optimal solutions and in a finite number of iterations,
the sequences generated will be such that u -- and v - as -- oc. Furthermore,
then u -. and u --. , as well as v -- and v

Proof. Consider first the case where 0. From Proposition 1.4, the point
u2 G(F(uo)) depends continuously on u0. Denote by 7) the continuous mapping
u0 - (u0,u2-u0) from U to U]Rn. Let j[ UlRn -- U be the line search
mapping defined by

A4 (u0, d) argmin f(u).
uE[uo,uoTd]

The mapping JP[ is closed at the point (u0, d) with d 0; cf. [21, Thm. 8.3.1]. Now
by Proposition 3.1(a), u2- u0 : 0 for u0 : ft. Hence the composite mapping A/loT) is
closed on U \ (fi}; cf. [21, Thm. 7.3.2]. Define

A BoAzIo:D,

where B: U == U is the point-to-set mapping B(u) (u’ e U lf(u’ <_ f(u)}. Note
that the sequence (f(u)} is nonincreasing. Now let K:p be the sequence that consists
of the indices of those iterations in which a line search on [u, u] is performed for
the primal objective function. Then K:p is an infinite subsequence of (} unless the
procedure happens to terminate with the exact optimal solutions and in a finite
number of iterations. Let " and be two consecutive elements in p with " > .
Then we can write

Uo A(u’).
By Proposition 3.1, moreover, the vector u2 u0 is a descent direction for the primal
objective f(u) at u0 unless u0 is already optimal. Since we are in the fully quadratic
case, the set (u e lRn f(u) <_ f(u)} is compact, and the optimal solution fi for
problem (:P) is unique. It follows then that u --. fi as --. oc, K:p; cf. [21,
Whm. 7.3.4]. Therefore, f(u) -. f() as --. x), which in turn implies u --* fi as

--. cx) since f is strongly convex (Theorem 1.1).
For analogous reasons, v - V. Then, since u G(v) and fi G(V) with the

mapping G continuous (Proposition 1.4), we have u ft. Likewise, v’ - V. The
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argument can be applied then again: we have u G(v), so u --, fi, and, in parallel
fashion, v - 0.

In particular, we have f(u)- g(v) -- f(fi)- g(0) 0 because f and g are
continuous (Theorems 1.1 and 1.2(a)). In the case where e > 0, this guarantees
termination in finitely many iterations.

COROLLARY 3.3 (points in the critical faces). The sequences generated by Algo-
rithm 0 have the property that eventually u and u belong to the primal critical face
Uo, while v and v belong to the dual critical face Vo.

Proof. This follows via Proposition 1.8.
COROLLARY 3.4 (a special case of finite termination). If 0 and either of the

critical faces Uo or Vo consists of just a single point, Algorithm 0 (and therefore also
Algorithms 1 and 2) will terminate at the optimal solution pair (ft, ) after a finite
number of iterations.

Proof. When U0 consists of the single point , we have by Corollary 3.3 that

u fi for all sufficiently large . Once this is the situation, the line search in the
first iteration of the next primal cycle will yield ft. On returning to Step 1 for the
succeeding iteration, will be generated as F(), and termination must then come in
Step 3. The situation is analogous when V0 consists of just . [:]

A companion result to Corollary 3.3 is the following.
PROPOSITION 3.5 (convergence onto critical faces). Let {u} and {v} be se-

quences generated by Algorithms 1 or 2. Then for the primal critical face Uo, we
have either u E Uo for all sufficiently large
Similarly, for the dual critical face Vo we have either v Vo .for all sufficiently large

or v Vo for all sujficiently large .
Proof. We prove the primal part. The proof of the dual part is similar. Observe

that ) - as v -, 0 in the algorithm. Hence by Proposition 1.8, we have ’ U0
as well as u U0 for sufficiently large . Then in Algorithm 1 we have

U e U0 =: [’, u] C Uo :: ,-{-1 e U0 == Uq-1 E Vo

since U-t-1 is defined either as /1 or as ?[/1. From this it is apparent that our
assertion is valid in the case of sequences generated by Algorithm 1.

For Algorithm 2, we claim that for sufficiently large we have u E U0 when

u U0. For ifu u, we certainly have uc u U0. Ifuc = u, then ucg
is a convex combination of u-1 and u E U0, and there is no interactive restart in

g--1 by Proposition 3.1(b). Hence we haveiteration , i.e., u u E U0. Now u : u0
v--1 which implies u-1 Uv-l] which also implieseitheru-ue e E Uo, or u E ri[u-1,

uV--1e E U0 since U0 is a face of U. Then u"co E U0, and by the definition of u in the
algorithm we have ue E U0. Therefore,

U e U0 [u, u] C U0 ::# t+1 e U0 :: u+1 e U0

for sufficiently large . Thus, our assertion is valid also in the case of sequences
generated by Algorithm 2.

Remark. With the aid of the concept of an ultimate quadratic region introduced
in Definition 3.7 below, it will be seen that when the critical face condition is satisfied,
the assertion of the proposition can be written as follows: after the sequences
and (v} have entered an ultimate quadratic region, once u0 U0 for some , then

u E Uo for all > #; and similarly once v0 1/ for some v, then v l/ for all
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For Algorithm 2, broader results on finite termination than the one in Corollary
3.4 will be obtained when the critical face condition is satisfied through reduction to
a simpler quadratic structure which is identified as governing in a neighborhood of
the solution. This local structure will also be the basis for developing convergence
rates for Algorithms 1 and 2 in cases without finite termination. In developing it in
the next theorem, we recall the notion of the affine hull aftC of a convex set C: this
is the smallest affine set that includes C, or equivalently, the intersection of all the
hyperplanes that include C [17].

THEOREM 3.6 (quadratic structure near optimality). Suppose the critical face
condition is satisfied. Then f is quadratic in some neighborhood of , while g is
quadratic in some neighborhood of O. Furthermore, for points uo E U and vo V
su]ficiently close to and , the P-projection of-Vpf(uo) on U- uo is the same as
that on affU0- no, while the Q-projection of VQg(vo) on V- vo is the same as that
on affV0 v0.

Proof. Since by Proposition 1.8 the point Vl F(uo) lies in the critical face V0
when u0 is sufficiently close to fi, we have

mvv{V.(q- Ru) 1/2v.Qv} m_a_{v.(q- Ru) 1/2v.Qv}.
vE Vo

The mapping F is continuous (Proposition 1.4) and ri V0 by assumption, so we
have vl ri V0 when u0 is sufficiently close to ft. Then (3.1) can further be written
instead as

max {v.(q- nu) 1/2v.Qv}.
vEaffyo

Locally, therefore,

(3.2) f(u) p.u + 1/2u.Pu + max (v.(q- Ru) 1/2v.Qv}.
veaffVo

Similarly, for v in some neighborhood of V we have

lv.Qv+ min(3.3) g(v) q.v
ueaffuo

(u.(p- RTv) / 5u.Pu}.

The set affV0, because it is affine and contains , has the form @-t- S for a certain
subspace S of IRm, which in turn can be written as the set of all vectors of the form
v’ Dw for a certain m x d matrix D of rank d (the dimension of S). In substituting
v 0 -t- Dw in (3.2) and taking the maximum instead over all w IRd, we see through
elementary calculus and linear algebra that the maximum value is a quadratic function
of u. This establishes that f(u) is quadratic in u on a neighborhood of ft. The same
argument can be pursued in (3.3) to verify that g(v) is quadratic around .

Next we consider the projected gradients. According to Proposition 1.6, the P-
projection of -Vpf(uo) on U u0 is the vector 32 u0, where 32 G(F(uo)). When
u0 is close enough to fi in U, 32 belongs by Proposition 1.8 to ri U0, which is the
interior of U0 relative to affU0. Thus, for uo in some neighborhood of fi in Uo, the
P-projection of-Vpf(uo) on U- uo belongs to the relatively open convex subset
ri U0 -u0 of U- u0 and must be the same as the projection on this subset or on
U0- u0 itself. When the nearest point of a convex set C belongs to ri C, it is the same
as the nearest point of affC. The P-projection of-Vpf(u0) on U-no is therefore the
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same as the P-projection of-Vpf(uo) on affUo- no. The Q-projection of VQg(vo)
on V- v0 is analyzed in parallel fashion. El

Theorem 3.6, together with Proposition 1.8, makes it possible for us to concentrate
our analysis of the terminal behavior of our algorithms, in the case of optimality
threshold e 0, on regions around (fi, 9) of the following special kind.

DEFINITION 3.7 (ultimate quadratic regions). By an ultimate quadratic region
for problems (P) and (Q) when the critical face condition is satisfied, we shall mean
an open convex neighborhood U* V* of (fi, 9) with the properties that

(a) U* f U0 U* N ri U0 and V* N V0 V* N ri Vo;
(b) f is quadratic on U* and g is quadratic on V*;
(c) for all u0 E U* N U the P-projection of-Vpf(uo) on U- uo is that on

(affU0) u0, while for all vo E V* V the Q-projection of VQg(vo) on V v0 is that
on (affV0) vo;

(d) for all u0 U* f U and v0 V* V the points ul G(vo), vi F(uo),
u2 G(vl), and v2 F(u) are such that u and u2 belong to ri U0, while vl and v2
belong to ri Vo.

Here we recognize that the affine sets affUo and affV0 are translates of certain
subspaces, which in fact are the sets (affU0) -fi and (affV0) -9. The projections in
(c) of this definition can also be described in terms of these subspaces. Let

Sp P-projection mapping onto the subspace(affU0) -fi,

Sd Q-projection mapping onto the subspace(affVo) -9,

s=-s, s=-&.
The mapping Sp projects onto the subspace of IRn that is orthogonally complementary
to (affU0)- fi with respect to the P-inner product in (1.10), while the mapping S-
projects onto the subspace of IRm that is orthogonally complementary to (aft V0)
with respect to the Q-inner product. All these projections are linear transformations,
of course.

PROPOSITION 3.8 (projection decomposition). For (uo, vo) in an ultimate
quadratic region U* x V*, one has for u2 :- G(F(uo)) and v2 :- F(G(vo)) that

u2 uo Sp(-pf(uo)) Sp(uo ) -p(f()(uo )) pd-(u0 ),
v vo &(v(v0)) s(0 ) &(v()(v0 1) s(o ).

Proof. The P-projection of-Vpf(uo) on (affU0)- u0 can be realized by taking
the P-projection of -Vpf(u0) + (u0 fi) on the set (affU0) u0 + (u0 fi) and then
subtracting (u0 -fi). Therefore, in a region with property (c) of Definition 3.7 we
have by (1.17) in Proposition 1.6 that

which is the first equality asserted. The second equality comes from having
Vpf(uo) Vpf(fi)+ Vf(fi)(u0- fi) (since f is quadratic in the region in ques-
tion), and Sp (Vpf(fi)) 0 by the optimality of ft. The proof of the dual equalities is
along the same lines. El

4. Rate of convergence. In taking advantage of the existence of an ultimate
quadratic region, we shall utilize in our technical arguments a change of variables that
will make a number of basic properties clearer. This change of variables amounts
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to the introduction of orthonormal coordinate systems relative to the inner products
naturally associated with our problems, namely, (.,.)p on IRn and (.,.)Q on ]R",
as given in (1.10). The coordinate systems are introduced in such a way that the
subspaces (affU0)- fi and (affV0)- 9 for the projections in (3.4) and Proposition 3.8
take a very simple form.

Let W be an n n orthogonal matrix and Z an m m orthogonal matrix. Our
shift will be from u and v to Wp1/2u and ZQ/2v. In these variables and
with

1
wp u, ff ZQ V,

our primal and dual problems take the form

minimize ]() over all fi e 0,
maximize () over all E ,

where we have

(4.1) f() sup L(fi, ) and () inf L(fi, ),

(4.2) P(5) argmax t(5, ) and (() argmin t(5, ),

in the notation that

1 1 1 1

(4.4) i5 WP--p, ZQ- - q, R ZQ- RP- WT.

The optimal solutions fi and to (7)) and () translate into optimal solutions and
to (75) and (), namely,

(4.5) WP- and ZQ9.

Let d be the dimension of the subspace (affUo) -fi and d2 the dimension of the
subspace (affVo) -9. We choose W such that, in the new coordinates corresponding
to the components of fi, the set Wp1/2(affUo-) affo- is the subspace spanned
by the first dl columns of In. Likewise, we choose Z such that in the coordinates
the set ZQ/2(affVo -9) affVo - is the subspace spanned by the first d2 columns
of Im. We partition the vectors fi E IRn and ]RTM into

where fil consists of the first d components of fi and @f consists of the first d2
components of @. (Here uf is the "free" part of fi, relative to (affU0) -fi being the
subspace that indicates the remaining degrees of freedom in the tail of our convergence
analysis when the critical face condition is satisfied, whereas ur is the "restricted" part
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of ft.) The projection mappings Sp, S, Sd, and S reduce in this way to the simple
projections . /f 0

0

We partition the columns of the matrix R in accordance with fi and the rows in
accordance with . Thus,

(.8) RrI Rrr /

In this notation the primal objective function in the transformed problem (7))
takes, in an ultimate quadratic region, the simple form

( ,]() ).A(fi- *) + const, for some * where
(4.9) T

while in the dual problem one similarly h

() ( v*).B( *) + const, for some *, where

(4.10) T

In fact, in the notation (4.5) and with 0 and 0 denoting the critical faces Wp1/2Uo
and ZQ1/2Vo in the transformed problems, one h the expansions

(4.11) ](fi)= ]()+ (I- I)’(I + III)(fiI- I) for fi afrO0,

(4.12) () () (I I)’(I + III)(vI I) for afrO0.

It will be helpful to write the Hessian matrices A and B in (4.9) and (4.10)

A crucial property of our change of variables Wp1/Uu and ZQ1/Uv i8
that

and accordingly,

IIV/()ll
IIV2f()ll- IIf(u)llP

and I111 I111,

and

and

IIV()ll IIVg(,)ll,

IIV-()ll IIVg()ll.
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The following result is a strengthening of Proposition 3.1 in the sense that it gives
a quantitative estimate for the relationship between Iluo- u211P and Iluo -fillP in the
primal, and between Ilvo v211Q and Ilvo IIQ in the dual.

PROPOSITION 4.1 (norm estimates). Suppose the critical face condition is satis-

fied. Then for uo and vo in an ultimate quadratic region for problems (7) and (),
and with u2 :- G(F(uo)) and v2 :-- F(G(vo)), one has

(4.15)

ProoS. In the transformed coordinates the first equation in Proposition 3.8 gives
us fi2 fi0 -p(V2]()(fi0 )) p-L(fi0 ). In the notation (4.13) for V2f()
this gives

This gives the right half of (4.15). To get the left half, decompose fi0-fi into
where is a unit vector in the null space of (All Air while r/is a unit vector in the
orthogonal complement of that null space, and the direction of r/is so chosen that

#2 > 0. Partition and /as well:

1=

It follows from (All Alr) Alljl + AI 0 that Jl -A])Alrr and

because the smallest eigenvalue of All is no less than 1. Therefore,

1 1
II:ll >_ >

1 -I-IIAsll + IIAII
Denote I10- 11 by . We get

Recalling that all the eigenvalues of All are no less than 1, we obtain

But the term (42_ #)1/2(1 + IIAII)-/:_ decreases monotonically as #2 in-
creases from 0. This term equals P2 :- (5 + 411AIl)-/a when #2 -/22. Therefore,
I10- 2112 > (p2)2, from which the left half of (4.15) follows. The proof of (4.16) is
similar.
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THEOREM 4.2 (rate of convergence of PDSD). Consider Algorithm 1 in the case

of threshold O, and suppose the critical face condition is satisfied. In terms of
? :- ?(P, Q, R)"- IIQ-1/2Rp-1/211 let

(4.17) Cl :- 1
1

<i,
(1 + ?2)[2 + 5(1 + ?2) + 4(1 + ?2)3]

(4.18) e := 1-
1 + ,/2 < 1.

Unless the algorithm actually terminates in a finite number of iterations with (, )
(, ), the sequences {f(u)} and {g(v)} generated by it converge linearly to the com-
mon optimal value f(f)= g(@) in the sense that

(4.19) limsup
f(u+l) f(’) < Cl and limsup

g(v+) g(v) < Cl.
o (u) () -o a() a()

Moreover, let be an iteration number such that .for v >_ all the points u, u and
v, v are in an ultimate quadratic region in Definition 3.7. Then once u’ E Uo for
some ’ >_ (as is sure to happen in an interactive primal restart at that stage) one
has

(4.20) f(u+l)- f() < a2 V > t
f(u) f()

12and similarly, once vo Vo .for some u" > (as is sure to happen in an interactive
dual restart at that stage) one has

(4.21)
g(v+l)- g(@) <_ c2 V > v".
a() a()

Proof. Under the assumption that the algorithm does not terminate after a finite
number of iterations at (fi, ), neither u nor v is optimal, as we have shown in the
proof of Proposition 3.1(b).

Again we work in the transformed coordinates. Consider _> , i.e., the sequences
{}, {} and {}, {} have entered the ultimate quadratic region. With respect
to the direction vector dv := fi fi, the optimal step length Av for fi u + Ad to
minimize the quadratic form (4.9) over all A [0, oo) can be written as

-d.A(f f,

d.Ad
[pA(f u*) + pl(f )].A(fi *)

[pA(f f*) + pi(f )].A[pA(f fi*) + pl(fi )]"

In the following, we first show that v _< 1. Then the search on [fi,] in Step 5 of
the algorithm is equivalent to a search on the corresponding half-line (or is "perfect,"
for short), and there exist easy ways to estimate progress in the line search step. By
Proposition 3.5 (cf. also the remark afterward), we have the following.

Case 1. There exists some >_ p such that U0 for all >_ .
Case 2. f Uo for all v _> P.



772 C. ZHU AND R. T. ROCKAFELLAR

In Case 1 the equation p_L (fi ) 0 holds for all v _> v’. Then it follows from
(4.22) that

p(A(fi *)).A(fi fi*)
Sp(A(’d *)).Ap(A(’d *))

P(A(’d *))’P(A(’d *)) < 1
&((g *)).&(( *))

because all the eigenvalues of A are at least 1. Now Step 5 of the algorithm must
coincide with the steepest descent method for f on affU0 with "perfect" line search,
since [,] is in an ultimate quadratic region of the problem. Note that all the
eigenvalues of the Hessian matrix AII are in the interval [1,1 + IIRIIII2], where
II/f$112 <_ 11/112 .y2. Hence by using the expression of ] in (4.11), we have [22]

1)
2

1+ 1/21lll

which yields (4.20) since ](+1)
_

f(?-t-1) in the algorithm.
In Case 2 we have < 1 for all u >_ , since otherwise fi would be taken as the

next point fi+l and the iteration would be on the critical face 0 thereafter. Hence
the line search restricted to [, fi] is again "perfect." On exiting from the line search
in Step 5, we have

]()- ]()
(.k’)2&,.Ad’

: []()- 1()]
[A(fi *).p(A( *)) + A(’d *).(u’ fi)]2

(&’.A&’) [(fi ).A(fi ) + 2( ).A( fi*)]"

Defining b() :-- fi-- A(- fi*) and observing ](+1) _< ](+1), we obtain from
the equation .p (A( fi*)) 0 (which is based on the optimality of ) that

]() ](,d+) > [&,.&, + b(u).(,d )]2
](’5’) ](u) (&’.A&’)[( ).A(fi ) 2b().p-L(fi )]

(a.a): + [().( )]:
(&’.Ad’) [(fi ).A(fi ) 2b().p-L(fi )]"

By Theorem 3.2 the algorithm converges, hence for arbitrarily chosen g > 0, we have
IIb(fi)- b()ll _< g for sufficiently large . Then

but Ib()’( )1- IIV]()ll.ll( )11. Therefore,

(4.24)
Ib(3)’p(3 )1 > 1
Ib().(3 )1
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where V]() 0, for otherwise 0 0, and then G e 0 in contradiction to our
assumption in Case 2.

Now, if d’.& >_ -b(f).pW(f’ t), we obtain from (4.15) that

](fG)- ](f+l) > (dv.dv)2
](fG) f(u) (d’.Ad’) [(fig u).A(f u) + 2d’.d’]

1

IIAII [2 + IIAII(5 + 411AII2)]

Otherwise d’.& < --b(fG).p-L(fG --), and then

by (4.24). Thus, we have

liminf
](f ](f+l) > 1

v- ](fG) ]() IIAII(2 + IIAII(5 + 411AII2))

which can be written as

limsup/(f +l) < 1-
IIAII (2 + IIAII(5 + 411AII2))

Noting that IIAII 1 + II(Rss Rs)II _< + IIRII 1 + 2, we get the first inequality
in (4.19), which is also true for Case 1 in view of (4.20) since c2 < Cl. The dual part
has a parallel argument. [:]

Observe that the rates in (4.20) and (4.21) are much better than the ones in

(4.19). The former will be effective if any interactive restarts occur for v _> , as
indicated in the theorem. This partially explains the effects of interactive restarts on
the algorithm as observed in our numerical tests.

The role of the constant - -(P, Q, R) in the convergence rate in Theorem 4.2 has
been borne out in our numerical tests, although because of the interactive restarts the
method appears to work much better than one might expect from "steepest descent."
We have definitely observed in small-scale problems where some idea of the size of
is available that the convergence is faster with low than with high /.

Although Theorem 4.2 centers on the specialization of Algorithm 0 to Algorithm 1,
the argument has content also for Algorithm 2. Recall from the discussion after
the statement of Algorithm 0 in 2 that in every k iterations of Algorithm 0 (when
implemented with cycle size k > 1) there is at least one primal line search on [u, u]
and at least one dual line search on Ivy, v]. This gives us the following result about
Algorithm 2, which will be complemented by a finite termination result in Theorem
4.5.
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COROLLARY 4.3 (rate of convergence of PDCG). Suppose the critical face con-
dition is satisfied. Then Algorithm 2 with e 0 converges at least k-step linearly in
the sense that

(4.26) limsup
f(u+k)- f() < Cl and limsup

g(v+k)- g(9) < cl,
,-o f(u) f() - g(v) g(9)

where Cl is the value defined in (4.17), unless the algorithm terminates after a finite
number of iterations with (, ;) (, 9).

To derive a special finite termination property of Algorithm 2, we need the fol-
lowing.

PROPOSITION 4.4 (inequalities in PDCG). Suppose the critical face condition is

satisfied. Let f, be an iteration number such that for v >_ 5, all the points u, u and
v, v are in an ultimate quadratic region U* x V* in Definition 3.7, where U* is

V*contained in the liP -ball around of radius , and likewise is contained in the

I1" I[Q -ball around 9 of radius 1/2 If uo E Uo for some u >_ f, then in Algorithm 2 one
has

v-1 > o
I,/IIwhenever (2.1)-(2.4) are used to generate u .for > ’, and similarly if vo Vo for

some " >_ f, then in Algorithm 2 one has

> 0

whenever (2.5)-(2.8) are used to generate v for > ".
Proof. It suffices once more to give the argumen_t in the context of the transformed

variables. Observe that the gradient mapping Vf is strongly monotone, and that

@ V](fi)-V](2-1) with 2 e [2-1, ,v--1]e when (2.1)-(2.4) are used to generate
u in the primal. Hence the primal part of the assertion is true if2 ? fi-1 for v > .
According to Proposition 3.5 (cf. also the remark after it), one has 2 00 for all

>_ . We partition all vectors in conformity with the scheme in (4.6). Then 0,r ur
and 22,r ld,r.

If the (- 1)th iteration with v > is the first iteration of a primal cycle, then the
~u--i -u--Iline search is performed on I-I, u2-U-I I. For the direction vector du-I :- u -u0

the optimal step length Au for 2 u + Adu to minimize the quadratic form (4.9) over
all A [0, oo) can be derived from the expression in (4.11) as

d’-l.Ad’-I df-l.Afldf-1’

where the first equation in Proposition 3.8 has been used with V](fi-l), and Aff is
the Hessian component in (4.13). Note that none of the eigenvalues of AII is less than
1. Hence -1 <_ 1, and the equality holds only if d-1 is an eigenvector corresponding

-1 -1 But it follows from (4.11) and theto 1 as an eigenvalue of AIr, i.e., Adfd df
first equation in Proposition 3.8 that we also have AII(I

~-1 -1no,f df therefore,
~--1 --1)k-1 1 implies u2,y 2f and ft. And then u 2, i.e., the iteration

terminates at the primal optimal solution.
If the (u- 1)th iteration with u > is not the first iteration of a primal cycle,

then formulas (2.1)-(2.4) are used to define Ue In the proof of Proposition 3.5,
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we have actually shown that -1 e 0 for all v > v’. Hence [-1, -1] c 0 for
all > y’ Then it follows from (2.4) that Ilfi-1 ~v-1 -1-u0 1unless isonthe
relative boundary of 0. In either ce we have u - again, since u0 for
> and * is contained in the . [[p-ball around fi of radius . The dual claims

can be verified similarly.
THEOREM 4.5 (U finite termination property of PDCG). Assume that the ct-

ical face condition is satisfied. Suppose that the cycle size k chosen in Algothm
2 is such that k > k, where k denotes the rank of the linear transfoation u
Sd(RSp(u)). (It sauces in this to have k > min(m,n}.) Let be an iteration num-
ber as defined in Proposition 4.4 and satisfying the conditions there. If uo Uo for
some (as is sure to happen in an interactive pmal resta at that stage), then
the algothm will resinate in the next full pmal cycle, if not earlier. Similarly, if
vo Vo for some " (as is sure to happen in an interactive dual resta at that
stage), then the algothm will resinate in the next full dual cycle, if not earlier.

Proof. We concentrate on the primal part; the proof of the dual part is parallel.
In the transformed variables, where we place the argument once more, k is the rank
of the submatrix If of in (4.8). Note that for the process is in a quadratic
region of the problem specified in Proposition 4.4. In the proof of Proposition 4.4,
we have shown that for all , IriS, ] C U0, and that the line searches on IriS, fi
are "perfect" in the sense that, on exiting Step 5 of iteration , +1 minimizes f
on the half-line from fi in the direction of -. Observe there is no interactive
primal restart in the first k- 1 iterations of a full primal cycle, i.e., u0 u for these
iterations. We claim now that the search direction vectors fi -fi and e v are
the same the ones that would be generated by a conjugate gradient algorithm on f
relative to aft U0. The finite termination property will be a consequence of observing
that the Hessians of f in an quadratic region of the problem (cf. (4.11)) have at most
+ 1 different eigenvalues.

The proof of the claim will go by induction. We know from Proposition 3.8 that
the claim is true for the first iteration of the full primal cycle in question. Suppose
it is true for the (v- 1)th iteration generating in that cycle, but fi . Then
by (4.27) in Proposition 4.4, the first alternative of (2.2) will be used to generate D.
Hence it follows from (2.1)-(2.3) and Proposition 3.8 that
(a.e)

(-1( )+Z$(- ) -v]() +. )-)
+Z$ I+Z$

m{0, (v]() v](-)).v]()}(_ ),Z$(- ) (v]() v](-)).(- )
where all the points fi-l, fi, and are on the critical face (0. By the induction
hypothesis, the directions of line search are the same as the ones generated by the
conjugate gradient algorithm in all the previous iterations of the cycle. Hence

v]().v](-) 0,

which implies (7]()I -V](fi-l)l).V](fi)i >_ 0; therefore, by noting that
v v vgo is a positive multiple of go go- we obtain

(V](,)J’ V](?-l)f)’V](?)f (,-1(a.a0) Z(- ) (v]() v](-)).(- )
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Comparing (4.29) and (4.30) with the conjugate gradient formulas of Hestenes and
Stiefel [22] we see that the vector ficg- u is equivalent to the search direction vector
in a standard conjugate gradient algorithm for f relative to the free variables, i.e.,
over aft Uo.

Observe that the rank of linear transformation in Theorem 4.5 is bounded above
by the ranks of the projection mappings Sp and Sd, which are dim U0 and dim V0.
Hence

k <_ rain{dim U0, dim V0}.
Therefore, even in the case that the original problems (P) and (Q) are of high dimen-
sion, the optimal solution can still be reached in a relatively short cycle after entering
an ultimate quadratic region for the problem if merely one of the critical faces U0 and
V0 happens to be of low dimension, provided that at least one of the critical faces
is eventually reached by the corresponding iterates. This condition will certainly be
satisfied if any interactive restarts occur for _> , since all points fi’ and ) will be
on the critical faces U0 and V0 by Proposition 1.8, and once u or v are on the critical
faces, they will stay there (Proposition 3.5).

There are ways to force this condition to be satisfied, such as to insert at the be-
ginning of each primal cycle a line search in the direction of the projection of -Vf(u)
on the tangent cone to U at u, and similarly in the dual. (See Burke and Mor [23].)
But even without such remedies, we often find in our test problems that the critical
faces are identified in the tail of iteration, and that restarts do occur in most cases,
after which the iteration terminates at the optimal solution in a few steps.

5. Envelope properties. To finish off, we establish two results on the finite-
envelope property of the points u and v in our algorithms.

PROPOSITION 5.1 (general saddle point property of iterates). On exiting from
Step 5 of Algorithm 0 with +l and +1, the elements +l
F(t+1) that will be calculated on return to Step 1 will be such that the pair (it0:+1, 0+1)
is the unique saddle point of L(u, v) on [u, u] V, while the pair (?+1, ?+1) is the
unique saddle point of L(u, v) on U Ivy, v]. In particular, + will be the unique
minimizing point relative to U for the envelope function

f(u) max L(u, v) <_ max L(u, v) f(u),
[,1 v

whereas +1 will be the unique maximizing point relative to V for the envelope function

g(u) := min L(u, v) >_ minL(u, v)= g(u).
u[u, .] uv

Proof. Recall that because we are in the fully quadratic case, L(u, v) and f(u)
are strictly convex in u, while L(u, v) and g(v) are strictly concave in v. In particular,

+ must be the unique solution to the problem in Step 5 of minimizing f(u) over
u [u, u]. This is the primal problem of extended linear-quadratic programming
that corresponds to L on [u, u] V instead of U V. Applying Theorem 1.1 to
it instead of to the original problem we deduce the existence of a vector v such that
(fi+, v’) is a saddle point of L relative to [u, u] Y. Then v’ is the unique point
maximizing n(+, v) with respect to v e V (by the strict concavity of n(u, v) in v).
Thus, v’ is the unique element of F(+), so v’ +. It follows from Theorem 1.1
again that (fi+,+) is the unique saddle point of L(u, v) on [u, u] V, and +1
is the unique solution to the corresponding dual problem, which by definition consists
of maximizing the function g over V.
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The rest of the assertions are true by a parallel argument in which Theorem 1.1 is
applied to the primal and dual problems that correspond to L on U x IvY, v]. [:1

PROPOSITION 5.2 (ultimate saddle point property of iterates). Suppose the crit-
ical face condition is satisfied. Let be an iteration number as specified in Proposition
4.4 and satisfying the conditions there. If r >_ is the first iteration of some
primal cycle with v E Uo, then for all >_ r in that cycle, on exiting from Step 5 of
Algorithm 2 (as implementing Algorithm O) with (t+1 the element O+ F((t+)
that will be calculated on return to Step 1 will be such that ((t+,O+) is the unique
saddle point of L(u, v) on UV x V, where

(5.1) := ... u0

and dim(aff{[u,ur] x x [u,u]}) u- r + 1. In particular, +1 will be the
unique maximizing point relative to V for the envelope function

gv(v) :-- min L(u, v) >_ min L(u, v)---g(u),
u6U u6U

and one will have g+ <_ g in that primal cycle. Moreover, for r + dl 1
with dl dim Uo, it will be true that g g in an ultimate quadratic region for the
problem, and also that +1 , as long as the algorithm does not terminate earlier.

Similarly, if s >_ is the first iteration of some dual cycle with v) Vo,
then for all >_ s in that cycle, on exiting from Step 5 of Algorithm 2 with )+1 the
element (t+ G(O+) that will be calculated on return to Step 1 will be such that
(+1,+) is the unique saddle point of L(u, v) on U x Y, where

VV := aff{[v,ves] x...x [v,vZ]} n [/,

with dim(aft {[v, v$] x..- x IvY, v’]}) - s + 1. In particular, ?+1 will be the
unique minimizing point relative to U for the envelope function

f(u) := max L(u, v) <_ maxL(u, v) f(u),
vEV vEV

and one will have f+ >_ f in that dual cycle. Moreover, for s + d2- 1 with
d2 :- dim Vo, it will be true that f f in an ultimate quadratic region for the
problem, and also that (t+ t, as long as the algorithm does not terminate earlier.

Proof. We concentrate on the primal part; the proof of the dual part is parallel.
The argument is similar to the one given for Proposition 5.1, but with the segment
[u, u] replaced by UV. Recall from the proof of Theorem 4.5 that for >_ r, the primal
procedure is equivalent to the conjugate gradient algorithm on the restriction of f to
the affine hull aft U0 of the critical face U0. Therefore, the vectors u u,...,u u
are linearly independent, and fi+l minimizes f(u) over u U. The inequality
g+ <_ g follows from the inclusion U+1 UV. When r + d 1 we have
dim ([u, u] ... [u, u’]) -dl, and then U -U0. From the fact that (3.3) holds
in * (cf. the derivation of this relation in the proof of Theorem 3.6) we get g g
in an ultimate quadratic region. D

This result tells us that on entering an ultimate quadratic region, the primal iter-
ations in Algorithm 2 produce an improving envelope for the dual objective function
which approaches that function, whereas the dual iterations produce an improving
envelope for the primal objectives which approaches that function. To some extent
this explains the phenomenon we have observed in our numerical experiments that
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restarts often incur fast termination, or at least bring significant progress in the next
few iterations.

6. Numerical tests. Numerical tests of Algorithm 1, the Primal-Dual Steepest
Descent Algorithm (PDSD), and Algorithm 2, the Primal-Dual Conjugate Gradient
Algorithm (PDCG), have been conducted on a DECstation 3100 with double precision
on some medium-to large-sized problems. For comparisons we have used the Basic
Finite-Envelope Method (BFEM) of [6] and the Stanford LSSOL code of Gill et al. [24]
for quadratic programming. To enhance the performance of LSSOL in this situation,
we tailored its Cholesky factorization subroutine to take advantage of the special
structure of the P and Q matrices in our examples.

Comparisons with LSSOL are based on the fact that any extended-linear-quadratic
programming problem can be converted into a standard quadratic programming prob-
lem by introducing auxiliary variables and additional constraints [1, Thm. 1]. It must
be kept in mind, however, that such a transformation not only increases the dimension
substantially but disrupts much of the large-scale structure that might be put to use.
A fundamental difficulty with any comparisons with available QP methods, therefore,
is that such methods are not really designed to handle the kinds of problems we wish
to tackle, which stem from [1], [2], and [6]. They typically require setting up and work-
ing with the huge R matrix, and trying to exploit any sparsity patterns that might be
present in it, whereas we never need this matrix but work with decomposition in the
calculation of the F and G, as explained in 1, after Proposition 1.6.

The integer recorded as the "size" of each problem is the number of primal vari-
ables and also the number of dual variables. (The two would not have to be the same.)
Thus, size 100 means that problem (7)) is an extended linear-quadratic program-
ming problem on lR1 for which the dual (7)) is likewise such a problem on IR1, while
the associated Lagrangian saddle point problem concerns a quadratic convex-concave
function on a product of polyhedral sets in IR1 lR1. In order to solve such a
problem using LSSOL, it must be reformulated as a primal problem in 400 variables
with 100 general equality constraints and 200 lower bounds on the auxiliary variables,
in addition to having the original polyhedral constraints on the 100 primal variables.

In all the tests of PDCG and PDSD we have taken 5 10-2 as the progress
threshold and s 10-s as the optimality threshold. For PDCG we have taken k 5
as the cycle size parameter (whereas PDSD always has k 1 by definition). We have
run BFEM with "mode-l," which means that in each iteration a quadratic saddle
point subproblem is solved over a product of two triangles. For the sake of expediency
in solving this small subproblem we have set it up as a standard QP problem in the
manner of [1, Thm. 1] and have applied LSSOL. No doubt the CPU time could be
improved by using a customized procedure within BFEM instead of this heavy-handed
approach.

The generation of test problems of large size raises serious questions about the
representative nature of such problems. It does not make sense to think of a large
problem simply in terms of a large matrix, the elements of which are all random.
Rather, a certain amount of structure must be respected. As an attempt to address this
issue, we have taken all our problems to have the (deterministic) dynamical structure
described in Rockafellar and Wets [5]. Only the parameters natural to this structure
have been randomized. The dynamical structure enables us to use special routines in
calculating f(u) and F(u), and on the other hand g(v) and G(v) [7]. For this purpose,
and in implementing BFEM, we rely on code written by Wright [25] at the University
of Washington.
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The problems have been obtained as discretized versions of certain continuous-
time problems of extended linear-quadratic optimal control of the kind developed
in Rockafellar [4]. The first digit of the problem number corresponds to different
continuous-time problems and the second digit corresponds to different discretization
levels, i.e., the number of subintervals into which the fixed time interval has been
partitioned, which determines the size of the discretized problem. Hence, e.g., the
problems 0.1, 1.1, ..., 9.1 are the discretization of 10 different continuous-time prob-
lems with the same discretization level (a transverse family of test problems), and
the problems 1.0, 1.1, 1.7 are the discretization of one continuous-time problem
with 8 different discretization levels (a vertical family of test problems). Only the
data values in the continuous-time model have been generated randomly, and in each
vertical family these are the same for all the problems. By increasing the number of
subintervals, one can get larger and larger problems which remain stable with respect
to the numerical scaling.

Prb.
0.1
1.1
2.1
3.1
4.1
5.1
6.1
7.1
8.1
9.1

Size
100
100
100
100
100
100
100
100
100
100

PDCG

TABLE 1

Test results of problems O. 1-9.1.

CPU time (sec.)
PDSD BFEM LSSOL PDCG

4.6 4.8 6.6 283.1
5.0 5.8 7.5 295.0
5.0 4.0 8.1 299.7
3.0 2.6 3.4 339.8
3.8 3.5 3.8 353.2
3.2 2.7 3.5 314.5
3.5 3.0 3.8 339.2
3.6 3.7 4.3 256.0
4.5 5.2 "17.5 290.6
3.5 3.3 4.0 347.2

Iterations
PDSD BFEM LSSOL

23 34 31 500
28 50 37 497
28 24 41 495
5 5 8 562
13 17 11 619
8 6 9 544

11 11 11 552
13 20 14 445
22 42 ** 481
12 15 12 591

Prb.
0.2
1.2
2.2
3.2
4.2
5.2
6.2
7.2
8.2
9.2

Size
340
340
340
340
340
340
340
340
340
340

PDCG

TABLE 2
Test results of problems 0.2-9.2.

CPU time (sec.)
PDSD BFEM LSSOL PDCG

9.2 8.9 15.3
12.5 14.4 19.3
10.1 11.9 20.5
5.2 4.3 6.8
7.8 6.6 8.7
6.5 5.5 8.0
5.7 5.1 7.3
5.4 5.9 7.7
9.8 11.2 20.3
6.0 6.4 9.5

Iterations
PDSD BFEM LSSOL

24 28 31
35 50 39
25 38 42
9 8 11
18 17 15
14 12 12
11 11 12
10 15 13
25 38 42
12 17 17

Prb.
0.4
1.4
2.4
3.4
4.4
5.4
6.4
7.4
8.4
9.4

Size
5140
5140
5140
5140
5140
5140
5140
5140
5140
5140

PDCG

TABLE 3
Test results of problems 0.4-9.4.

CPU time (sec.)
PDSD BFEM LSSOL PDCG
138.6 270.8 23
230.9 315.7 32
191.7 399.3 40
45.0 110.1 8
94.8 126.7 20
64.5 133.2 12
78.2 141.2 14
85.1 104.7 10

235.9 362.9 29
77.8 115.5 14

122.6
177.9
218.6
46.7
111.8
71.4
80.5
54.9

161.1
76.5

Iterations
PDSD BFEM

32 38
52 44
44 56
9 16

20 18
13 19
16 20
19 15
55 50
17 16

LSSOL
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The test results in Tables 1, 2, and 3 concern transverse families of size 100, 340,
and 5140, respectively. The problems in the first family are small enough for the
LSSOL approach to be viable as a comparison. But for the second and third families,
our DECstation 3100 falls short of having enough memory for the LSSOL approach.
Here we see that PDCG and PDSD are in the leading positions with BFEM not very
far behind in terms of CPU times.

The notation ** for the iterations of BFEM on problem 8.1 signifies that the
method failed to terminate with optimality in 100 iterations. The corresponding figure
for CPU time is preceded by * since it only indicates how long the first 100 iterations
took. (The same conventions are adopted in all other tables.)

Prb. Size
0.0 40
0.1 100
0.2 340
0.3 1300
0.4 5140
0.5 20500
0.6 81940
0.7 100020

TABLE 4

Test results of discretized problems 0.0-0.7.

CPU time (sec.)/Iterations
PDCG PDSD BFEM

2.9/11 3.0/15 3.3/13
./ a.s/a ./
9.0 24 9.1/28 15.2/31

27.1 22 32.1/32 58.7/34
122.5 23 137.2/32 269.2/38
568.6 27 593.7/32 1396.2/46

2873.8/27 2722.6/32 *10637.6/**
4209.3/28 3976.5/32 7086.3/38

LSSOL
35.3/327

244.4/500

Value
23.8626
15.7824
15.2107
15.2145
15.2179
15.2188
15.2190
15.2191

Prb. Size
1.0’ 40
1.1 100
1.2 340
1.3 1300
1.4 5140
1.5 20500
1.6 81940
1.7 100020

TABLE 5
Test results of discretized problems 1.0-1.7.

CPU time (sec.)/Iterations
PDCG PDSD BFEM

2.9/15 3.0/21 3.9/22
4.9/28 5.9/50 7.5/37
12.4/35 14.4/50 19.1/39
45.3/37 52.2/52 76.0/44
178.4/32 230.7/52 317.9/44
812.4/36 1007.5/52 1421.5/45

4015.8/36 4699.9/52 6119.9/45
5749.6/36 6538.5/52 8264.044

LSSOL
40.9/360

294.8/497

Value
242.05983
249.07378
249.77975
249.79866
249.79956
249.79972
249.79976
249.79976

Prb. Size
2.0 40
2.1 100
2.2 340
2.3 1300
2.4 5140
2.5 20500
2.6 81940
2.7 100020

TABLE 6
Test results of discretized problems 2.0-2.7.

CPU time (sec.)/Iterations
PDCG PDSD BFEM

3.6/28 4.4/63 *9.7/**
4.7/28 4.1/24 8.2/41
9.5/25 11.1/38 20.0/42

41.4/33 39.s/39 97.6/56
220.3/40 191.9/44 402.9/56
936.9/43 769.4/40 1945.4/63

4370.3/40 3396.5/39 8893.3/71
6247.2/40 5123.7/40 10032.1/53

LSSOL
44.7/446
254.8/495

Value
-261.5042
-362.2297
-369.7334
-369.8073
-369.8046
-369.8036
-369.8034
-369.8033

The test results in Tables 4, 5, and 6 refer to vertical families based on the first
three continuous-time problems. They cover sizes that are generally too large for the
LSSOL approach to be workable. The aim in this case is to examine the effects of
increasing size in a context where these effects can be isolated from other aspects of
the testing.

In these results the stability of the scaling is reflected by the way the optimal value
settles down and converges. Note the fact that, although the CPU time goes up as the
problem size becomes larger, the number of iterations remains almost constant once
the approximation is close. This suggests that the methods are able to identify the
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general location of the primal and dual optimal solutions fairly quickly, and that they
accomplish this in a manner that is relatively insensitive to the number of variables
and constraints. Quite the opposite behavior would be expected, of course, from an
active-set QP method. The increase in CPU time seems mainly due to the increase
in overhead in setting up the line searches as well as in the evaluations of f(u), F(u),
g(v), and G(v) when the dimension is high.

Tables 7, 8, and 9 test the importance of the interactive restarts in PDCG and
PDSD. The problems in this case are the same as in Tables 4, 5, and 6 correspondingly.
For each problem, the methods were applied in the proposed form, allowing interactive
restarts (the yes case), but then also in the modified form in which all such restarts are
suppressed (the no case). The difference that this makes is evident. Interactive restarts
have a big effect on the performance, and in the case of PDSD even dictate whether
the method is successful or not, in the sense of terminating within 100 iterations. The
tables also furnish information on the number of interactive restarts that occurred.
For instance, for problem 0.5 under the interactive version of the PDSD method one
reads that termination came in 32 iterations, and that in the course of these there
were 7 interactive primal restarts and 6 interactive dual restarts. The noninteractive
version took 89 iterations.

Another fact to be observed in these large problems is that the simplicity of
PDSD sometimes overtakes the carefully designed properties of PDCG in CPU time.
An interpretation is that when the dimension is very high, but PDCG is not yet near
to the solutions and is just using cycle size k 5 anyway, the conjugate gradient-
like features do not always provide a gain that offsets the extra overhead. While the
number of iterations in PDCG remains less, the time it takes, in comparison to PDSD,
can be more. Perhaps the greatest advantage of these methods comes, therefore, from
the information feedback involved in the interactive restarts, rather than from the
attention paid to the choice of the descent (or ascent) direction.

TABLE 7

Test results of restart role in problems 0.0-0.7.

Prb.
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

PDCG
CPU time (sec.)

PDSD
Yes No Yes No

3.0 3.4
4.8 8.7
9.1 *24.8

32.1 *92.6
137.2 "416.0
593.7 1671.3

2722.6 *8326.5
3976.5 *12423.5

2.9 3.0
4.3 4.4
9.0 9.8

27.1 35.6
122.5 137.1
568.6 561.6

2873.8 2949.1
4209.3 4012.9

Iterations
PDCG

Yes No
11(3/3) 16
23(4/6) 25

22(3/6) 31
(4/6) 7
27(4/7) 27
27(4/7) 27
28(4/7) 27

PDSD
Yes

15(3/8)
34(4/9)
8(a/8)
32(7/6)
32(7/6)
32(7/6)
32(7/6)
32(7/6)

No
38
94

89

Prb.
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

TABLE 8
Test results of restart role in problems 1.0-1.7.

Yes
2.9
4.9

12.4
45.3
178.4
812.4

4015.8
5749.6

CPU time (sec.)
PDSDPDCG

No
3.3
5.7

13.2
54.1

233.7
1011.5
5043.6
7325.6

Yes No
3.0 4.3
5.9 *9.5

14.4 *26.2
52.2 *97.3

230.7 *444.9
1007.5 "1978.8
4699.9 *8795.4
6538.5 *12726.2

PDCG
Yes

15(3/4)
28(3/7)
35(2/7)
37(2/8)
32(3/6)
36(2/7)
36(2/7)
36(2/7)

Iterations
PDSD

No
25
38
39
47
45
48
48
48

Yes

50, 8/6)

52,’4/6)

52(4/6)
52(4/6)

No

**
**
**
**
**
**
**
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Prb. Yes
2.0 3.6 4.4
2.1 4.7 6.6
2.2 9.5 16.1
2.3 41.4 59.6
2.4 220.3 295.2
2.5 936.9 1362.4
2.6 4370.3 6385.8
2.7 6247.2 9387.8

TABLE 9
Test results of restart role in problems 2.0-2.7.

PDSD
No

4.4 *5.4
4.1 7.0

11.1 *24.9
39.8 *92.9

191.9 *423.2
769.4 "1899.4

3396.5 *8497.5
5123.7 *12359.7

CPU time (sec.)
’PDCG’

No’ Yes
PDCG

Yes
2875/6)
2817/4
2517/4)
3319/5)
409/5)
43(9/6)
40(9/5)
4o(9/)

No
52
54
51
52
58
65
61
61

Iterations
PDSD

Yes
63t’7/8)

39(:’.0/5)
4. :9/5)
40(/5)
39(ll/5)
40(1/5)

No,,

**
**
**
**
**
**
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THE D-TRIANGULATION FOR CONTINUOUS DEFORMATION
ALGORITHMS TO COMPUTE SOLUTIONS OF NONLINEAR

EQUATIONS*

CHUANGYIN DANG?

Abstract. A new triangulation of continuous refinement of grid size of (0, 1] R for use in
a continuous deformation algorithm to compute solutions of nonlinear equations is proposed. It
is called the D-triangulation. One can choose any positive even integer as a factor of refinement
of grid size of this triangulation. The author proves that the D-triangulation is superior to the
K-triangulation and J-triangulation in the number of simplices. Numerical tests show that the
continuous deformation algorithm based on the D-triangulation is indeed much more efficient.

Key words, continuous deformation algorithms, triangulations, measures of efficiency of trian-
gulations, numerical solutions of nonlinear equations

AM$ subject classification. 90C30

1. Introduction. Simplicial methods, also known as fixed point methods, were
originated by Scarf in his seminal paper [20] to compute fixed points of a continuous
mapping from the unit simplex to itself. Simplicial methods have been developing for
over twenty years. As a tool for solving highly nonlinear problems, which are derived
from decision making, economic modelling, and engineering, simplicial methods are
very powerful.

The so-called continuous deformation algorithm is one of the most successful
simplicial methods. It was initiated by Eaves in [9] to compute fixed points on the
unit simplex and generalized to R by Eaves and Saigal in [11] to find solutions of
nonlinear equations. This method is also called the simplicial homotopy algorithm.

The principles of the continuous deformation algorithm are as follows. Let f
Rn - Rn be a nonlinear mapping, f (fl,f2,...,f)T. We want to compute a
zero point of f. Let g Rn --. Rn be an affinely linear mapping with a unique zero
point x, i.e., g(x) A(x- x), where A is an n x n nonsingular matrix. Then the
homotopy function h is given by

f 2(1 t)f(x) + (2t- 1)g(x),h(t,x) f(x),
1/2<__t<__l,
O_<t<

for (t, x) E [0, 1] Rn. The underlying space (0, 1] Rn is subdivided into simplices by
a triangulation, denoted by T, with continuous refinement of grid size. The piecewise
linear approximation H of h with respect to T is given by, for (t, x) -:in___l Aiy E a,
a simplex in T, with Ai >_ 0, for i -1, 0,..., n, and i=_ Ai 1,

n

H(t,x)= Aih(yi),

where yi is a vertex of a for i -1, 0,..., n. Then there exist some piecewise linear
paths defined by the set of zero points of H. In particular, one of the paths starts at
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x and either goes to infinity or converges to a zero point of f. One can trace this
path with the standard lexicographical pivoting rule.

It was recognized very early (see [17]) that efficiency of a simplicial algorithm
depends on the underlying triangulation. In order to improve efficiency of continuous
deformation algorithms, a number of triangulations with continuous refinement of grid
size have been proposed. These include the K3-triangulation and J3-triangulation of
Todd [22]; the D3-triangulation and D2-triangulation of Dang [4], [5]; the arbitrary
grid size refinement triangulation of van der Laan and Talman [15] and Shamir [21];
the K2-triangulation, J2-triangulation, K-triangulation, and J-triangulation of Ko-
jima and Yamamoto [14]; the triangulation of Broadie and Eaves [2]; and the trian-
gulation of Doup and Talman [8]. All these triangulations were derived from the
well-known Kl-triangulation or Jl-triangulation, except the D3-triangulation and
D2-triangulation, which were obtained from the D-triangulation. The latter tri-
angulation of Rn was proposed in [3] and is superior to the K-triangulation and
J-triangulation according to all the measures of efficiency.

The development of triangulations of arbitrary continuous refinement of grid size
is stimulated by the implementation of an acceleration technique originated by Saigal
in [18]. Theoretical results and numerical tests have proved that the D3-triangulation
is superior to the K3-triangulation and J3-triangulation and that the D2-triangulation
is superior to the K2-triangulation and J2-triangulation. As mentioned by Kojima and
Yamamoto in [14], the K3-triangulation is a special case of the K-triangulation with
all the factors of refinement equal to two, and the J3-triangulation is a special case
of the J-triangulation with all the factors of refinement equal to two. Numerical
tests have shown [4] that the continuous deformation algorithm based on the D3-
triangulation is very efficient. However, all of its factors of refinement are also equal
to two. Motivated by the results in [14] and using the D-triangulation, we construct
a new triangulation of continuous refinement of grid size of (0, 1] Rn for use in a
continuous deformation algorithm. It is called the D-triangulation. One can choose
any positive even integer as a factor of refinement of this triangulation. This feature
is the same as that of the K-triangulation or J-triangulation. Similarly to the K3-
triangulation and J3-triangulation, the D3-triangulation now becomes a special case
of the D-triangulation with all the factors of refinement equal to two.

For comparison with the D-triangulation, we also present the K-triangulation
and J-triangulation, which were given by Kojima and Yamamoto in [14] without
an algebraic definition. We prove that the D-triangulation is superior to the K-
triangulation and J-triangulation in the number of simplices. Since it is rather com-
plicated to calculate the surface density of these triangulations, we will not reproduce
it here. We refer the reader instead to [3] and [12].

Numerical tests show that the continuous deformation algorithm based on the
D-triangulation is indeed more efficient. We remark that the structure of the D-
triangulation is quite different from that of the D2-triangulation. Numerical tests show
that the D-triangulation is generally faster than the D2-triangulation. However, the
number of simplices of the D2-triangulation is less than that of the D-triangulation
when their mesh sizes are equal and one can choose any positive number as a factor
of refinement of grid size of the D2-triangulation. Note that there exists a number
of other interesting triangulations of Rn; see [19], [16], [24], and [13]. However, it
is not known how these triangulations of R can be used to obtain triangulations of
(0, 1] Rn with continuous refinement of grid size.

In 2, an algebraic definition of the D-triangulation is presented. In 3, we prove
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that the definition given in 2 yields a triangulation. The pivot rules of the D-
triangulation for how to generate one of its adjacent simplices from a simplex when
moving along the path are described in 4. Comparison with some other triangulations
is presented in 5.

2. Algebraic definition of the D-triangulation. Let No denote the index
set (0, 1,..., n} and let u be the ith unit vector in Rn+l for i 0, 1,..., n. Let
be a positive number and E (1/jlj- 1, 2,...} for i 0, 1, We choose
such that j+ /2 for j 0, 1, Set f_ 1.

Let r (r(0), r(1),..., r(n)) be a permutation of the elements of No. Let q
denote the integer with r(q) 0. We take a vector y E (0, 1] Rn such that, for an
integer k >_ 0, Y0 2-(k+l), y,(i)/2ok+ is an integer for i 0,..., q-- 1, and y(i)/o.
is odd for i q + 1,..., n. We define

L<)/J + 1

L()/J

if Lye(i)/okJ is odd,

otherwise,

for i-- 0,1,...,q- 1.
DEFINITION 2.1. Let y and r be as above. Then vectors y-, y0, ..., yn are

given as follows.

-1

yi_. yi-1 + 2k+lU(i), i 0, 1,...,q-- 1,

q-1 u()Yq ak -j=O Wr(j) + j-q+l (Y,(j) ak)u() + 2y0u,
yi__ yi-1 + 20kUr(i), i--q+ 1,...,n.

Let y-, y0, yn be obtained in the above manner. Then it can be seen that
they are affinely independent. Thus their convex hull is a simplex. Let us denote this
simplex by K(y, r). Let K denote the collection of all such simplices K(y, ). It
will be shown in the next section that K, is a triangulation of (0, 1] x R such that
one can choose any positive even integer as its factor of refinement of grid size and
when all of its factors of refinement of grid size are equal to two, it becomes the same
as the K3-triangulation. We call it the K-triangulation.

Let r (r(0),r(1),...,r(n)) be a permutation of the elements of No. Let q
denote the integer with r(q) 0. We take a vector y (0, 1] Rn such that, for
an integer k >_ 0, Y0 2-(k+), Yr(i)/2ok+ is even for i 0,... ,q- 1 if 1/3k is
even, y,(i)/20k+ is odd for i 0,... ,q- 1 if 1/k is odd, and y(i)/Ok is odd for
i q + 1,..., n. If 1/k- is odd, let us define

t()
( 1

if y(i)/ak l(mod4),

if y,(i)/ak 3(mod4),

for i q / 1,..., n, and if 1/k_ is even, let us define

if Y,(i)/ak l(mod4),

1 if y(i)/ok 3(mod4),
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for i qq- 1,..., n. We take a sign vector s (sl, s2,..., sn)- such that s E {-1, +1}
for i 1, 2,..., n and s(i) tr(i) for i q -b 1,..., n. We define

wr(i)

Ly()/J + 1

Ly=()/J

if [y(i)/akJ is odd and either y(i)/ak

or both [w()/-J .()/ and s,(i)- 1,

if [y(i)/aJ is even,

[y(i)/akJ 1 otherwise,

for i O, 1, q 1.

DEFINITION 2.2. Let y, r, and s be as above. Then vectors y-l, y0, ..., y are
given as follows.

-1

yi_ yi-1 q_ 2ak+lsr(i)u(i), i 0, 1,...,q- 1,

q--1 nyq ak ’]-j=O Wr(J)ur(j) -[- -’]j=q+l(Y(J) aks,(J))u(j) + 2y0u,

yi yi-1 + 2aks(i)u(i), i--q+ 1,...,n.

Let y-l, y0, ..., yn be obtained in the above manner. Then it can be seen that
they are affinely independent. Thus their convex hull is a simplex. Let us denote this
simplex by J (y, r, s). Let J denote the set of all such simplices J(y, r, s). It will
be shown in the next section that J is a triangulation of (0, 1] Rn such that one
can choose any positive even integer as its factor of refinement of grid size and when
all of its factors of refinement of grid size are equal to two, it becomes the same as
the J3-triangulation. We call it the J-triangulation.

Let r (r(0), r(1),..., r(n)) be a permutation of the elements of No. Let q
denote the integer with r(q) 0. We take a vector y E (0, 1] R such that, for
an integer k >_ 0, y0 2-(k+l), yr(i)/2ak+l is even for i 0,... ,q- 1 if 1/k is
even, yr(i)/2ak+l is odd for i 0,... ,q- 1 if 1/k is odd, and y(i)/ak is odd for
i q + 1,..., n. If 1/3k-1 is odd, let us define

( 1

if y,(i)/ak l(mod4),

if y,(i) /ak 3(mod4),

for i q + 1,..., n, and if 1/k_1 is even, let us define

t(i) { 1 if y(i)/ak 1 (mod4),

1 if y,(i)/ak 3(mod4),

for i qq- 1,..., n. We take a sign vector s (sl, s2,..., sn)- such that s {- 1, -t- 1 }
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for i 1, 2,..., n and s(i) t(i) for i q + 1,..., n. We define

w,(i)

Ly=()/kJ + 1 if is odd and either y(i)/ak LYe(i)/akJ

or both [y()/aJ y()/a and s() 1,

[y()/aJ if [y()/ak] is even,

[y,(i)/akJ 1 otherwise,

for i O, 1,...,q- 1. Set

I--
(r(i) lw(i)/2 is even and 0 <_ i <_ q- 1}

( {r(i) lw,(i)/2 is odd and 0 <_ i <_ q- 1}

if 1/f-x is odd,

if 1/k_ is even.

Let h denote the number of elements in I. We take two integers pl and p2 such that
-1 <_ p <_ q 2 if q >_ 1; p -1 if q 0; when h 0, 0 <_ P2

_
n- q 1 if q < n,

and p2 0 if q n; when h > 0, p2 n- q.
DEFINITION 2 3 Let y, r, s, p, and P2 be as above. Then vectors y- yO "’,

yn are given as follows. When Pl -1,

--1

yi y q_ 2Cgk+18r(i) ur(i),

and when pl >_ 0,

When h > 0,

i 0, 1,...,q- 1,

q-1y-1 y + 2a+x -j=0 s-(J)ur(j)

yi yi- 2ak+lSr(i)Ur(i), 0,1,...,p 1,

yi y + 2ak+18r(i)Ur(i) i=pl,...,q--1.

q- u() ,
Yq k j=O Wr(j) -k -j=q-bl (Y(J) q- aks(J))ur() q- 2You,

yi yi- 2aks(i)u(i), i q -b 1,.. n,

and when h 0, if p2 O, then

q--1 U(j nYq (k j=O Wr(j) -b -j=q-kl (Yr(j) Ok87r(j))ur(j) + 2you,

yi yq q_ 20zkSr(i)Ur(i), i q + 1,..., n,

and if P2

_
1, then

q--1 nYq k j=O W(J)uv(j) -}- j=q-}-I (Y(J) -- Ok8r(J))u(j) -- 2y0uyi y- 2aks,(i)u(), i q / 1,..., q / P2 1,

yi y* + 2(kS(i)u(), i q + P2, n,
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where

Let y-l, yO, ..., yn be obtained in the above manner. Then it can be seen
that they are affinely independent. Thus their convex hull is a simplex. Let us
denote this simplex by D(y, r,s, pl,p2). Let D denote the set of all such simplices
D(y,r,s, pl,p2). It will be shown in the next section that D is a triangulation of
(0, 1] x R such that one can choose any positive even integer as its factor of refinement
of grid size and when all of its factors of refinement of grid size are equal to two, it
becomes the same as the D3-triangulation. We call it the D-triangulation.

3. Construction of the D-triangulation. As follows, we prove that the sets
K, J, and D defined in the second section yield a triangulation of (0, 1] x R’,
respectively. Let N denote the index set {1, 2,..., n} and let Q denote the set

{w all components of w are integers}.

We take an arbitrary element w E Q. We define

Io(w) {i e N w{ is odd} and Ie(w) {j e N wj is even}.

Furthermore, let A(w) denote the set

{x Rn wi 1 <_ xi <_ wi -+- 1 for i Io(w), xi wi for i Ie(w)}

and let B(w) denote the set

{x Rnlx{- w{ for i Io(w), w- 1 _< x _< w-F 1 for i Ie(w)}

Let k be a nonnegative integer. Let Dk(w) denote the convex hull of the set

({2-k} X n(w))[.J ({2-(k+l) } x S(w)).
The following lemmas can be found in [4] and [14].

LEMMA 3.1.

d- w I_< 2k+ld0- 1 for Io(w)
Dk(w) d [2-(k+1),2-k] x R

d w I_< 2 2k+ld0 for i Ie(w)

LEMMA 3.2. LJ,oeQ.Dk(w) [2-(k+l), 2-k] x Rn.
LEMMA 3.3. For W1, W2 Q, Dk(w) 1 Dk(w2) is either empty or a common

face of both Ok (w1) and Ok (w2), and when Ok (wl) lDk(w2) is not empty, it is equal
to the convex hull of the set

({2-k } x (A(w) lA(w2)))U ({2-(k+) } x (B(w) ’1B(w2))).

For convenience of the following discussion, we give the definitions of the D1-
triangulation, Kl-triangulation, and J-triangulation. For more details, see [3] and
[22]. Let e be the ith unit vector of R for i 1, 2,..., n.
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Let D denote either the set

{x E Rn [all components of x are odd}

or the set

{x Rn [all components of x are even}.

Let r (r(1), r(2),..., r(n)) be a permutation of the elements of N. We take a
vector y from the set D and a sign vector s (sl, s2,..., sn)- such that s (-1, 1}
for i 1, 2,..., n. Let p be an integer with 0 <_ p _< n- 1.

DEFINITION 3.1. Let y, r, s, and p be as above. Then vectors yO, yl, ..., yn
are given as follows. If p 0, then y0 y and yJ y + s,(j)e(), j 1, 2,.. n. If
p >_ 1, then

yO --y+ s,

y yj-1 s()e.(j), j 1, 2,...,p- 1,

y y + s(j)e(), j "-p,p+ 1,...,n.

Let D1 denote the collection of all simplices DI(y, , s, p) that are the convex hull
of y0, yl, ..., yn, as obtained from the above definition. Then D1 is a triangulation
of Rn, called the Dl-triangulation.

Let K denote the set

{x Rn [all components of x are integers}.

Let r (r(1), r(2),..., r(n)) be a permutation of the elements of N. We take a
vector y from the set K.

DEFINITION 3.2. Let y and r be as above. Then vectors yO, yl, yn are given
as follows

yO y and yj yj-1
_

ev(j), j 1, 2,...,n.

Let K1 denote the collection of all simplices K1 (y, r) that are the convex hull of
yO, yl, ..., yn, as obtained from the above definition. Then K1 is a triangulation of
Rn, called the Kl-triangulation.

Let J denote either the set

{x Rn [all components of x are odd}

or the set

{x Rn all components of x are even}.

Let r (r(1),r(2),... ,r(n)) be a permutation of the elements of N. We take a
vector y from the set J and a sign vector s (sl, s2,..., sn)- such that si E {-1, 1}
for i 1,2,...,n.

DEFINITION 3.3. Let y r, and s be as above. Then vectors yO, yl yn..., are
given as follows.

yO y and yj yj-1
__

sr(j)eV(j), j 1,2,...,n.
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Let J1 denote the collection of all simplices J1 (Y, r, s) that are the convex hull of
y0, yl, ..., yn, as obtained from the above definition. Then J1 is a triangulation of
Rn, called the J-triangulation.

Let G be one of these triangulations of Rn. Let G denote the set of faces of
simplices in G. Then let a0 be a positive number and i E {1/j[j- 1, 2,...} for
i 0, 1, We choose aj+ such that aj+ ajj/2 for j 0, 1, Set/_ 1.
Note that ai and/i are the same as before in the second section.

Let 2akG[akA(w) be the set given by

{a c_ akA(w) a e 2ak and dim(a) dim(A(w))}
and let 2ak+iG[akB(w) be the set given by

{a C_ akB(w) a e 2ak+e and dim(a) dim(B(w))}.
For the D-triangulation, the K-triangulation, and the Jl-triangulation, it can be
seen that 2akG akA(w) is a triangulation of akA(w), and 2ak+lGI akB(w) is a
triangulation of akB(w).

Let a denote the number of elements in the set Io(w) and let b denote the number
of elements in the set Ie(w). Let. aA 2akG akA(w) be equal to the convex hull
of y, y, ..., y and let as e 2a +le a S(w) be equal to the convex hull of y,
y, ..., ybs. Furthermore, let a denote the convex hull of the set ({2-k } x hA)U
({2-(+) } Xas). It can be easily proved that a is a simplex in [2-(+1), 2-] xR and
a is equal to the convex hull of (2-k, y)-, (2-k, y)-,..., (2-k, y)-, (2-(k+l) y)-,

...,
Let T(k,k + 1) denote the collection of all such simplices a. Then, following

the conclusions mentioned above, we have that, for a and a2 in T(k,k + 1), the
intersection a N r2 is either empty or a common face of both a and (2, and that
the union of all a e T(k, k + 1) is equal to [2-(k+), 2-k] Rn. Hence, T(k, k + 1) is
a triangulation of [2-(+), 2-k] x R.

THEOREM 3.4. The union of T(k,k + 1) over all nonnegative integers k is a
triangulation of (0, 1] Rn.

Proof. From the choice of cj and Dj for j 0, 1,..., the theorem follows imme-
diately. [:]

We call the triangulation obtained in the above manner the G-triangulation.
In this way, we obtain the K-triangulation, the J-triangulation, and the D-tri-
angulation, as described in 2. Considering consistency, one can easily prove these
results.

4. Pivot rules of the D-triangulation. As described in the first section,
when a piecewise linear path of zero points is traced, the problem one faces is how
to generate one of its adjacent simplices from a simplex when moving along the
path. As follows, the pivot rules of the K-triangulation, J-triangulation, and D-
triangulation are described. The continuous deformation algorithm based on one of
these triangulations can be implemented according to these pivot rules. In the follow-
ing pivot rules, y0 2-(k+l), Y--- (Y,..., Yn)-, 0 2-(t+l), (, n)-, and
=(1,1,...,1)-c.

Let a simplex of he K-triangulation, a K(y, r), be given with vertices y-l,
y0, -.., yn. We want to obtain the simplex of the K-triangulation, K(, ),
such that all vertices of a are also vertices of except the vertex yi. As follows, we
show how and depend on y, r, and i.
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i---1" In case q O, l Y- aku, (r(1),...,r(n),r(O)), q- n,
and k 1. In case q > 1, if o

Y(o) ak(W(o) + 1), then y-

(Y(o)- ak(W(o) q- l))u(), (r(l),..., r(n), r(O)), - q- 1, and k;
if o (r rY(0) ak(W(o) -b 1), then y / 2ak+lu() (1 ,..., (q-
1), r(0), r(q),..., r(n)), q, and k k.
0_<i< q-1" y, (r(0),...,r(i q-1),r(i),...,r(n)), q-- q, and
k=k.
0 _< i q 1: If Y(q-1) ak(w(q-1) 1), then y, (r(0),..., r(q),
r(q 1),..., r(n)), q 1, and k k. If Y(q-1) =/= a(w,(q_l) 1), then

y- 2ak+lu(q-1), (r(q-- 1), zr(0), ..., r(q-- 2), r(q), r(n)), q,
and k k.
q-i<n: - y, - (r(0),...,r(q-bl),r(q),...,zr(n)), - q+l, and
k=k.
q < i < n" y, (r(0),..., r(i / 1), zr(i),..., r(n)), q, and k k.
i n: In case q < n, 1 y 2ak+lu(n), (r(n)i r(O),..., r(n 1)),
q q- 1, and k k. In case q n, 1 Y q- ak+lU, (r(n), r(0),..., r(n- 1)),
(l=O, and k=k+ l.

Next, let a simplex of the J-triangulation, a J(y, r, s), be given with ver-
tices y-l, yO, yn. We want to obtain the simplex of the J-triangulation,

J(, ,), such that all vertices of a are also vertices of except the vertex
yi. As follows, we show how , , and depend on y, r, s, and i.

i -1: In case q 0, l y--akS, s, (r(1), r(2),..., r(n), r(0)),
n, and k 1. In case q > 0, y -b 4ck+l8r(0)ur(0) $ s 2Sr(0)Ur(0)

r, q-- q, and k k.

and k- k.
0_<i=q-l: In case
then y, -- s, (r(0),..., r(q), r(q- 1),..., r(n)), --- q- 1, and

k; if s(q-1) t(-l), then y, s-2s(a_Ou(a-1),
(r(0),..., r(q- 2), r(q),..., r(n), r(q- 1)), - q- 1, and k k. In case

Y(-_I) =/= a(w(q_l)- sr(-l)), y, s-2sr(_l)u(-1), r, q,
and k k.
q- < n: y, $ s, (r(0),...,r(q + 1),r(q),...,r(n)), q + 1,
and k k.
q < i < n: y, s, (r(0),..., r(i + 1), r(i),..., r(n)), q, and
k=k.
i=n: In case q < n, l y, s-_2S(n)U(n), (r(0),...,r(q-
1), r(n), r(q),..., r(n-1)), q q+l, and k k. In case q n, y+ak+lS,

s, (r(n), r(0),..., r(n- 1)), q 0, and k k + 1.
Finally, let a simplex of the D-triangulation, a D(y,r,s,pl,p2), be given

with vertices y-l, yO, ..., yn. We want to obtain the simplex of the D-triangulation,
D(y, r, s, I51,162), such that all vertices of a are also vertices of except the vertex

yi. As follows, we show how 9, , , i61, and i62 depend on y, r, s, pl, p2, and i.

i= -1" In case q O, t Y- aks, s, (r(1),..., r(n), r(0)), /31
P2 1,/32 0, n, and k 1. In case q 1, 1 Y + 4ok+lSr(o) uv(O),
$- s-2sr(o)U(), r, Pl =Pl,/32 =p2, = q, and k. In case
q > 1, when pl -1, y, $ s, r, Pl pl + 1, 2 P2, ( q,
and k k; when pl 0, y, s, r, /31 pl 1, I2 p2,
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q, and k k; when pl _> 1 and Y(o) ak(W(o) S(o)), if h 0
and p2 0, then y, s 2_S(o)U(), (r(1),..., zr(n), r(0)),
31 pl 1, 2 P2, ( q 1, and k k, if h 0 and p2 _> 1, then y,

s 2S(o)U(), (r(1),..., r(q), r(0), r(q + 1),..., r(n)),/31 pl 1,
2 P2 q- 1, q- 1, and k k, if S(o) t(o) and h 1, then y,

s, (r(1),..., r(n), r(0)), i1 pl 1,/32 p2, ( q 1, and k,
if S(o) t(o) and h > 1, then y, s, (r(1),...,r(n),r(0)),
31 Pl 1, P2 P2 + 1, q- 1, and k k, and if S(o) t(o) and h > 0,
then y, $ s 2S(o)U(), (r(1),..., r(q), r(0), r(q + 1),..., r(n)),
I1 =p1-1,/32 =p2+l, =q-1, and k; whenpl

_
1 andy(o)

a(w_(o) S(o)), y, s 2S(o)U’(), r, Pl Pl, I p, q,
and k k.
0 < i < q: In case Pl -1, when y(i) ak(w(i)--s(i)), if h 0 and P2 O,
then y, s-2s(i)u(), _- (r(O),..., r(i-1), r(i+l),..., r(n), r(i)),
I1 pl, P2 P2, q-l, and k k, if h 0 and p2 > 1, then y, s-

2s(i)u"(i), (r(O),..., r(i- 1), r(i + 1),..., r(q), r(i), r(q+ 1),..., r(n)),
i1 =pl, P2 p2+1, q-l, and k k, ifs(i) t(i) and h- 1,
then y, s, (r(O),..., r(i- 1), r(i + 1),..., 7r(n), r(i)), Pl pl,

i2-p2,=q-l, andk--k, ifs(i)-t(i) andh> 1, then-y,=s,
(r(O),...,r.(i-1),r(i+l),...,Tr(n),r(i)), Pl pl, P2 p2+1, - q-l,

and k, and if s(i) t(i) and h > O, then y, s- 2s(i)u(i),
(r(O),..., r(i 1), r(i + 1),..., r(q), r(i), r(q + 1),..., r(n)), Pl Pl,

I2 P2 + 1, c q- 1, and k k; when Y(i) ak(w(i) s(i)), y,
()u()s-2s - r,/31 =pl,/32 =p2, c- q, and - k. In case

i ( Pl 1, y, s, (r(O),..., r(i + 1), r(i),..., r(n)), p Pl,
P2=p2,=q, andk=k. In casei=pl-l,=y,-s,=r, pl-pl-1,
P2 =P2, q, and k- k. In case i > pl and 0 < Pl < q-2, y,

s, (r(O),..., r(pl 1), r(i), r(pl),..., r(i 1), r(i + 1),..., 7r(n)),
11 Pl - 1, P2 P2, q, and k k. In case i > q- 2 and 0 < pl q- 2,
1 Y + 4a._k+lSr(i.)ur(i*), s- 2s(i.)u(i*), r, /31 Pl, P2 P2,
q- q, and k k, where

i*
q-1 if i q- 2,

q-2 ifi--q-1.

i--q: In case h 0, when p2 0, if q < n- 1, then y, s,

" 7r, /51 Pl, 2 P2
--1, then
2 P2, ( q q- 1, and k k, if q n- 1 and pl _> 0, then y,

s, (r(q + 1), r(O),..., r(q), r(q + 2),..., r(n)), Pl Pl -[- 1,/32 P2,
q q + 1, and k k; when p2 1, y, s, r, 31 px,
/32 p2-1, q q, and k k; whenp2 _> 2, if pl -1, then y,
g 8 28(q+1)Ur(q+l),
P2 p2--1, q q+l, and k, ifpl > O, then y, 8--28(q+l)Ur(q+l),

(r(q + 1), zr(O),..., r(q), zr(q + 2),..., r(n)), Pl Pl + 1, /32 P2 1,
q q+l, and k k. In case h > O, when q < n, if pl -1, then
1 Y, s 2sr(q+l)u(q+l), (7r(O),...,r(q + 1),Tr(q),..., r(n)),
Pl =P1, i2 =p2-1, q= q+l, and k k, and if pl > O, then y,

8 28r(qT1)Ur(qA-i), (7(q -- 1),7r(0),..., 7(q), 71"(q - 2),..., 71"(n)),
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/1 Pl + 1,/2 P2 1, q + 1, and k k. In case q n, y + ak+s,
s, (r(n),r(0),...,zr(n- 1)), / --1, I2 P + 1, 0 and

k=k+l.
q < i _< n: In case h 0, when P2 0, if p -1, then y, s

2s(i)u(i) ((0),..., r(q- 1), r(i), r(q),..., r(i- 1), (i + 1),..., r(n)),
Pl Pl, 12 P2, q+l, and k k, and ifp >_ 0, then y,

s-2s,()u(), (r(i),r(0), ,r(i-1),r(i+l), .,r(n)),pl =pl+l,
2 P2, t q-F 1, and k k; when i < q-t-p2- 1, y, 8,

(r(0),..., r(i d- 1), r(i),..., r(n)),/ p, P2 p2, - q, and k k;
when i qq-p2-1, y, s, r, pl, P2 p2-1, Ct q, and k;
when i >_ q-P2 and 1 _< p2 < n-q-1, fl y, -- s, (r(0),..., r(qq-p2-

+ + q,
andk-k;wheni>_n-landl<_p2--n-q-l, ifpl--1, then-y,

s, (r(O), r(q-1), r(i**), (q), r(i**- l), r(i** + l), r(n)),
P p, P2 p2, q + 1, and k k, and if pl _> 0, then y y, s,- ((**), (0),.. ,(** ), (** + ), (n)), + , p. ,
t] q -F 1, and k k, where

i**--
n if i---n-I,

( n-1 ifi--n.

In case h > 0, when i < n, y, s, (r(0),..., r(iq-1), r(i),..., zr(n)),
/ pl,/2 p2, q q, and k; when i n, ifp -1, then y, $ s,

(r(0),..., r(q-1), r(n), r(q),..., r(n-1)), i61 pl, P2 p2-1, q+l,
and k k, and if p >_ 0, then y, s, ((n), r(0),..., r(n- 1)),
161 Pl + 1, P2 P2 1, q + 1, and k k.

5. Comparison of triangulations. Since it is very complicated to calculate the
surface density of the K-triangulation, the J-triangulation, and the D-triangulation,
we only compare the number of simplices of these triangulations. For details about the
surface density, we refer to [3] and [12]. Let Un denote the unit cube {x E Rn I0 <_ xi
_< 1 for i 1, 2,..., n}. We set a 1/k.

THEOREM 5.1. The number of simplices of the K-triangulation or J-triangulation
in the set [2-(k+),2-k] 2akHn is equal to pn(a) given by

Pn(()--((2c)’+- 1)n!/(2c- 1).

The number of simplices of the D-triangulation in the same set is equal to qn(a)
given by

n

qn(c) ((2m 1)Ccmdm(n m)! -t- cmcmdmdn_,),
m--O

where

dj j + j(j 1) +.-.-Fj(j 1)...4.3+ 2

for j >_ 2, do dl 1, and Cm n!/m!(n m)!.
Proof. Let Q denote the set (w e R wi e (0, 1, 2} for i 1, 2,..., n}. We take

an arbitrary vector w Q. Let (w) denote the set

(x R wi 1 <_ x <_ wi + 1 for i Io(w), xi w for i Ie(w)}
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and let B(w) denote the set

x_Rn

xi wi for i E Io(w),

wi _< xi <_ wi -t- 1 for i Ie(w) and wi 0,

wi-l_<xi_<wifori6Ie(w) andwi-2

Furthermore, let (k/)(w) denote the convex hull of the set

Then it can be seen that

[2-(k+1), 2-k] 2akHn Ue(2akD(w).

Let m denote the number of elements in Ie(w). Then there are 2"Cm elements in
Q such that m components of each of them are even. Thus the numbers of simplices
of the K-triangulation or J-triangulation in the set

Uec, I()l=,aD(w)
is equal to

The number of simplices of the D-triangulation in the same set is equal to

(2m 1)Cmcmd,(n m)! + Cmmd,d,_m.

Since

U=o(UtO ii.(w)l=,ok)(w)) [2-(k+l), 2-k] X 2akHn,

the theorem follows immediately. D
THEOPEM 5.2. When n >_ 3, qn(c) < pn(c). As n approaches infinity, q(c)/p()

converges to e- 2.

Proof. The conclusion is obvious, so the proof is omitted. D
From Theorem 5.2, we have that the number of simplices of the D-triangulation

is the smallest of these three triangulations.
Asfollows, a few numerical tests are given to show that the continuous defor-

mation algorithm based on the D-triangulation is indeed much more efficient. Let
us denote the continuous deformation algorithms based on the K-triangulation, J-
triangulation, and D-triangulation by CDAK, CDAJ, and CDAD, respectively.
We have made computer codes of these algorithms in PASCAL. As we noted when
discussing the principles of the continuous deformation algorithm in 1, letting A be
the identity matrix, we have run these computer codes on a few tests for finding a zero
point with several different initial points x. Let NFE denote the number of function
evaluations. The algorithm terminates when the accuracy for maxl<< Ifi(x*)l of
less than 10-5 has been reached. In Tables 1-9, if the accuracy has not been satisfied
when the number of function evaluations is equal to 50,000, a symbol * is marked.
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TABLE 1

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
5 397 314 195
6 862 396 612
7 2086 1418 878
8 5099 2675 1847
9 9686 3991 2996
10 43,719 4476 3001

Problem A. The function f" Rn - Rn is given by

fi(x)=xi-cos i xj i--l,2,...,n.
j-1

When xi 10 for i 1,2,.. ,. n, co 5, and j 1 for j 0,1,..., the
numerical results are given in Table 1.

When xi 10 for i 1,2,...,n, c0 5, and 2j 1 and 2j+1 0.5 for
j 0, 1,..., the numerical results are given in Table 2.

TABLE 2

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
5 384 351 216
6 762 475 802
7 2070 2218 755
8 3063 2907 1516
9 15,045 9520 8008
10 24,404 8696 7447

0 i for i 1, 2,When xi .., n, so 5, and j 1 for j 0, 1, the numerical
results are given in Table 3.

TABLE 3

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
5 356 248 209
6 789 292 307
7 1908 585 653
8 4478 896 665
9 8616 2496 1929
10 24,774 3206 3315
11 * 4198 4513
12 * 10,289 7245

When xi
o i for i 1,2, n and Co 5, and D2j 1, and D2j+I 0.5 for

j --0, 1,..., the numerical results are given in Table 4.
Problem B. The function f" R -- Rn is given by

cos(i-]n x) i=1 2, n...,

Whenxi 10 fori 1, 2,...,nandso 5, andj 1for j--0,1,..., the
numerical results are given in Table 5.
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TABLE 4

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
5 508 223 179
6 821 363 321
7 1423 736 518
8 4260 1006 865
9 9665 1771 2335
10 31,156 6226 4875

TABLE 5

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
5 463 403 228
6 1483 707 450
7 7230 1978 1180
8 10,529 3123 2293
9 * 8938 4163
10 * 11,943 3777

When xi 10 for i 1,2,...,n, (o 5, and/2j 1; and/2j+1 0.5 for
j 0, 1,..., the numerical results are given in Table 6.

TABLE 6

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
5 454 430 234
6 1004 672 336
7 4506 2448 1761
8 15,397 3320 3532
9 * 12,588 13,962
10 * 6853 14,460
11 * * 40,286

When xi i for i 1,2,...,n and co 5, and j 1 for j 0, 1,..., the
numerical results are given in Table 7.

When xi i for i 1,2,...,n, Co 5 and /2j 1; and /2+1 0.5 for
j -0,1,..., the numerical results are given in Table 8.

Problem C. The function f" R’ Rn is given by

I(x)=x- i+
j--1

i 1,2,...,n.

Whenxi 0 fori- 1, 2,...,nandco-0.5, and/j 1for j- 0,1,..., the
numerical results are given in Table 9.

From these numerical examples, it seems clear that the continuous deformation
algorithm based on the D-triangulation is indeed more efficient.
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TABLE 7

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
5 384 169 201
6 1615 823 646
7 3850 1415 1000
8 7256 1609 933
9 * 1422 8071
10 * 8462 5942

TABLE 8

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
5 494 167 217
6 1218 673 491
7 7176 2780 1106
8 10,825 3207 2116
9 * 2444 3775
10 * 6799 5553

TABLE 9

n NFE(CDAK) NFE(CDAJ) NFE(CDAD)
10 115 100 78
20 274 274 125
3O 559 559 185
40 944 944 245
50 1429 1429 305
60 2014 2014 365
70 2699 2699 425
80 3484 3484 485
90 4369 4369 545
100 5354 5354 605
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a-LOWER SUBDIFFERENTIABLE FUNCTIONS*

J. E. MARTiNEZ-LEGAZ? AND S. ROMANO-RODRiGUEZ$

Abstract. In this paper the authors introduce the notion of a-lower subdifferentiability, with
a E (0, 1], for extended real-valued functions defined on a locally convex real topological vector
space X. This is a generalization of the concept of lower subdifferentiability due to Plastria, which
corresponds to the case a 1. When X is a normed space, the class of a-lower subdifferentiable
functions appears to be closely related to that of a-Hblder quasi-convex functions. Two applications
to quasi-convex optimization are given: a duality theorem, based on conjugation with respect to ha,
and Kuhn-Tucker-type optimality conditions in terms of a-lower subdifferentials.

Key words, generalized subdifferentiability, quasi convexity, generalized conjugation theory,
dual problem, lower semicontinuous quasi-convex hull

AMS subject classification. 26B25

1. Introduction. For algorithmic purposes, Plastria [11] introduced the notions
of lower subdifferentiable (1.s.d.) functions and boundedly lower subdifferentiable
(b.l.s.d.) functions by relaxing the subdifferentiability concept of convex functions.
He proved that a 1.s.d. function defined on a closed convex set is quasi-convex and
lower semicontinuous (1.s.c.) and that a function defined on the whole space is b.l.s.d.
if and only if it is Lipschitzian and quasi-convex.

We will introduce the concept of a-lower subdifferentiable (a-l.s.d.) functions,
for a E (0, 1], in such a way that Plastria’s notion corresponds to the case a 1. We
will see that a-HSlder functions play, with respect to this notion, an analogous role
as Lipschitzian functions with respect to lower subdifferentiability.

We will study the notion of a-lower subdifferentiability from the viewpoint of
the generalized conjugation theory of Moreau [9]. We will also see that the concept
of a-lower subdifferentiability can be obtained as a particular case of the generalized
subdifferentiability of Balder [1]. For the case a 1, this study was made by Martlnez-
Legaz [7], [8] and Penot and Volle [10].

We shall use the following notation. X will be a locally convex real topological
vector space, X # {0}, with topological dual X*. In 3 and 5, we shall impose X to
be a normed space. By we shall denote the extended real line [-oe, +cx]; IR+ will
be the set of nonnegative real numbers. The level sets (strict level sets, respectively)
of f" K c X -- IR are

S,(f) {x e K If(x <_

and

,),(f) {x e K If(x <

where A lR. A function f is quasi-convex when its level sets (or, equivalently, its
strict level sets) are convex. One says that f is quasi-affine if K X and both
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f and -f are quasi-convex. Given a function f, we will denote its epigraph, lower
semicontinuous hull, quasi-convex hull and lower semicontinuous quasi-convex hull
by epif, f, fq, and fq, respectively. The convex hull and the closed convex hull of
K c X will be denoted by coK and -6K, respectively; we will use the symbol coneK
to represent the cone generated by K" coneK (AxlA > 0, x E K}.

We will consider the extension of the potential function of exponent c E (0, 1) to
the real line that results in defining x -oc if x < 0. It is easy to verify that this
is the unique extension that preserves concavity.

We recall the generalized conjugation theory of Moreau [9] and the generalized
subdifferential of Balder [1].

Let C and D be two arbitrary sets and let c" C x D ---, IR be a function that
we will call a coupling function.

Given f" C IR we define its c-conjugate, fc. D IR, by

fC(y) sup{c(x, y)- f(x)}.
xC

In the same way, given g D IR, its c-conjugate, gC C IR, is defined by
means of

gC(x) sup{c(x, y) g(y)}.
yD

An elementary function on C with respect to c is a function of the form c(., b) +/
where b D and IR. The elementary functions on D are defined analogously.

The set of functions from C into IR (from D into ]R, respectively) that are suprema
of elementary functions is denoted by r(C,D) (r(D, C), respectively). From this
definition, one deduces that fc F(D,C) for every function f" C IR and,
analogously, g e F(C, D) for every function g" D lR.

The F-regularized of f C ---. IR is the supremum of elementary functions
which are minorants of f. The F-regularized of f coincides with fc (see [9, p. 123]).
Therefore,

f fcc f e r(C, D).

For g" D ]R analogous properties hold.
Following the definition of Balder (see [1, p. 332]), we say that a function f

C IR is c-subdifferentiable at xo C if f(xo) IR and there exists Y0 D such
that

f(x) f(xo) >_ c(x, Yo) -c(xo, Yo) for any x e C.

An element y0 satisfying this property is called a c-subgradient of f at xo. The set of
all c-subgradients of f at x0 is called the c-subdifferential of f at xo and is denoted
by

The following properties hold (see Balder [1, p. 332]):

(1.1) Yo Ocf(xo) f(xo) + f(Yo) c(xo, Yo) for x0 C, y0 D,

(1.2) Of(xo) # 0 f(xo) f(xo) for x0 e C,

fCC(xo) f(xo) = OcfCC(xo) Ocf(xo) for xo C.
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In 2 and 3, we give the definition and properties of a-l.s.d, functions and of a-
b.l.s.d, functions. In 4, we provide a conjugation theory for a-l.s.d, functions and we
see that, for a certain coupling function, the notions of generalized subdifferentiability
and a-lower subdifferentiability coincide. By restricting this coupling function to an
appropriate set, we obtain in 5 a conjugation theory suitable for a-b.l.s.d, functions
defined on normed spaces; we shall also prove that they are just the a-Hhlder quasi-
convex functions. An application of the above theory to qui-convex optimization is
given in 6.

2. Definition and properties of -lower subdifferentiable functions.
DEFINITION 2.1. Let (0, 1], K C X be a convex set and f K . We

say that f is -l.s.d. at Xo K if f(xo) and there exists w X* such that
f(x) f(xo) (W(xo x)) for any x K with f(x) < f(Xo).

The continuous linear function w is said to be an a-lower subgradient of f at
x0. The set of -lower subgradients of f at x0 is called the -lower subdifferential of
f at xo and is denoted by Of(xo). We say that f is a-l.s.d, if it h an -lower
subgradient at every point of K.

Notice that, according to the way we have extended the potential function, if
w e Of(xo) and x e g is such that f(x) < f(xo), then W(xo x) > O.

By extending f" g by means of ] defined by ](x) f(x) if x e g and
](x) + if x K, we can consider each function defined in the whole space;
then O](xo) Of(Xo) if x0 e g and O](xo) if x0 g.

PROPOSITION 2.1. Let f" X . If f is -l.s.d., then f is quasi-convex and

Proof. Let and x0 X be such that xo S(f). Take w Of(xo). Define

Hxo {x e X [w(xo- x) (f(xo) A)/}.

Let x e S(f). Since A _> f(x) >_ f(xo) (w(xo x))a, we can write

(f(xo) < x).

We deduce that Sx(f) c Hxo. Therefore, as xo Hxo, SA(f) is an intersection of
closed halfspaces, whence it is convex and closed. D

There exist quasi-convex continuous functions that are not a-l.s.d. For example,
take the function f: ]R -- ]R given by f(x) x3. Let any a E (0, 1]. Then f is not
a-l.s.d, at any x E IR. Actually, f(x) x is not a-l.s.d, at any x IR for a (0, 1)
either (but it is 1.s.d. at all points).

In general, a-lower subdifferentials of f at x0 are not monotonically depending
on a. To see this, take the function f :IR ---. ]R defined by

f(x) min{-(-x)c*, 0}.

It is easy to prove that 1 e Of(O) and that, for any e (0, 1] such that a, we
have 0f(0) q). Therefore, 0f(0) 9 0-f(0) if/ a.

The following proposition states some properties of a-lower subdifferentials.
PROPOSITION 2.2. Let f X ----, IR and xo X. Then
(1) Of(xo) is an w*-closed convex set.
(2) If w Of(Xo) and a > 1, then aw Of(xo).
(3) 0 e Of(xo) = Xo is a global minimum of f == Of(xo) X*.
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Proof. (1) We can write

Of(xo) (w IT(x0 x) >_ (f(xo) f(x))1/ for all x e X with f(x) < f(x0)},

which shows that this set is w*-closed and convex.
(2) Let w e Of(xo), a > 1, and x e X be such that f(x) < f(Xo). We have

f(xo) > f(x) > f(xo)- (w(xo- x))’;

hence w(xo x) > 0 and therefore

f(xo) (a(xo x))a f(xo) (W(xo x))

_
f(x).

The proof of (3) follows immediately from the definition of Of(xo). D
The following result is easy to prove.
LEMMA 2.3. Let g" IR --- ]Ft. If g is nondecreasing, then, for any xo E IR that is

not a global minimum of g, we have Og(xo) C IR+ \ (0}. If g is c-l.s.d., the converse
also holds.

PROPOSITION 2.4. Let f" X -- lit, g" IR ]R be a nondecreasing function
on f(X) and (, e (0, 1]. Then

CO’(g o f)(XO) E) (C’g(f(Xo)))l/ao- f(XO)

for any xo X such that f(xo) is not a global minimum of g.
Proof. Let * e Og(f(xo)), w e Of(xo), and x e g be such that (g o f)(x) <

(g o f)(x0). Then, we have

g(f(x)) >_ g(f(xo)) [A*(f(xo)- f(x))]f,

where A* > 0 by the preceding lemma. On the other hand, since g is nondecreasing,
we deduce f(x) < f(x0) and then

f(x)

_
f(xo) ((Xo x))’.

Hence,

(g o f)(x) >_ (g o f)(xo) -[,k*(f(xo)- f(x))]
> (a o

Therefore, (,*)l/atZ e O(g 0 f)(XO), which proves the statement.
As a consequence of the preceding theorem, we have that if one of the functions

in the statement is 1.s.d. and the other one is a-l.s.d., the composite function is also
a-l.s.d.

The composition of an a-l.s.d, function with a continuous linear one is also a-l.s.d.,
as we can see in the following result.

PROPOSITION 2.5. Let f X JR, Y be a locally convex space and let T
Y ---. X be a continuous linear operator. Then, for every Yo Y, we have

O(f o T)(yo) T*(Of(T(yo))),

where T* denotes the dual operator of T (in particular, if f is a-l.s.d, at T(yo), so is

f o T at Yo). If T is a topological isomorphism, equality holds.
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Proof. Let w e Of(T(yo)) and let y e Y be such that (f o T)(y) < (f o T)(yo).
By the definitions of Of(T(yo)) and T*, we have

(f o T)(y) f(T(y)) > f(T(yo)) [w(T(yo) T(y))]a

(f o T)(yo) [T*(w)(yo y)],

which proves that T*(w) e O(f o T)(yo). When T is a topological isomorphism, we
get

O((f o T) o T-1)(T(yo)) (T*)-(O(f o T)(yo)),

which proves the equality.
The c-lower subdifferential is related to two notions of generalized subdifferential

which play some role in quasi-convex analysis: the quasi subdifferential of Greenberg
and eierskalla [5, p. 441] and the tangential of Crouzeix [2, p. 42], defined for f
X IR and x0 E X by

e x* >_ _>

and

Tf(xo) (w E X* sup(w(x x) f(x) <- A} < /A< f(x)/’
respectively. Crouzeix [2, Prop. 12, p. 42] proved that

Tf(xo) C O*f(xo).

The following inclusion involving the a-lower subdifferential is also satisfied.
PROPOSITION 2.6. Let f" X IR and Xo X be such that f(xo) ]Ft. Then

cg2f(xo) C Tf(xo).

Proof. Let w Of(xo), < f(xo), and x e X be such that f(x) < ). We have
f(x) < f(xo) and, thus,

f(x) > f(xo) (W(Xo x))c*.

We deduce

(f(xo)- A)/ <_ (f(xo)- f(x))/" <_ cO(xo- x).

Thus,

sup{(x- xo)lf(x) <_ A} <_ -(f(xo) A) x/" < O,
xX

which concludes the proof. [3

In general, equality in the preceding proposition is not satisfied; unlike Of(xo),
Tf(xo) is necessarily a cone. In fact, we will prove (see Proposition 5.12 below) that
under suitable conditions Tf(xo) coincides with the cone generated by Of(xo).

If f X -- ]R is quasi-convex and Gteaux-differentiable at x0 and the Gteaux-
differential Vf(xo) does not vanish, then, since O*f(xo) c {kVf(xo) lk > 0} (see [2,
Prop. 20, p. 53]), evidently

O2 f(xo) C {kVf(xo) k > 0}.
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When a 1, the second member in this inclusion can be replaced by {kVf(xo)lk >
1} (see [7, Cor. 4.16, p. 217]). However, for a < 1, there is no k0 > 0 such that

O2f(xo) C {kVf(xo) ]k > k0}

for any quasi-convex function f and any x0 at which f is Ggteaux-differentiable with
nonzero Gateaux-differential. Indeed, take f" IR --- IR defined by f(x) max{Ixl, 1}
and let x0 > 1. It is easy to prove that f is quasi-convex and differentiable at xo, with
f’(xo) x-1. On the other hand, we have

Of(xo) 1 ( ff- 1)1/
Xo- 1

The nonexistence of k0 > 0 with the required property can be deduced from the fact
that

lim
(x- 1)1/c

lira
(x- 1) 1/c

o1+ (xo- 1)/’(xo) o1+ (xo- 1)ax-1

3. Definition and properties of a-boundedly lower subdifferentiable
functions. In this section, X will be a normed space, whose norm will be denoted
by 1[. 11. In X* we will consider, as usual, the norm [[. 1[* induced by I1o II, that
is, I[ w I1" sup{w(x)l I[ x I[ < 1) (w e X*). More generally, if (Y, I[" II) is another
normed space with dual (Y*, [[. [[*) and T: Y ---, X is a continuous linear operator,
we will write T sup{[] T(y)[]1[[ Y < 1}. The following formula of Ascoli for
the distance from a point to a closed hyperplane [13, Lem. 1.2, p. 24] will be used
several times:

(3.1) inf{[[ x y w(y) w(xo)} [w(x xo)[

Let a E (0, 1]. One says that f" K c X ----+ lR is a-H61der with constant N if

f(xl) f(x2) N[] Xl x2 ]]a for any Xl,X2 e K.

DEFINITION 3.1. Let f K C X IR. We say that f is a-b.l.s.d, if there is
N > 0 such that for any x e g there exists w e Of(x) with w [[* < N.

Constant N is called an a-b.l.s.d, bound of f.
a-Hhlder functions are related to a-b.l.s.d, functions, as we can see in the follow-

ing results.
THEOREM 3.1. Every function f" K C X lR a-b.l.s.d, with a-b.l.s.d, bound

N is a-Hiilder with constant N.
Proof. Let x, xo be such that f(x) < f(xo), and take w e Of(xo) with [[ w ][* _<

N; then

which proves the statement. [:]

THEOREM 3.2. Let f X IR be quasi-convex and a-Hb’lder with constant N.
Then f is a-b.l.s.d, with a-b.l.s.d, bound N1/.

Proof. Let x0 X. Since xo f(o)(f) and this set is nonempty, open, and
convex, by the Hahn-Banach theorem [4, p. 5] there exists w e X* such that I1 w I1"
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1 and w(x- xo) < 0 for every x E 2/(xo)(f). Let x $(xo)(f). For any e > 0, there
exists xe X such that

IIx-xll<-inf{llx-Ylllw(Y)--w(x0)}+e and w(x)-w(Xo).

Using (3.1), we can write the preceding inequality as [I x xe -< W(Xo x)-t-e. Since
w(x- xo) -O, we have x l(o)(f) and, therefore,

0 > > >
>_ -N(w(xo x) + e)a -[N1/a(W(xo x) + e)]".

Since this is true for any e > 0, we obtain

f(x) f(xo) > -[N1/"(w(xo x))]",

which proves that N1/aw vO2f(xo). As ]] N1/aw ]]* N1/a, we have completed the
proof. [:]

COROLLARY 3.3. Let f X IR. Then f is a-b.l.s.d, with a-b.l.s.d, bound N
if and only if it is quasi-convex and a-Hhlder with constant N

As a direct consequence of Proposition 2.4, we have the following.
PROPOSITION 3.4. Let f K C X lit, g IR ---, IR be a nondecreasing

function on f(g) and c, (0, 1]. If f and g are a-b.l.s.d, and -b.l.s.d., respectively,
then g o f is a-b.l.s.d.

The composition of an a-b.l.s.d, function with a continuous linear operator is also
a-b.l.s.d., as the following result says.

PROPOSITION 3.5. Let f X ---. IR, Y be a normed space and T" Y ---. X
be linear and continuous. If f is a-b.l.s.d, with a-b.l.s.d, bound N, then f o T is
a-b.l.s.d, with a-b.l.s.d, bound

Proof. By the demonstration of Proposition 2.5, we know that, for all Y0 Y and
w e OT(yo), one has T*(w) e O(foT)(yo). On the other hand, if w I1" -< N, then

4. Conjugation theory for a-lower subdifferentiable functions. We will
apply the generalized conjugation theory of Moreau [9], described in 1, to the case
when C X, D X* IR, and ha C D ----, IR, with (0, 1], is the coupling
function defined by

ha(x, (w, k)) min{-(k w(x))a, 0} + k.

The ha-conjugates of f X and g- X* IR are fh X* IR
and gh. X , respectively, defined by

fh(w,k) sup{min{-(k- w(x))a, 0} + k-
xEX

and

gh"(x) sup {min{-(k w(x))a, 0} + k g(w,k)}.
wEX*,klR

The elementary functions on X with respect to ha are of the form

min{-(k-w)a,0}+tt withweX*, keIR and #e.
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We will denote the set of their suprema as As(X). Since the elementary functions are
quasi-affine and continuous, the functions belonging to As(X) are quasi-convex and
1.s.c.

In some proofs, we will use the following elementary result.
LEMMA 4.1. Let E (0, 1] and a, b IR be such that a, b >_ O. Then (a + b) <_

as +b.
A first characterization of the functions belonging to As(X) appears in the fol-

lowing lemma.
LEMMA 4.2. Let f" X ---. ]R. Then the following results are equivalent:
(1) f e As(X);
(2) for every (x0, A) (X. IR)\ epif there exists w X* such that A-

(w(xo x))" <_ f(x) for all x S(f).
Proof. Let us see first that (1) = (2). Let (x0, A) e (X IR) \ epif. Then

A < f(xo) and, by definition of A(X), there exists an elementary minorant of f

min{-(k w)", 0} + #

such that

(4.1) min{-(k w(xo))", 0} + # _> A.

Let x (f); hence, we have

min{-(k- w(x))a, 0} + # _< f(x) < A _< min{-(k- w(x0))a, 0} + # _< #

and, therefore,

k > ().

We will distinguish two cases: k <_ w(xo) and k > W(xo).
If k <_ w(xo), by (4.1) we have

A (k w(x)) <_ -(k w(x)) + # <_ f(x),

and, since w(x) < k <_ w(xo), we can write

l(x) > - (k- (x))" > - ((x0- x))".

Suppose now that k > w(xo). From (4.1) we deduce

(4.2) -(k- (x0))" + , > ;
hence, we have

-(k w(x))a +/ min{-(k w(x))a, 0} + # _< f(x)
< < -(k- (x0))" +

and, therefore, 0 < w(xo- x). Now applying Lemma 4.1, for a k- w(xo) and
b W(Xo- x), and using (4.2), we deduce- ((x0 ))" < - (- ())" + (k -(0))"

< -(k ())- + ,
_< f(x),
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which we wanted to see.
Let us now prove the implication (2) == (1). Given x0 E X and A < f(xo), that

is, such that Ix0, ,k) e (X IR)\epif, there exists w e X* with A-(w(xo x)) <_ f(x)
for any x e S(f). Choose k- w(xo).

If x (f) we can write

min{-(k w(x))a, 0} + ) <_ -(k w(x))a + )

-(w(xo x)) (" q- ) <_ f(x).

If x e X \ (f) we have

f(x) >_ ) >_ min(-(k w(x)), O} q- ).

We have seen that

min{-(k w), 0} + )

is a minorant of f; moreover, it takes the value , at x0. As this happens for any
x0 e X and A < f(xo), it follows that f An(X).

The following theorem characterizes those functions that are suprema of elemen-
tary functions. As mentioned at the beginning of this section, we recall that such
functions are quasi-convex and 1.s.c.

THEOREM 4.3. Let f X IR be quasi-convex and l.s.c. Then the following
statements are equivalent:

(1) e
(2) for every ,k < supxex f(x), there exist w X* and k e lit such that

(3) for every A < supzex f(x), there exist w X* and k IR such that

-(kx-) + ) minorizes f on ;),(f);

(4) for every , < supzex f(x), there exist w X* and k IR such that

min{-(k w)c’, O} + ,k minorizes f;

(5) supxex f(x) --supxex fh"h"(x).
Proof. (1) ===V (5). This implication is obvious, since (1) is equivalent to the

equality f fhh.
fhh(5) ==V (4). Let < supxex f(x) supzex (x). There exists, therefore,

x0 X such that < fhh (Xo). Since fh,h is a supremum of elementary minorants
of f, there exist w X*, k E IR, and # IR satisfying

min(-(kx wx), 0} + #), _< f

and

min{-(k w(xo))(’, 0} + # > ).

From this inequality we deduce # > , and hence

min{-(k w)", 0} + _< f.
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(4) == (3). This equivalence is evident, because a function g minorizes f on
(f) if and only if man(g, A} _< f.
(3) == (2). This equivalence is obvious.
(3) == (1). We will apply Lemma 4.2.
Let (x0, ) E (X IR) \ epif; thus x0 S(f). Since f is quasi-convex and 1.s.c.,

S,x(f) is a closed convex set. Therefore, since xo S(f), by the Hahn-Banach
theorem, there are E X* and t IR such that

(x)

_
t < (xo) for every x e S),(f).

On the other hand, by (3), there exist w X* and k lR such that

-(k- w)a + A minorizes f on (f).
Define w a +w with

x(xo)
max

(xo)- t

Let x E (f). One can write

Therefore, - ((0 ))" < - (k -(x))" < f(x)

for any x e ),(f). Using Lemma 4.2, we conclude that f e As(X). V1

The hypotheses on f have been used only to prove implication (3) (1). If we
substitute statement (4) by

(4’) for any A < supex f(x), there exist w e X* \ (0} and k e IR such that

min{-(k w),)", 0} + minorizes f,

then one can prove (4’) = (5) directly.
Let A < supex f(x). Since fh,,,h, is the supremum of elementary minorants of

f, one has

min{-(k w), 0} + A _< fh, h,.

Let y E X be a point that satisfies w(y) kx; then, taking the supremum, we get

sup fh"h"(x) >_ sup{min{-(k w(x))", 0} + A}
xX xX

_> min {- (k), ov),(y))’ O} + A A.

Letting A supex f(x), we obtain

sup/h,h, (x) >_ sup f(x).
xX xX
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Since the other inequality holds for any function f, we have demonstrated (5).
It is evident that (4) is equivalent to (3’) and (2), which consist in (3) and (2),

respectively, adding the condition w 0.
It is easy to see that any constant function is a supremum of elementary non-

constant functions. From this, by an obvious modification of the above proof of the
implication (5) ===> (4), we deduce that (5) =:=> (4) which demonstrates that (5)
is equivalent to (4), (3), and (2). We say that a function which satisfies these
conditions has property (Ha).

We define the "ha-level of f" as,, su,{ e x* \ {0}, k e uch that

-(k- (x))" + _< S() o ny x e (S)}.
The ha-level is related to the second conjugate as follows.

LEMMA 4.4. Let f X -- IR. Then

Aa,f sup Sh"’ (x).
xEX

Proof. Let < Aa,f. There exist, therefore, w E X* \ (0} and k E lR such that

-(k: -w(x))a / A <_ f(x) for any x e (f). Hence min(-(k -w)a, 0} + _< f
and thus min(-(k -w)a, 0} + A <_ fh, h.. We have

sup fh"h"(x) >_ sup(min(-(k -w(x))a, 0} + A}
xEX xX

>_ min {- (k), w(y))a O} + A A,

where y EE X satisfies w(y) k. Letting A -- Aa,f, we obtain

a,f

_
sup $h’"(x).
xx

To see the other inequality, let A < supex (x). By Theorem 4.3, there exist

w X* and k IR such that

-(k ())" + < S(x)

for any x E (f). We can suppose w 0 (since every constant function can be
expressed as a supremum of nonconstant elementary functions). Thus, _< Aa,f and,
letting A -- supex (x), we get

.,s > sup Io-(x),
xEX

which we wanted to prove. 0
THEOREM 4.5. Let f" X IR. Then

Shah" min{f, Aa,f }.

Moreover, Sh"h" S if and only iS f has property (Ha).
Proof. We define g min{fq, Aa,f}. This function is quasi-convex and 1.s.c.,

and minorizes S. Since Sh-h" <_ f and fh.h, <_ supex fh.h.(x Aa,f (see the
preceding lemma), we have fh.h. < g <_ Aa,f and, therefore, we deduce

fhh
_
ghha

_
g

_
Aa,f.
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Taking supremum, we obtain

sup $hh(x) <_ sup gh"h"(x) <_ sup g(x)
xEX xEX xX

By Lemma 4.4 and Theorem 4.3, this implies g E Aa(X). Since g is a minorant of f,
we have g <_ fh,h,, which concludes the demonstration of the first assertion.

Let us now see the second one. If fh,h, f, then

sup f(x) sup fh.h. (X) sup fh.h.h.h. (X) sup (f)h.h. (X),
xX xX xX xEX

whence f has property (Ha). Conversely, if f has property (Ha), then, by Theorem
4.3, f E Aa(X); thus, we have f (f)hh. <_ fh.h., and since fh.h. is 1.s.c.
and quasi-convex and minorizes f, one deduces fh.h.

_
f4, from which we obtain

fh,h,,, fl, and hence the equivalence in the statement. [:]

From Theorem 4.5 one easily deduces that, given f X -- IR and x0 X, the
equivalence

fh"h"(xo)- f(Xo) : fc(Xo)- f(Xo) <_ ,a,l

holds.
We also observe that (f)h.h. <_ fh.h. <_ f for arbitrary f X , from

which we deduce

(fc)h.h. fh.h..
Using this equality and Lemma 4.4, one obtains

sup (x)
xX xX

As a consequence, the following implication holds:

f has property (Ha) = f has property (Ha).

The converse statement is not true as, e.g., the function f" IR IR defined by
f(x) 0 if x = 0 and f(0) 1 shows.

The preceding considerations remain true when one replaces f by fq or f, since
one also has fh.h. <_ fq <_ f and fh.h. <_ ] <_ f.

COROLLARY 4.6. If f" X is bounded below, then fh.h. f.
Proof. Since f is bounded below, so is f. Thus, f satisfies condition (4) of

Theorem 4.3 and, therefore, f has property (Ha). The conclusion follows from
Theorem 4.5.

Corollary 4.6 is equivalent to saying that every bounded-below 1.s.c. quasi-convex
function has property (Ha).

If f" X is quasi-convex, we have that fhh min(f, Aa,I) by Theorem
4.5, since, in this case, f f (see [3, Cor. 3, p. 112]).

Now we will give an expression for the second ha-conjugate of any function.
PROPOSITION 4.7. Let f X ----, JR. Then, for every xo X one has

fh"h"(xo) sup inf max{(w(Xo --x))a + f(x), f(x)).
wEX* xX
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Proof. By the definitions of ha-conjugates, one has

sup {min(-(k-w(x0))a,0}
(w,k)6D

sup {min{-(k w(xo)), 0} + k
(w,k)eD

sup{min{-(k- w(x)), 0} + k- f(x)}}
xEx

sup inf {min(-(k w(xo))a 0}
(w,k)6Dx6X

min{-(k w(x))’, O} + f(x)}.

It only remains to see that, for all x E X, the expression

min{-(k w(xo))", 0} min{-(k w(x))", 0}

takes its maximum, as a function of k, at k w(x0), i.e., that

(4.3)
min{-(k w(xo)), 0} min{-(k w(x)), 0}

< max{(w(x0 x))a, 0}.

If k _< w(x), this inequality is true because its first member is less than or equal to 0.
If k > w(x) and w(x0) is not between these two quantities, (4.3) is satisfied obviously
because ta is a nondecreasing function. Finally, if k > w(xo) > w(x), inequality (4.3)
immediately follows from Lemma 4.1.

The formula in the preceding proposition gives an expression for the 1.s.c. quasi-
convex hull of a function f when, for example, f is bounded below (see Theorem 4.5
and Corollary 4.6).

The following results show the relation existing between c-lower subgradients and
h-subgradients in the sense of Balder (see 1).

PROPOSITION 4.8. Let f" X --- lit and xo X be such that f(xo) lit. Then,
for any w X*, the following statements are equivalent:

(1) there exists k ]R such that (w, k) Oh.f(xo);
(2) (w,W(Xo)) e Oh.f(Xo);
(3) W e 0f(xo).
Proof. (1) (3). Let (w,k) cgf(xo) and let x X be such that f(x) <

f(xo). We have

(4.4)
0 > f(x) f(xo)
> min{-(k w(x))", O} min{-(k w(Xo)), O}
_> min{-(k w(x))’, 0};

thus

(4.5) f(x) f(xo)

_
-(k

We will distinguish two cases: k <_ w(Xo) and k > w(xo).
If k <_ w(xo), then (w(xo x))" >_ (k-w(x)). Combining this with (4.5), we get

f(x) f(xo) >_ -(w(xo x))c,
which was to be proved.
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If, instead, k > w(xo), by (4.4) we have

f(x) f(xo) >_ min{-(k w(x))a, 0} + (k w(xo))a

-(k ())" + (k (0))",

the last equality being a consequence of the fact that f(x) < f(xo). For the same
reason, we deduce

(xo x) > o

and, by Lemma 4.1 (applied to a k w(xo) and b w(xo x)),

f(x) f(xo) > -(w(xo x))a.

Thus, w E Of(xo).
(3) ==, (2). Let x e X. If f(x) < f(xo), then, by w e Of(xo), we can write

f() > f(0) ((x0 x))
> f(xo) + min{-(w(x0 x))a, 0}.

If f(x) f(xo), one has

f(x) >_ f(xo) >_ f(xo) + min{-((x0 x))a, 0}.

Since ha(x, (w,W(Xo))) ha(xo, (w,w(xo))) min{-(w(x0 x))a, 0}, we have seen
that (w,W(Xo)) e Ohf(xo).

The implication (2) === (1) is obvious. D
COROLLARY 4.9. Let f" X ]R and Xo e X be such that f(xo) JR. Then

Of(xo) is the projection of Oh f(Xo) onto X*.
COROLLARY 4.10. Let f" X ----. IR and xo X be such that f(xo) lR. Then

f is a-l.s.d, at xo if and only if f is ha-subdifferentiable at xo.
COROLLARY 4.11. Let f" X -, IR and xo X be such that f(xo) IR. Then
(1) of(xo) f(0) foo(x0);
(2) f(xo) fhh(xo) ==* 02f(Zo o:fhh(xo).
Proof. The proof is an immediate consequence of Corollary 4.9 and properties

(1.2) and (1.3). [:l

According to the first statement in the preceding corollary, any a-l.s.d, function
belongs to Aa(X). Unfortunately, there are functions in Aa(X) which, however, fail
to be a-l.s.d, at some points. Indeed, f" ]R ---. IR given by

-(1 x2)a/2f() o
ifxe [-1, 1]
otherwise,

is not a-l.s.d, at 1 and at -1, and nevertheless it belongs to Aa(X), because it is
quasi-convex, continuous, and bounded below (notice that, by Corollary 4.6, Aa(X)
contains all bounded-below 1.s.c. quasi-convex functions).

COROLLARY 4.12. Let f" X -- IR and xo X be such that f(xo) lit, and let
w X*. Then

w e Of(xo) f(xo) + fh’(W,W(Xo)) W(Xo).
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Proof. By Proposition 4.8, we know that w e Of(xo) if and only if (w,w(xo)) e
Oh.f(xo). Applying property (1.1), we see that the latter relation is equivalent to

f(xo) 4- fh(w,W(Xo)) ha(xo, (w,w(Xo))).

To obtain the desired equivalence, it only remains to observe that

h(xo, (w, w(Xo))) w(Xo). [:]

We close this section by showing the monotonic dependence on a of A(X) and
hence of fh.h. for every f :X .

PROPOSITION 4.13. Let a, fl E (0, 1] be such that a < . Then

a (x)

and hence

:for any f X --- IR.
Proof. Clearly, to prove the inclusion Aa(X) C A(X), it suffices to demonstrate

that any elementary function min(-(k- w)a, 0} 4- # in A(X), with k, u E IR and
w X*, belongs to Aft(X). Since such an elementary function is quasi-convex and
continuous, in view of Theorem 4.3 (implication (4) === (1)), it is enough to show
that for every ,k < # there exist w X* and k IR such that

+ < -(k +
But it is easy to see that, choosing k N/k and w N/w, N.x being any
upper bound of the function (defined on the set of strictly positive real numbers)
t --, t- (#- A)t-, the required inequality is satisfied.

Since fh.h. and fhoho are the greatest minorants of f in A(X) and A(X),
respectively, the inequality fhh

_
fhoho immediately follows from the inclusion we

have just proved.
To show that A(X) ?t A/(X), take any w e X*\{0} and consider the elementary

function, with respect to h, min{-(-w), 0}. Of course, it belongs to A(X). Should
this function belong to A(X), one could find, according to Theorem 4.3 (implication
(1) = (4)), wl e X* and kl e IR such that

min{-(k w), 0} 1 <_ min{-(-w), 0}.

Then, taking X with w() -1, we should obtain

min{-(k ]w()), 0} 1 < min{-/, 0}

for all ? IR. But, for large enough /> 0, this inequality does not hold.
In fact, the above proof shows that

U a (x)

for all fl (0, 1]. On the other hand, by a slight modification of the argument employed
to show that the function f min{-(-w)/, O} belongs to A(X) \ Aa(X), for all
a E (0, fl), one can see that f admits no finite elementary minorant with respect to
ha, whence fhh =_ --oo, while fhh f.
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5. a-Hiilder quasi-convex functions and their suprema. In this section, X
will be a normed space as in 3. We will use the notation of 3; B* (0; N) will denote
the closed ball in X* with radius N > 0 and center at the origin.

Let DN J*(0; N) IR, a E (0, 1], and let ha,N X )< ON ]R be the coupling
function defined by

ha,N(X, (w, k)) min{-(k w(x))a, 0} + k.

Therefore, ha,N halxDv, where ha is the coupling function of the preceding
section. The ha,N-conjugates of f" X and g DN -----* are fh,N DN -----*

and gh,N X defined by means of

fh, (W, k) sup {min{-(k w(x))a, 0} + k f(x)}
xEX

and

a, (x) sup {min{-(k w(x))a, 0} + k g(w,k)}.
wEB*(O;N),klR

The elementary functions on X with respect to ha,N are of the form

min{-(k-w)a,0}+# with weB*(0;N), keIR, and #ciR.

It is easy to see that they are quasi-affine. We will denote the set of their suprema by
Bv(X). As an immediate consequence of the next proposition, taking into account
that the elementary functions are quasi-affine, it follows that B(X) \ {4-00} is con-
tained in the set of quasi-convex functions that are a-Hhlder with constant Na. We
shall prove below (see Theorem 5.4) that the converse inclusion is also true.

PROPOSITION 5.1. The functions f min{-(k-w)a, 0} + #, with w X* \ {0},
k e IR, and # e JR, are a-Hhlder with constant (11 w II*)a; this is the smallest a-Hhlder
constant for f.

Proof. Let xo, x X. We have, according to (4.3),

f(xo) f(x) min{-(k w(x0))a, 0} min{-(k w(x))a, 0}
< ma{((0 ))", 0} < (11 I1")"11 0 ".

Let us suppose that f is a-Hhlder with constant N < (11 I1"). Take x0, x, and
e such that w(xo) k, w(x) k- 1, and 0 < e < N-1/a -(1/I w I1"). Let x e X be
such that

x x < inf{ll x y w(y) w(xo)} / e and w(x) W(xo).

Using (3.1), we can write the preceding inequality as

1 1
x x <- I1" (xo x) / II*

/ "
Then we have

1 If(x) f(x) Nil x x N ,,, + e < 1,

which is absurd.
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The following proposition states the dependence of the sets Bv(X with respect
to g and their relation with Aa(X) (see 4). By s(F), F being a family of extended
real valued functions, we denote the set of pointwise suprema of subfamilies of F.

PROPOSITION 5.2.

(1)
O<N’<N
U Br’(X) s ( U Bv’(X)) Bv(X)’

O<N’<N
(N > 0),

(2) Bv(X) N Bv’(X)’ (N > 0),
N>N

Proof. (1) The first inclusion is obvious. To see that it is a strict inclusion,
consider the function

g(x) max{min{-(-w(x))a, 0},-1},
with I1" N. For each A e (0, 1), we define

g),(x) max{min{-(-A[co(x)+ 11 + 1)a, 0},-1}.
It is easy to show that g depends nondecreasingly on A and sup0<x<l g g. Since
g) E BN(X), we have

g E s ( U Bv’(X))O<N’<N

However, g U0<N’<N Bv’(X), since the same reasoning showing that no N’ <
(11 co ]1")a is an a-H61der constant for the function f of Proposition 5.1 applies here
(notice that g max{f,-1}, when f corresponds to k > 0, and that g and f
coincide at x0 and x, the points appearing in the proof of Proposition 5.1).

The second inclusion is immediate, since Bv(X is closed under supremum. To see
that it is strict take f as above. Then f Br(X), obviously, but, using Proposition
5.1, one can prove that f admits no elementary a-Hhlder minorant with constant
N’ < Na.

(2) Inclusion C is immediate, while will be a consequence of equivalence (1)
(2) in Theorem 5.4.

The inclusions in (3) follow easily from the definition of the elementary functions
with respect to ha and ha,N. To prove the strictness of the first one, let f X ]R

be the function defined by f(x) x , with # c. Since f is quasi-convex,
continuous, and bounded below, it belongs to Aa(X) (by Corollary 4.6). On the
other hand, this function is not -H61der and, therefore, f 6 JN>0 Bv(X) (see our
comments preceding Proposition 5.1).

In spite of Proposition 4.13, there is no monotonic dependence on a of the sets
B}(X) and, therefore, of the second conjugates fh,vh,v. Indeed, take co X* with

II co I1" N and let f min{-(-co), 0}, with/ e (0, 1]. This is an elementary
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function in BON(X) which does not belong to Aa(X), and hence to Br(X), for any
a E (0,/3) (see the proof of Proposition 4.13). Let a e (/3, 1] and take any X with
w() -1. If we had f e B(X), then, since, as we observed before Proposition 5.1,
f is a-Hhlder with constant Na for all A > 0, we should obtain

whence A-a < NII . But this inequality does not hold when A is too small.
Thus, we have shown that the family {B(X)}ae(0,1 consists of pairwise incompa-
rable (with respect to inclusion) sets. Even more, for any/3 e (0, 1], one has

BN(X) 9?- U Bv(X)"

We recall (see 1) that a function f X IR is ha,N-subdifferentiable at xo X
if f(xo) IR and there exists (w, k) ON such that

f(x) f(xo) min{-(k w(x)), 0} min{-(k w(x0)), 0}

for every x X; (w, k) is then an ha,N-subgradient of f at xo. The set of all ha,N-
subgradients of f at x0 is called the h,N-subdifferential of f at xo and will be denoted
by Oh,N f(Xo).

Since D UN>0 DN and ha,N halxxD the following relations hold.
PROPOSITION 5.3. Let f X ---. IR and let Xo X. Then
(1) fh,,r fh, IDly

(2) fh,:,,h,,, SUPN>0 fh,,,,rh,,,,;
(3) Cgh,,Nf(Zo) Oh,f(Zo) 0 DN;
(4) Oh=f(Xo) UN>00ha,Nf(Xo).
The functions that belong to B(X) are characterized in the next theorem.
THEOREM 5.4. Let f" X IR. Then the following statements are equivalent:
(1) f e B(X);
(2) either f(X) c IR and f is quasi-convex and c-H6lder with constant N or

f =- +/-;
(3) either f is -b.l.s.d. with c-b.l.s.d, bound N or f :t=cxz.
Proof. (1) =: (2). If f e Sv(X is finite at some point, since it is a supremum

of finite elementary functions, which are quasi-affine and c-Hhlder with constant N,
f must be finite everywhere, quasi-convex, and -Hhlder with the same constant. If
f is not finite at any point and it takes the value -cx at some point, then -cx is its
only elementary minorant, whence f _= -cx.

The implication (2) (3) is essentially Theorem 3.2.
(3) == (1). It is obvious that the functions +cx belong to Sv(X). Let f be an

b.l.s.d, function, x0 X, and take w Off f(xo)fq 13" (0; N); then, by Propositions 4.8
and 5.3, we have (w,w(xo)) e Ohf(xo) f’qDN Oh,Nf(Xo). Therefore, Oh Nf(Xo)

for every x0 G X. From this we deduce, by implication (1.2), that fh,h’, (Xo)
f(xo) for any x0 E X, that is, f B(X), which concludes the proof.

From the preceding theorem, we deduce that the functions defined on a convex
set that are c-b.l.s.d, are those which have an -Hhlder quasi-convex extension to the
whole space X.

PROPOSITION 5.5. Let K C X be a nonempty convex set, f K ---, IR, and
N > O. Then the followin9 statements are equivalent:
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(1) f is a-b.l.s.d, with a-b.l.s.d, bound N;
(2) there exists g X --- fit quasi-convex and a-Hhlder with constant N that

extends f.
Proof. (2) (1). By Theorem 5.4, g is a-b.l.s.d, with a-b.l.s.d, bound N and,

thus, f glK has the same property.

(1) === (2). Let ] be the extension of f to the whole space X such that ]IX\K :--

+cx. Let x0 E K. Since O](xo) Of(xo) and f is c-b.l.s.d, with c-b.l.s.d, bound
N, we have

O](xo) B* (0; N) # O.

By Propositions 5.3 and 4.8, we deduce Oh.,N ](Xo) # 0 for every x0 E K. Therefore,
from implication (1.2), it follows that (]h",Nh",)lg fig" Since ] is an extension of

f, we have f (]h,h",)lg. This function is finite and ]h.,h.,N e B(X); thus,
by Theorem 5 4 ^f_u vha r is quasi-convex and a-Hhlder with constant Na. Hence
we can takey-j ,

For the second ha,N-conjugate of a function one has the following expression.
PROPOSITION 5.6. Let f" X ----. IR. For every xo X, we have

fh,,rh,, (Xo) max inf max{(w(Xo x))a + f(x), f(x)}.
o.,B* (O;N) :X

Proof. By a method similar to that of Proposition 4.7, we obtain the formula in
the statement with supremum instead of maximum. We will prove that this supremum
is attained, when fh.,Nh, is finite, at any Wo Ofh"’h"’ (Xo)[ B*(0; N) (this
set is nonempty by Theorem 5.4); when fh,zvh,r is not finite, it is attained at every
w /3*(0; N), as we will show. In the first case, let woe Ofh.,Nh., (Xo)N B*(0; N).
For every x fh.,h., (o)(fh.,h.,), we have

fh.,h.,r (X) >_ fh,,rh.,r (Xo) (Wo(Xo X))’;

thus, for any x X, we can write

fh.,h., (x) >_ min {fh.,h.,N (Xo), fh.,h., (Xo) (Wo(Xo X)) }
fh,h, (XO) + min{0,-(wo(xo x))a}

or

max{(w0(x0 x))a + fh.,h., (x), fh,h., (X)} > fh,Nh., (Xo).

Therefore,

fh.,h., (x0) sup inf max{(w(x0 x))a + f(x), f(x)}
wB*(O;N)

>_ inf max{(wo(xo -x)) + f(x), f(x)}

_> inf max{(wo(xo x))" + fh,,vh,,v (x), fh.,h., (X)}
x_X

>_ f’"’’ (:co).

Hence,

fh,h, (X0) inf max{(w0(x0 x)) + fh,h, (X), fh,h,N (X)}.
xX
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If fh,Nh,N is not finite, by Proposition 5.4, we have either fh,Nh,
_

+00 or
fh,h,

_
--0. In both cases, at every w E B*(0;N) the maximum is attained

(note that fh,h,N
_
+C only if f /c).

The next proposition states that, in the class of a-Hhlder functions with constant
N, the Frchet-differentiable quasi-affine functions are supremal generators.

PROPOSITION 5.7. Let f" X -- IR. Then, the following statements are equiva-
lent:

(1) f is quasi-convex and a-Hhlder with constant N;
(2) f can be expressed as a supremum of Frdchet-differentiable quasi-ajfine func-

tions that are -Hhlder with constant N.
Proof. The implication (2) == (1) is immediate. To prove (1) === (2), in view

of Theorem 5.4, implication (2) (1), we may assume, without loss of generality,
that f min{-(k- w)n,0} + #, with w B*(O;N1/n) and k,# IR. Then f
supv>0 jn,k,,v o w, where jn,k,, ]R ---. IR is defined by

(k t)" +

k + +

if t_< k-v,

+/z ift>_k-.

Since jn,k,, is differentiable and a-Hhlder with constant 1, we obtain (2). [:]

If f X ---. ]R is quasi-convex and a-Hhlder with constant N, then, by using
Proposition 5.6, we can explicitly construct a family of quasi-affine functions, a-
Hhlder with constant N, whose supremum is f. Namely, since f fh,Mh,M, with
M N1/n one has f supwEB.(0;M w, where

(xo)-- inf max{(w(xo- x))n + f(x), f(x)}
xEX

(xo X).

On the other hand, since

f sup
wfl* (O;M),kIR

{min{-(k w)n, 0} + k fh,,M (W, k) },

the proof of Proposition 5.7 provides a method for obtaining an explicit expression
for f of the type stated in (2) of Proposition 5.7.

From the preceding proposition we deduce a new description of the set An(X)
for a normed space X.

THEOREM 5.8. Let f" X JR. The following statements are equivalent:
(1) f e An(X);
(2) f can be expressed as a supremum of a-HSlder quasi-convex functions;
(3) f can be expressed as a supremum of a-HSlder Frdchet-differentiable quasi-

affine functions.
Proof. Implications (1) === (2) and (3) == (1) are immediate consequences

of the equality appearing in (3) of Proposition 5.2, while (2) == (3) follows from
Proposition 5.7. D

For f An(X), explicit representations of the forms stated in (2) and (3) of the
preceding theorem can be obtained by straightforward modifications of the methods
described above.

The necessary and sufficient conditions given in Theorem 5.8 for a function f
X IR to belong to An(X) are difficult to check in practice. The aim of our next
results is to exhibit simpler conditions that are either necessary or sufficient.
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We say that a function f X ---, lit satisfies the a-growth condition if there
exists some real number M > 0 such that f + MII. I1" is bounded below. When a 2
this is the quadratic growth condition of Rockafellar [12, p. 273]. For f to satisfy the
a-growth condition it is necessary that

lim inf f(x)
[1 +oo II I1" >

This is also sufficient if f is 1.s.c., but not in general, as we can see by taking f
IR ---+ IR given by f(x) -l/Ix if x - 0 and f(0) 0.

Observing that Proposition 3.1 and Corollary 3.6 in [7] are also valid for functions
defined on a normed space, we get the following result.

LEMMA 5.9. Let f" X IR and xo E X be such that f(xo) > -cx. Then f is
l.s.c, at xo and satisfies the t-growth condition if and only if

f(x0) sup 2fx{f(x)+ Nil x- x0 I1"}.
N>0

PROPOSITION 5.10. Let f As(X) be such that f -oc. Then f is quasi-convex
and l.s.c, and satisfies the (-growth condition.

Proof. If f As(X) is finite at some point, there exist w X*, k ]R and
/z ]R, such that f >_ min{-(k- w)a, 0} +/z, and, since this latter function satisfies
the c-growth condition, f has the same property. D

PROPOSITION 5.11. Let f X ]R be a l.s.c, quasi-convex function that
satisfies the (-growth condition. If for every (xo, ) e (X x IR) \ epif there exist

X* and k > 0 such that

d e xo (f),

then f As X
Proof. We will apply Lemma 4.2. Let (x0, A) (X x IR) \ epif. By Lemma 5.9,

there is some N > 0 such that f(x).+ Nil x x0 I1" -> A for every x E X. Take/9 and
k as in the hypothesis. Every x S(f) satisfies

f(x) Nil x- xo I1"  (O(xo- x))

Therefore, w (N1/a/k)O satisfies the condition in Lemma 4.2.
Given a set K c X, we will denote, for any e > 0,

(I) (K) U HH,,(K),
H closed hyperplane

HnK#O

where HH,,(K) {y e Hid(x, y)

_
d(x, H) + e for some x e K}, with d(x, y)

x-y and d(x, H) infyeH d(x, y).
PROPOSITION 5.12. Let f X IR and xo X be such that f(xo) IR. If

there exists some e > 0 for which f is (-H61der on (,(l(zo)(f)O {x0}), then

coneOf(xo) Tf(xo) O*f(xo).
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Proof. By some results of Crouzeix [2, Prop. 12, 13, 13’, pp. 42-43], we know that
Tf(xo) c O*f(xo) and that these sets are convex cones; therefore, by Proposition 2.6,
we have

coneO2f(xo) C Tf(xo) C O*f(xo).
It only remains to prove that O*f(xo) c coneO2f(xo). It is immediate if f(xo)
minex f(x), since in this case O*f(xo) X* O2f(xo), by Proposition 13’ in [2,
p. 43] and our Proposition 2.2.

Suppose f(xo) > infex f(x); then, by the mentioned results, we have 0
O*f(xo). Let w O*f(xo) and take x X such that f(x) < f(xo). Without
loss of generality, we assume that II* 1. Then, by definition of 0*f(x0), we have

<
Let x E HH,(K), where H is the closed hyperplane consisting of those y E X

such that w(y) w(xo), and let g be a Hhlder constant for f on @e(i(o)(f)lJ{xo}).
We have

f(x) >_ f(xo),
since w(x) w(xo) and w e O*f(xo); therefore, w(x- x) w(x- x0) < 0. Using
(3.1), we can write x x <- w(xo x) + e. Hence,

f(x) f(xo) >_ f(x) f(x) >_ -NIl x x
-[N1/(W(Xo x) +

This inequality remains true when we replace e by any d E (0, e), since such e’ also
satisfies the condition imposed on e in the statement. Thus

f(x) f(xo) >_ -[N1/w(xo x)].
Hence, N1/w Of(xo) and, therefore,

6. Applications to optimization theory. In this section we will apply the
theory of the preceding ones to obtain duality results in optimization.

Let X be an arbitrary set, Y be a locally convex space with dual Y*, and
X x Y -- lR. We consider the family of optimization problems infex (x, y)

depending on a parameter y E Y. The unperturbed primal problem (P) will be the
one corresponding to the perturbation parameter y 0, that is, infex (x, 0). We
will denote by p the perturbation function p" Y ---. ]R which assigns to each y the
optimal value of the perturbed problem associated to it. The dual problem of (P)
corresponding to the family of perturbations is

sup {h(O,(O,k))--ph(O,k)}, (D).
(0,k)eY*x

Evidently the optimal value of the dual problem (D) is phh (0) and, in consequence,
as phh (0) <_ p(0), we have weak duality. Moreover, by Proposition 4.13, the duality
gap p(0)- phh (0) decreases when a increases.

Using the expression of the second ha-conjugate that we obtained in Proposition
4.7, we get

phh(o) sup fr{p(y + max{(--0(y))a, 0}}
OY*

infOEy*SUp yY --xEX
sup inf ((x, y)
OEY* yEY,xX
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From this, we deduce that the dual problem consists, equivalently, in finding

sup inf {(x, y) -b max{(-O(y))a, 0}},
OEY* yEY,xX

There is no duality gap if and only if p(0) ph"h"(o). In this formulation of the
dual problem, the objective function does not depend on k and, by Proposition 4.8,
one can prove that the set of optimal solutions is Ophh(o). The following strong
duality theorem can be easily proved.

PROPOSITION 6.1. Problem (D) has an optimal solution and there is no duality
gap if and only if p is a-l.s.d, at O.

When is defined by

(x,y)={ f(x) ifg(x)+y<_0,
+oc otherwise,

where f X --. IR, g" X ---. Y, and the order relation _< in Y is defined by means
of a closed convex cone K c Y, that is, Yl _< Y2 if y2 Yl E K, then we have

On the other hand, given 0 E Y*,

where, as usual, 0 >_ 0 means that O(y) >_ 0 for all y K. Therefore,

ph’h’(O) sup fx{f(x -b max{(0(g(x))), 0}

and thus the dual problem (D) can be written, equivalently, as

(D).sup ifx{f(x -b max{(O(g(x)))a, 0}, "
0>0

This dual problem is equivalent to (i.e., has the same optimal value as) that of
Crouzeix [2] for quasi-convex problems, if, for example, f is bounded below, since in
this case we have ph,h, p (see Corollary 4.6).

We conclude this section by presenting a necessary and sufficient Kuhn-Tucker-
type optimality condition for quasi-convex mathematical programming problems in
terms of a-lower subgradients. Our result is based on the following proposition,
which provides a calculus rule for the a-lower subdifferential of the maximum of a
finite number of functions. We recall that f IRn -- ]R is strictly quasi-convex [6]

e with # I(u) an e (0, 1) one + <
max(f(x), f(y)}.

PROPOSITION 6.2. Consider fi IRn IR, i 1,...,p, a-Hb’lder strictly
quasi-convex functions and let f maxi=l,...,p fi and xo ]Rn be such that f(xo) >
infe f(x). Then one has

c- U ofi(xo) c of(xo) c co cone U ofi(xo).
lf(xo)=f(xo) lfi(a:o)=f(:r,o)
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Proof. The first inclusion can be proved as a simple exercise (and requires no
assumption on the fi’s). Using Proposition 2.6, the inclusion of the tangential in the
quasi-subdifferential, Proposition 15 in [2, p. 81], the fact that quasi-subdifferentials
are convex cones (see [5, Thm. 6, p. 442]), and Proposition 5.12, we obtain the fol-
lowing inclusions:

Of(xo) C Tf(xo) c O*f(xo)
f(o)--f(o)

c (a*],(o) u {o))
f(o)=f(xo)

U

a*I(0)

coneOfi(xo) U

o;f(0) u {0))
o;f,(o)) u {0};

since 0 0f(xo) (see Proposition 2.2), we obtain the second inclusion in the state-
ment. E]

In the preceding proposition the hypothesis that x0 is not a minimum of f cannot
be suppressed, as we can see by taking fl, f2 IR2 ---* ]R defined by

f (x, y) min {-(-x), 0}

and

f2(x, y) min {-x, 0}.

We have that f(x, y) max {fl(X, y), f2(x, y)} 0 for all x, y. It is easy to see that
these functions satisfy the hypotheses of Proposition 6.2. Take x0 (0, 0); one can
prove that

o(o) {(:,0)1 x* > 1}

and

o:(o) {(:, 0)1 * < -1}.

In consequence,

co cone U
ilfi(x,o)=f(xo)

Of(xo) co cone (Of(xo) U 0f2(x0)) ]R x

while Oxf(xo) IR2, since x0 is a minimum of f (see Proposition 2.2).
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In general, the first inclusion in Proposition 6.2 is not an equality. For a 1, this
was proved by Martinez-Legaz [7, p. 220]. For a e (0, 1), take the functions fl, f2
IR IR defined by fl (x) Ixl and f2 1. Then, we have that 0f1(2) [1,
but 0f(2)- [(2 1)1/,

We say that the functions gi IRn IR, i 1,..., m, satisfy Slater’s condition
if there exists e IRn such that gi() < 0 for every i 1,..., m.

PROPOSITION 6.3. Let f, g IR" ---. IR with i 1,..., m be t-Hhlder strictly
quasi-convex functions and let xo e IRn be such that g(xo) <_ 0 (i 1,..., m). If
gl,..., gm satisfy Slater’s condition, then Xo is optimal for

(P) inf{f(x)l gi(x) <_ 0 (i 1,..., m)}

if and only if there are nonnegative numbers Ai, i 1,..., m, such that )igi(xo) 0
for i 1,... ,m and 0 e Of(xo) + -]im= AiOgi(xo).

Proof. First, suppose the existence of the Ai’s. Then, clearly,

Oco
iEI(xo)

where I(xo) {i e {1,..., 0}. Hence, by Proposition 6.2, 0 e Ov(xo),
v :IRn ---. IR being the function defined by

v(x) max{f(x)- f(xo),g(x),..., g,(x)}.

Therefore, in view of Proposition 2.2, x0 is a global minimum of v. Let x be a feasible
point for (P). For small enough t > 0, the point xt (1 t)x + tfc satisfies g(xt) < 0
(i 1,...,m) and v(xt) >_ v(xo) 0. This implies that f(xt) >_ f(xo). By letting
t - 0+, we get f(x) >_ f(xo). This proves that x0 is optimal for (P).

Conversely, if x0 is an optimal solution to problem (P), then clearly v(xo)
minxes- v(x) and.thus, by Propositions 2.2 and 6.2,

OEOv(xo) Ccocone(Of(xo)U ei(xo)U Og(xo)).
Therefore, there exist ) >_ O, i e I(xo) U {0}, with A + EeI(zo)A 1, such that
0 e )oOf(Xo)+ ieI(zo) )Og(xo). If A 0, then we should have, by Proposition
6.2,

co U
eX(o) eX(o)

Og(xo) C O ( maxiei(o) gi) (xo)

and, using Proposition 2.2, we should deduce

O= max g(xo)= min max g(x)< max g(hc)<O,
ie(o) e e(o) e(o)

which is absurd. We conclude that is greater than 0 and hence, taking
(i e I(xo)) and Ai 0 (i e {1,...,m} \ I(xo)), the required Kuhn-Tucker-type
conditions are satisfied.

As a referee pointed out to us, because the minimization of f(x) is equivalent
to minimizing g(x) exp(f(x)), one could apply the exponential transformation to
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optimization problems before analyzing them by our methods. The advantage of this
approach lies in the fact that all relevant functions become bounded from below,
which make them more likely to be a-l.s.d, or to belong to An(X). On the other
hand, if f is (-l.s.d. at some point x0 E X, so is g. Indeed, one can easily check that,
for any w Of(xo), one has (g(xo))l/’w Og(xo). Furthermore, by Corollary
4.6, the following nice equivalence holds: g An(X) if and only if f is quasi-convex
and 1.s.c. According to the same result, the 1.s.c. quasi-convex hull of an arbitrary
function f X satisfies f ln(exp f)h,h,. Therefore, Proposition 4.7 yields
the following formula for the 1.s.c. quasi-convex hull of any (i.e., not necessarily
bounded from below) function f" X lR,

f(xo) sup inf max{ln[(w(x0 x))a + exp(/(x))], f(x)}.
wEX* xEX
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A GLOBAL OPTIMIZATION ALGORITHM FOR
CONCAVE QUADRATIC PROGRAMMING PROBLEMS*

IMMANUEL M. BOMZE AND GABRIELE DANNINGER

Abstract. Using a global optimality criterion for concave quadratic problems due to Hiriart-
Urruty and Lemarchal, the authors present an algorithm which manages to "escape" from a local
solution and lead towards the global one. In addition, this procedure recognizes the unsolvability of
the problem (due to unboundedness of the objective function on the feasible region) and also generates
an improving feasible direction even if the starting point does not satisfy the Karush/Kuhn/Tucker
conditions. As a key subroutine, a recursive procedure will be used which determines whether or not
a given symmetric n n-matrix is copositive, i.e., yields a quadratic form that is positive on a given
polyhedral cone. Both this subroutine and the main body of the algorithm frequently employ the
simplex method, while all other operations are elementary.

Key words, copositive matrices, convex maximization problem, global optimality conditions

AMS subject classifications. 90C20, 90C30, 65K05

1. Introduction. Nonconvex quadratic problems consist of minimizing a non-
convex quadratic function over a polyhedron in n-dimensional Euclidean space lRn.
They arise in different fields of applications from combinatorial optimization to database
problems and VLSI design. The solution of problems of this type is, from the perspective
of worst-case complexity, NP-hard; even checking whether a given feasible point is a
local solution is also NP-hard [13], [15]. As pointed out by Pardalos in [14], there is in
general no local criterion for global optimality. However, the example chosen by the
latter author to illustrate this observation,

n

(1.1) -_(cjxj-+-x:)min, -l<_xi<_l, l_<i<_n,
j--1

is not quite appropriate since it involves a concave objective function. As we shall
show in the sequel, for this kind of problem there is a criterion for global optimality of
a feasible point which may be viewed as a local one, and which can be exploited
in a global optimization algorithm which avoids being trapped in the domain of
attraction of a local solution. Note that for cj > 0 small enough, problem (1.1) has 3n

Karush/Kuhn/Tucker points and 2" local minima.
The present paper is organized as follows: after reformulating the global optimality

criterion due to [10], we arrive at the key subproblem to determine whether or not a
given symmetric n n-matrix is copositive, i.e., yields a quadratic form that is positive
on a given polyhedral cone. In 2 we attack this problem by a recursive procedure that
reduces the problem dimension. We then focus in 3 on an algorithm for detecting
copositivity, and in 4 employ this routine in a global optimization procedure.

Consider a quadratic minimization problem with a concave objective function, or
equivalently, the problem

(1.2) 1 xTQx + cTx ___+ max, Ax _< b,

*Received by the editors May 28, 1991; accepted for publication (in revised form) July 17, 1992.

fInstitut fiir Statistik, Operations Research, und Computerverfahren, Universitit Wien, A-1010
Wien, Austria.
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where xT denotes the transpose of an n 1-vector x E ]Rn; Q is a symmetric, positive
semidefinite n n-matrix; c E IRn; A is an m n-matrix; and b IR a. The algorithm
proposed in this paper is based on the characterization of global solutions 5 of (1.2)
given by [10]; see also [9]. We shall now briefly describe this approach. Concise proofs
as well as calculations and examples can be found in [5].

In [10], Hiriart-Urruty and Lemarchal start with the observation that a feasible
point 5 M is a global solution to (1.2) if and only if

Oeg(5) C_ Ne(M,5) for all e > 0.

Here g(x) 1/2xTQx + cTx is the objective function,

Oeg(5) :-- {y e IRn g(x) g(5) >_ yT(x --) e for all x e ]Rn}

is the e-subdifferential of g at 5, while M {x ]R’ Ax <_ b} denotes the set of
feasible points of (1.2) and

Ne(M,-) :-- (y e IR’ yT(x- 5) <_ e for all x e M}

is the set of e-normal directions to M at 5. Since both S(e) Oeg(5) and N(e)
Ne(M,5) are convex sets, the inclusion in (1.3) holds if and only if

(1.4) as(e)(d) <_ aN(e)(d) for all directions d IRn

where for a set Y c_ IR’, we denote by ay(d) sup{dTy y Y} the support
functional of Y. Now the optimality characterization (1.3) holds true for general convex
g and M. However, relation (1.4) is in general not very helpful. Here we can exploit
the simple structure of g and M to make relation (1.4) more explicit with the help of
the identities

/ 2e dQh+c+/w ifdTQd>O,(1.5) as(e) (d) dT with
Q+ c, otherwise

(observe that in any case dT dT(Q- + c) + V/2e dTQd holds), as well as

max[{0} t2 {(Ad)i/ui" i I}],(1.6) aN(e)(d) ez(d) with z(d) := if dE F,
otherwise.

Here, we denote by I I(5) := {i e {1,...,m} (Ah)i bi} the set of binding
constraints at 5; by ui :- bi- (Ah)i > 0 the slack variables at 5, i I; and the
tangential cone of M at 5 by

F := {d e IR’’(Ad)i <_ 0 for all i I}.

Now it is easy to see that (1.4) is equivalent to

(1.7) fd(5) 52z(d) 5v/1/2dTQd dT(Q5 + c) >_ 0 for all d e ]Rn

where 5 x/. Note that z(d) >_ 0 always and thus fd is convex. So instead of (1.3)
we shall check in the sequel the inequality fd(5) >_ 0 for all 5 _> 0, where d E ]Rn

is fixed, but arbitrary. According to (1.6), the relation fd(5) >_ 0 is clearly satisfied
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for all 5 >_ 0 if d F, so we only have to investigate directions d belonging to the
tangential cone, as one would expect. In case of z(d) > 0, the function fd attains its
minimal value at i* :-- v/2dTQd/2z(d) > 0, so that we have only to check fd(5*)
-(1/2z(d))dTQd- dT(Q5-t-c) >_ O, which can be rephrased as

(1.8) -dTQd 2dT(Q5 + c)z(d) >_ O,

which also has to hold if z(d) 0, since in this case fd is affine and thus must have a
nonnegative slope in order to be nonnegative for arbitrarily large/i. If we now denote
by

(1.9)
Fi :-(d e r (Ad) _> 0 and uj(Ad)i >_ ui(Ad)j for all j I}

(deF’z(d)_(Ad)i}ui i I,

and also

(1.10)
F0 :={d e r (Ad) _< 0 for all i I}

={d e F" z(d) 0} {d e IR" Ad <_ o},

condition (1.8) can further be reformulated into the conditions

(1.11) dTQid >_ 0 for all d e F and all {0,..., m} \ I,

where the symmetric n x n-matrices Qi are defined by

(1.12) Qi
-Q’ if i 0,
Bi uiQ, otherwise,

and

(1.13) Bi := -a(Q5 + c)T- (Q5 + c)(ai)T,

where (hi)T denotes the ith row of A.
Conditions (1.11) alone do not suffice to ensure validity of (1.3) and hence global

optimality of 5. Indeed, in case of z(d) O, where fd is an affine function, not only
the slope of fd has to be nonnegative to ensure fd(5) >_ 0 for all 5 >_ 0. In addition,
the relation fd(O) >_ 0 has to hold in order to guarantee fd(5) >_ 0 also for small values
of 5. Now observe that the condition

0 <_ fd(O) --dT(Q5 + c) -dTVg(5) for all d e F

exactly corresponds to the Karush/Kuhn/Tucker conditions. Hence for a Karush/
Kuhn/Tucker point 5 the weaker condition

(1.14) dT(Q5 + c) <_ 0 for all d E F0

is automatically satisfied. So (1.11) and (1.14) together ensure (1.3) and hence global
optimality, but the latter can be ignored if5 is a Karush/Kuhn/Tucker point. Therefore,
let us now consider the problem of determining whether or not

(1.15) dTQd 2 0 holds for all d E F,
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where Q is a symmetric n n-matrix and F c_ ]Rn is defined by a set of (homogeneous)
linear constraints, i.e., F is a polyhedral cone. If (1.15) pertains, the matrix Q is said
to be "F-copositive." Of course (1.15) trivially holds if Q is positive semidefinite, or
if F is trivial, i.e., F (o, but in general neither of these properties is shared by the
matrices Qi and the cones Fi occurring in the optimality criterion (1.11).

Hence the subsequent sections will be devoted to an algorithm which both detects
copositivity and returns a direction d E F with dTQd < 0 if (1.15) is invalid. This
direction d will then be used in a procedure which essentially helps to "escape" from a
local solution 5 of (1.2), and leads towards the global one. In addition, this procedure
recognizes the unsolvability of the problem (due to unboundedness of the objective
function on the feasible region) and also generates an improving feasible direction d
even if the starting point 5 does not satisfy the Karush/Kuhn/Tucker conditions.

2. The recursive structure of copositivity. Consider a polyhedral cone F
(x IRn Dx > o}, where D is an m n matrix with rows dlT,...,dmT, and
suppose we want to know whether or not a given symmetric n n matrix Q is F-
copositive or not. Essentially following [1], in the sequel we shall reduce this question
to the investigation of (strict) F-copositivity of certain (n- 1) (n- 1) matrices Q,
where F c_ IRn-1 are suitably defined polyhedral cones, 1 < v < 1. At first let us
"decompose" the relation x F; to this end we need some notation: keep i { 1,..., n}
fixed and let

J+(i) {j {1,...,m}’dji > 0},
go(i) :- {j {1,...,m}’dji 0},
g_(i) := {j E (1,...,m}’dji < 0}.

For x [xj]<j< IRn define y "= [xj]j# 6 ]Rn-1 as well as-- Yk#i djkxk, if j e J_(i) U J+(i),
(2.1) cU(Y) :--

-ki djkxk, if j e Jo(i).

Then x E F if and only if

(y) <_ xi <_ ok(y), allj J+(i), allk J_(i), and cU(y > 0, allj Jo(i).

Note that

0 :-- (y IR- cU(y) > 0, allj E Jo(i),
r(y) <_ 8(y),all(r,s) e J+(i) J_(i)}

as well as

(2.3)
Or := {y e O0" r(Y)= maxjej+(i)tj(y)},
Os := {y e (90" c8(y)= minkeg_(i)ok(y)}

and

are polyhedral cones for any r J+(i), s J_(i). It will prove useful to distinguish
the following four cases ( denoting the empty set):

(a) J_ (i) # 0 and J+(i) # O,
(b) J_ (i) O, but J+ (i) # O,
(c) J_ (i) # , but J+ (i) , and
(d) J_ (i) J+ (i) .
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Next we establish the key relation for recursive dimensional reduction of coposi-
tivity: denote by p :-- [qij]ji e IRn-1 and by B the symmetric (n- 1) (n- 1) matrix
obtained by deleting the ith row and the ith column in Q. Furthermore, define for
y E ]Rn-1

](ly) :- qm / 2ApTy + yTBy, A e IR.

If qii > 0, then the quadratic function f(.lY) has a global minimum at

(.a) 0(u) := u
q

Now Q is F-copositive if and only if

xTQx-- f(xly)

_
o for allx e F,

which holds if and only if

in case (a), f(Aly) >_ O, all A e [cr(y), as(y)], whenever y e Or N 08;
in case (b), f(AlY) >- O, all _> at(y), whenever y e Or;
in case (c), f(Aly) >- 0, all <_ a8 (y), whenever y e O8;
in case (d), f(AlY) >- O, all A e IR, whenever y e O0.

It now remains to show that the positivity conditions on f specified above can be
reformulated into equivalent copositivity conditions on IRn-1. This is possible since

f((Y)IY) is a quadratic form in y for any linear functional of y. Note that in case
(a) of a bounded interval :/for interesting values of , it suffices for concave functions
f(.lY) to check its values at both boundary points of 2" (case (a2)). In the strictly
convex cases (al), (bl), (el), and (dl), the function f(.lY) attains its minimum over
Lr either at a boundary point of :/or at A0(y) if the latter belongs to Z. To deal with
cases (b2), (c2), and (d2) below, where qii 0 and hence f(.lY) is an affine function
on an unbounded interval, we have to check both slope and value at 0 of f(.lY).
For this reason, we introduce the following cones:

O:={zeIRn-l"zTy>_0forallyeO0} and Og-:--ON-O).

Dealing with the cases (a), (b), (c), and (d) above separately, we arrive at the following
equivalences.
(a) Q is F-copositive if and only if for all (r, s) J+(i) x J_ (i), either

(al) q > 0 and
f(.Xo(y)ly) >_ 0,
f(,.(y)ly) >- O,
Z((u)lu) >_ o,

whenever y Or N 08, or
(a2) qii

_
0 and

I((u)lu) _> 0

if cr(y) _< A0(y) _<
if A0(y) _<
if A0(y)

_
as well as f((y)ly) >_ o,

whenever y Or 08.
(b) Q is F-copositive if and only if for all r e J+(i), either

(bl) qii > 0 and

f(max(Ao(y), (r(y)}ly) >_ O, whenever
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TABLE 1

Definition of F, , and Q in cases (al)-(d2); the cones Oj are as in (2.2) and (2.3), while
the functionals and o are defined in (2.1) and (2.4), respectively.

Case r f Q

(a2) O n O. a and a. F and F.
(bl) {y e Or: Ao(Y) g at(y)} ar Fr

{ o: () o()} o
(b2) Or ar Fr
() {u e o,: o(u) (u)} o c

{u e o,: ,(u) o()} F,
(c2) O. as
(dl) Oo Ao C
(d2) Oo 0

or
(b2) qii 0, p E O, and

f((r(Y)lY)

_
O, whenever y E Or.

(c) Q is F-copositive if and only if for all s J_ (i), either
(cl) qii > 0 and

f(min{o(y), s(Y)}IY)

_
0, whenever y

or
(c2) q 0, -p O, and

f(as(Y)lY) - O, whenever y

(d) Q is F-copositive if and only if either
(dl) qii > 0 and

> 0, whenever y E O0,
or

(d2) qii 0, p O5, and

f(Oly
_

O, whenever y O0.
The recursive structure described above enables us to reduce the question of F-
copositivity of an n x n-matrix Q to the investigation of F-copositivity of (n- 1) x
(n- 1) matrices Q, 1

_
u

_
1. For the sake of transparency, let us specify these

quantities in Table 1 below, where also the linear functionals (y) can be found,
which appear as an argument of f(.iY) in the inequalities above. We also rescale the
resulting quadratic form f(u(Y)IY) by a suitable positive constant. So note that for
/(y) 0, we have f(Oly yTQuy, where

Q B :: [q]i,,
while for (y) Ao(y), we get qif()o(Y)lY) qiyTBy (pTy)2 yTQ,y, where

and, finally, for (y) a(y), we arrive at d2if(a,.(y)]y) yTQ,y, where

Qu Fr "= [dridrq drdrjq: drdrkqij + dridrq:jk]j=i,k:.
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3. An algorithm for checking copositivity. To settle the question of coposi-
tivity for given Q and F, several procedures have been devised, e.g., in [7], [12], [11],
[8], or [4]. But to our knowledge, until now the following algorithm seems to be the
only exact and finite one which performs both tasks in an easy and straightforward
manner:

check F-copositivity of Q by a routine, where the complexity of the calcula-
tions can be reduced in an adaptive, data-driven way;

in case of a negative answer, generate a direction d E F satisfying dTQd < O.
The recursive structure described in the preceding section can be visualized by

a tree, the root being the original Q and F, and the leaves corresponding to the one-
dimensional problems where F is an interval of IR and Q is a number, the sign of
which is essential if F {0}" Q is F-copositive if and only if Q _> 0. The internal nodes
are created during the recursion, and are labeled by the cones Fv and functionals/v
resulting from Table 1. If one of these cones is trivial, or if we have solved the one-
dimensional problem at a leaf, we can proceed to traverse the tree as described below
in the module TRAVERSE.

Procedure COPOS(node)"

yes no

is node trivial J
or a leaf ? //J start backtracking procedure

yes "fJJ no

for all successors of node
no action

COPOS(successor)

FIG. 1

For transparency, we depict the recursive structure of copositivity, checking in
the structogram of the procedure COPOS (Fig. 1), a node being characterized by the
quadruplet (F, Q; i,) (cf. Table 1 and Fig. 2 below). The procedure COPOS is of
course started at the root corresponding to F and Q.

As can be seen in Fig. 1, we divide the whole algorithm into two parts: the
"forward part" (steps 0-7 below) for recursive generation of nodes which we describe
in detail, encapsulating some of the necessary routines in modular form as specified
below; and a backtracking procedure (step 8) which, in case of a negative answer, uses
the information attached to the nodes generated so far to return a direction d E F
with dTQd < O.

Module TRAVERSE: Starting from the current node, go to one of its
neighbours (i.e., another successor of the predecessor); if there are none, return to
the preceding level and investigate the neighbours of the predecessing node, and so
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on; if no nodes are left to investigate, stop: the Boolean variable COla keeps its initialized
value true, and thus a positive answer is returned.

Module TRIVIAL: To check whether or not F (o, we may use the
following procedure.

First solve the linear program LP1 (with x x+ x-, x+ > o):
n

zl Ex- --+ max,
i--1

Dx+ Dx- >_ o,
n n

EX’+-EXT <_ 1,
i-1 i-1

x+,x- >_ o.

1 T IR2nSince [2-,"’, 2n; 2n"’" ggn] e is a feasible vector with objective value 1/2, the
Optimal objective value z of LP1 is never less than 1/2. If z exceeds 1/2, the procedure
stops, returning a vector d* x*,+- x*,- o belonging to F and so F {o}.
Otherwise, if z 1/2, we solve the linear program LP2:

n

Dx+ Dx- >_ o,
n n

E ’+’ + Ex <_ 1,
/--1 i=1

x+,x- _> o.

If the optimal value z > 1/2, the procedure ends as above. If not, we conclude
n Ei=l Xi and hence Ei=I Xi 0, for all feasible x e F. Choosing an

n--1arbitrary coordinate, e.g., xn -i=1 xi, we repeat the above procedure
reduced by one dimension, replacing D with the transformed matrix On
[dij din]l<i<m,lgjn-. In fact, we have obtained a dimensional reduction similar to
that described in the previous section, but with only one successor cone: one then h
also to replace Q with Qn [qij- qin- qnj + qnn]lgi,jn-l" rthermore, we have

to store i n and (y) -i= yi for the backtracking procedure described below
(see step 8).

Module CHOOSE: To choose i, the number of the coordinate to be eliminated
during dimensional reduction (cf. 2), observe that ce (a) yields at most aj+j_
successor cones (where we denote the cardinality of gx(i) by jx for x +, 0,-),
while ces (b) or (c) yield at most 2j+, or 2j_, respectively; finally, ce (d) yields
only one. So an optimal choice of i would first search for all i which satisfy ce (d),
and check qii > 0, or qii 0 and p O (this will be done by the following module
CHECKSIGNS). If no i satisfying (d) exists, then proceed similarly to search for all i
that yield ces (b) or (c), and then choose from among those an i with mimal j0.
Finally, if all i yield ce (a), then choose an i such that j+j_ is minimal and j0 is
mimal. Store the selected index i permanently, attaching it to the current node.

Module CHECKSIGNS: this routine will be used only for the ces (b), (c),
and (d). It first checks the sign of qii; and then, conditional on this result, performs
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one of the steps described below. For shortness, we only treat case (b). The other cases
can be dealt with analogously:

if qii > 0, nothing happens;
if qii < 0, then d ei E F satisfies dTQd qii < 0 (here and in the sequel

we denote by ei the ith column of the identity matrix); put cop false;
if qii 0, we check the relation p E O by an application of the simplex

method to
pTy ._, min, y O0,

which can be stopped whenever a point y Oo is generated with pTy < 0. In this
case, put cop false and construct from y, again, a direction d F with dTQd < 0:

(yj, [( } )}]
ifji,

dj :- vrSv U (r(y) r e J+(i /1, ifj--i.max 2pTy

Now it is possible to describe the main body of the algorithm (although steps 2
and 3 below would be carried out simultaneously for efficiency, we segregated them
for the sake of transparency):

0. Initialize cop true;
1. call TRIVIAL; if F (o then call TRAVERSE and repeat this step;
2. else (F is nontrivial) call CHOOSE, thus selecting an index i, attach i to the

current node, and check which of the cases (a), (b), (c), or (d) pertain;
3. if cases (b), (c), or (d) pertain, call CHECKSIGNS; if cop false, then attach

the obtained direction d E F with dTQd < 0 to the current node and go to step 8;
else (still cop true)

4. determine a successor of the current node corresponding to (Fv, v), and also
calculate Q from Table 1;

5. if the order of Q exceeds one, replace Q by Q, F by F, and go to step 1; else
we are at leaf level:

6. call TRIVIAL for Fv;
6a. if Q < 0 and F (o}, then determine whether (-x), 0] C_ F or F

[0, /cx); then either y -1 or y 1 belongs to Fv; in either case, attach
y to the node (F, ), put cop false and go to step 8, where y will be
processed in the backtracking procedure;

65. else (Q >_ 0 or F {o}) call TRAVERSE and go to step 4;
7. if cop true, then return the positive answer "Q is F-copositive" and stop.
8. Perform the recursive backtracking procedure described below.

Remark. Since in every step of the recursion an optimal choice ot i (in the
sense of minimal number of possible successors of the current node) is performed, it
seems that the proposed procedure has some advantages compared to that described
in [11], which requires Slater’s condition D-l(intlR) to hold in addition.
Even for detecting IR-copositivity, the algorithm described above might need less
computational effort than the minorant and/or determinant criteria in [8] or [12].
Above all, the proposed procedure has the advantage that in case of a negative answer
("Q is not F-copositive"), a direction d F with dTQd < 0 is easily obtained by the
following backtracking algorithm. To the best of our knowledge, no other copositivity
procedure is able to produce such a direction.

In case of a negative stop where cop false, we leave the forward part of the
algorithm at a node (Fv,,Q) with a corresponding vector y F with yTQy < 0
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(note that in the above description of step 3, the quantities d, F and Q play the role of
y, F, and Q, respectively). Now there is a (unique) path leading to the root, where
all nodes of the path are labeled with the permanently stored indices i; all interior
nodes are also labeled with the functionals f. The backtracking step from a node with
information y and to its predecessor node with information i can now be described
very easily: it consists of the augmentation of y with the ith coordinate given by (y),
i.e., of the transformation

with xj :- (y),
ifji
ifj -i.

(i.e., if yj is defined),

In the notation of 2, the definition of in Table 1 implies that x E F, provided
y E F, and also that

xTQx yTQ,y < O.

Performing these transformations recursively, we thus arrive at the top level, i.e., at
the root corresponding to the original problem. There we obtain the direction d with
the desired properties by putting d :-- x.

Example 1. Let n--3, m- 5, and consider

T

Q- -1 0 and D- -1 -5 0 5 1
0 0 1 2 4 3 4 2

First iteration:
1. TRIVIAL yields F
2. CHOOSE yields i 3 because of J_(3) J0(3) ; since q33 > 0, case (bl)

pertains;
3. CHECKSIGNS does nothing and still cop true; p--o, and hence A0(Y) -0;
4. according to Table 1, we start generating the successor cone determined by

l(y) cl(y) maxcu(y and by (y) _> 0(y), obtaining (after removing
redundant inequalities) F (y IR2 Dly >_ o} with

5. since the order of Q exceeds one, we arrive at the second iteration.
Second iteration:

1. TRIVIAL yields F (o};
2. CHOOSE yields i I because of J_(1) O; since (Q1) 0, case (b2) pertains;
3. since O0 [0, +oc), CHECKSIGNS confirms that p 2 O and hence still cop

true;
4. according to Table 1, we obtain F (1 (0 and (z) (z) z, as well

0;
5. now we are at leaf level; hence we proceed to the next step;
6. F {o} and Q 0; since this current node has no neighbour (cf. Table 1),
TRAVERSE yields the next successor cone of F, which is characterized by (y)
A0(y) >_ c(y) maxjj(y); since the current dimension now is two, we return
to step 1, starting the third iteration.
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Third iteration:
1. as is easy to see, the current cone is trivial; hence we further TRAVERSE the

problem tree, generating the next successor (F2, Q2) of the root (F, Q), where F2
is determined by/2(y) c2(y) maxjaj(y) and by a2(y) >_ Ao(y), obtaining
(after removing redundant inequalities) F2 (y E IR2 D2y >_ o} with

D2=
3

and Q2=F2=3 0 9

repeating step 1, we see F2 # {o}, and hence proceed to the following;
2. CHOOSE yields i 2, since J_(2) J0(2) O; because of (Q2)22 9 > 0 we

obtain case (bl) with four potential successors;
3. CHECKSIGNS does nothing and still cop true; p 0, and hence A0(z) 0;
4. according to Table 1, we obtain F[ Oi [0, +oc) and fl(z) a’(z) z,4 as

well as Q[ 144 > 0;
5. now we are at leaf level; hence we proceed to the next step;

(F,Q; 3,,)

///r= l r= l

(FI, Q1; I, Cgl) TRIVIAL

r=l

n=3

(r2, Q2; 2, a2)

/--1r 2----2

(F, Q; 1, al) TRIVIAL, (Fg, Qg; 1, al) TRIVIAL

n=2

(F, Q;2, a) n 1

FIG. 2

6. F {o}; now case 6b. pertains so that we TRAVERSE to the neighbour cone
characterized by/(z) A0(z) _> hi(z) _> a2(z), cf. Table 1; step 5 now leads us
again to step 6, which establishes triviality of this cone; hence again step 6b. is in
force, TRAVERSE gives us the next neighbour F (-oc, 0], a(z)- -z, and
Q 0, we return via step 5 again to step 6b., which generates a new neighbouring
cone characterized by 3(z) A0(z) _> a2(z) _> Ol(Z); after returning again via
step 5 to step 6, TRIVIAL yields triviality of this last leaf-level cone, so that the
next nontrivial cone generated by TRAVERSE leads us via step 5 again to step 1,
where the next iteration begins, etc. See Fig. 2, where the nodes are labeled with
(Fv, Qv; i, ), and irrelevant entries are symbolized by an asterisk *. Proceeding
further, we obtain that Q is F-copositive (see Ex. 2 in [1]).
Example 2. Keep D from the previous example, but replace Q with

Q= 0 -1 0
0 0 1
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Then the first iteration of the algorithm is exactly the same as in Example 1, with the
exception that step 4 yields

instead of Q1; the second iteragion now reads
1. F: {o};
2. CHOOSE yields i 1 as in Example 1, and case (b) pertains;
3. since (Q1)ll -2 < 0, CHECKSIGNS puts cop false, and y el E F1

satisfies yTQy_ -2 < 0; the next step is therefore
8. the backtracking procedure described above yields d x E F with xl y 1;

x2 y2 0; and x3 Cl(y) 1 (recall that the current node is attached with
,5]Y, while its predecessor (the root) has the attached index

i 3 (cf. the upper part of the leftmost branch in Fig. 2)). Indeed, we have
dTd -1.

Remark. The cone F is pointed, i.e., F -F {o}, if and only if the kernel
(x ]R Dx o} of D is trivial. Then for no i (1,...,n} and no stage of
the recursion, case (d) can occur. For unpointed F, it may pay to obtain case (d)
in the recursive procedure by performing a coordinate change, where the new basis
{bl,..., bn} is such that {bl,..., bk} forms a basis of the kernel of D. Denote by S the
matrix with columns bj, 1 _< j _< n. Then Q is F-copositive if and only if Q’ STQS
is F’-copositive, where F’- S-(F) (z lRn" DSz >_ o}. Now one may proceed as
follows (cf. Theorem 8 in [2])" for the first k stages of recursion, select i e (1,... ,k}
as above; if a point x’ E F’ is obtained such that (x’)TQ’x < 0, then stop: x Sx
satisfies x F and xTQx < 0. If, however, no negative stop occurs during these first k
stages, the dimensionality of the problem is reduced to n- k by a recursion procedure
where the tree degenerates to a chain, so that there is only one resulting matrix, and
only one resulting cone which is now pointed, and one can proceed as above, ignoring
case (d).

4. Global optimization procedure. Suppose we are given a vertex 5 M
of the feasible set (obtained, e.g., by Phase I of the simplex method). Then there are
three possible cases:

(i) 5 fails to satisfy (1.14); or
(ii) 5 satisfies (1.14), but (1.11) is not fulfilled; or
(iii) both (1.11) and (1.14) are met, and hence 5 is a global solution to (1.2).
Property (1.14) can, again, be checked by examining the linear program

Q- + c)Td max, d Fo,

which either has optimal value zero, or is unbounded. In the former case (1.14) is
satisfied, while in the latter also our original problem is unbounded" indeed, any
direction d F0 with (Q5 + c)Td > 0 satisfies 5 / Ad E M for all A >_ 0, as well

g(5 + Ad) g(5) -dTQd -+- AdT(Q5 + c) >_ AdT(Q5 + c) -- oc as A -- oc.

There is another unboundedness condition which is independent of the current vertex
5: if Q0 -Q is not F0-copositive, i.e., if there is a direction d F0 with dTQd > O,
then as above, 5 + Ad M for all A >_ 0, as well as

A
g( + Ad) g() --dTQd + AdT(Q + c) oc as A -- x).
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Since this check has to be done only once, we shall incorporate it into the initialization
step.

In case (ii), the copositivity algorithm proposed in the preceding section generates
--T

a direction d E F with d Qd < 0 for some i e (1,...,n} \ I (the case i 0 has
already been settled in the initialization step). This means f(6) < 0 for some 6 > 0.
A straightforward argument using (1.7) shows that we can choose 6 as follows:

(4.1)

m.

1 /
V (-) "
7’2aTQa

if z() 0 (and hence -TQ- > 0),

if z(-) > 0, but -TQ-_ 0,

otherwise.

Now if- 2, this means

31/2 s()(3) > ()(3),

where e S() Ogg(5) is defined as in (1.5) for and d d. But (4.2) implies
that does not belong to the normal cone N() N(M, 5), whence there is a feasible
point & M such that

(4.a) r( ) > ,
and therefore

(4.4) a() a() > yr( ) > 0

results due to the definition of 0g(5). Note that any x M satisfying (4.3) instead
of also fulfills (4.4). If we thus solve the linear program

yTx max, x M,

by the simplex method, we certainly arrive at some vertex v of M with the property
yT(v- 5) >_ yT(&_ 5) > ; consequently, this vertex yields a higher objective value
g(v) > g(5). We thus escaped from 5 even if the latter were a local solution (see
Examples 3 and 4 below).

Let us now recapitulate the procedure (for the sake of lucidity, we do not distinguish
between vertices of M and those of the feasible set in standard form, i.e., including
slack variables).

0. Generate a feasible vertex 5 of M {x E IRn Ax <_ b} (if there is none, stop:
the problem is infeasible). Check whether Q0 -Q is F0-copositive, where F0
{d ]Rn Ad <_ o}; if the answer is negative, stop: the problem is unbounded.

1. If the linear program

(4.5) (Q5 + c)Td max, d e F0,

is unbounded, stop: the problem is unbounded; otherwise (1.14) is satisfied.
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2. Determine I (i" (Ab)i bi}, the tangential cone F (d E IRn (Ad)i <_
0 for all/E I}, and calculate the slack variables ui b (Ab) for i I. For all
i (1,..., n} \ I, check whether or not Q is F-copositive, where F is given by
(1.9) and Qi is calculated from (1.12) and (1.13).

3. If for all i (1,..., n} \ I the matrix Qi is Fi-copositive, stop: 5 is a global
solution of the problem (1.2). Else there is some i (1,..., n} \ I such that a

--T 2direction d Fi is generated with d Qid < 0; then calculate from (4.1)
and define E S() as in (1.5). Solve the linear problem

(4.6) Tx -- max, x M,

by the simplex method starting at the vertex 5. Along the path of vertices v
generated by this procedure, record their objective values g(v) and pick that
vertex, say i, with the largest one. Replace 5 with i and go to step 1 (one may
also repeat this step for all i such that Qi is not Fi-copositive; then define to
be the vertex satisfying g() maxig(), and replace 5 with ).
5. Examples and conclusion.
Example 3. Consider again problem (1.1). Here Q 2In, where In denotes the

n n-identity matrix, A --[_//], and b [1,..., 1]T IR2n. Also, we assume 0 <
cj < 1 for all j (1,...,n}.

First observe that due to definition (1.10) we have F0 (o. Let us start with a
vertex 5 satisfying 5i -1. Then i I, and

Fi (d IRn di >_ dk >_ O if bk -l, di >_ -dk >_ O if bk l},

so that d ei E Fi satisfies
--T
d Qid=-2ci<O

(this direction d would also be generated by the algorithm described in 3). Now

z(3) 1/2; -TQ- 2; 2; 4; and hence y 25 + c + 4ei. The corresponding
linear program

Tx (25j - C.)X. + (Ci -F 2)xi --* max, --l<_xi_< 1, l_<i_<n,

has the solution i 5/2ei, which is obtained by pivoting once from the starting point
5. Thus the global solution x* satisfying x 1 for all i is reached after k_(5) <_ n
steps, where k_ (5) denotes the number of negative coordinates of 5.

Example 4. Consider a problem of the form (1.2) with

Q=
0 2 C=o A-- -4 1 4

-3 -1
and b=

3
3 -2 6

The feasible polyhedron M is depicted in Fig. 3.

1.0. Starting at the vertex 5 [_03] which clearly is a local solution, we proceed as
in the algorithm described above. Since F0 (o}, Q0 -Q is F0-copositive.

1.1. Calculating Qb+c _06] we solve the linear program -6d2 - max, such that d
F0 (o}, giving us the finite solution d- o. So condition (1.14) is satisfied.
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4

F2

FIG. 5

1.2. Determine the index set I() {3, 4} and the tangential cone F(5) {d e IR2"
d2 >_ -3dl; d2 >_ -dl}. The slack variables have the value u u2 7, the new
subcones are of the following form: F {d E F() d _> 0; d2 _> -2d}
{d E ]R2 dl

_
0; d2

_
dl}, and F2 {d r() d < 0; d2

_
4d} {d

IR2"d <_ 0; d2 >_ -3d} (see Fig. 4).
The corresponding matrices are

Q_ [-14 12] and Q2- [ -14 -24]12 -2 24 -2

Summarizing (1.1) and (1.2), we obtain the following: The vector [0] is an

extremal ray of both Fi and satisfies d Qid -2 < 0. Note that this direction d
would result also from an application of the copositivity procedure described in 3.
Hence the vertex 5 is not a global optimum of the problem. This can also be verified
directly by criterion (1.3), for example, with 49 (cf. step 1.3 below). As one can
easily see, Og(-) is not included in the set N(M;), and so condition (1.3) is not
fulfilled (see Fig. 5).
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In the next step let us determine an improving direction.

1.3. From (4.1) we calculate - -2 2-TQ3/4z(3) 49, where 3 [] and -TQ3
2 with z() max[{0} t (-, }] -, according to (1.6). Using (1.5), we obtain

Then we solve the linear program (4.6):

8x2 - max, x E M,

to obtain the next candidate x* [a] the opposite vertex of M. Returning to
our algorithm (step 1), we now check if x* is a global solution.
We calculate Qx* / c- [so and the corresponding linear program (4.5) again has
the finite solution d o.
The new index set is I(x*) (1, 2} and the tangential cone F(x*) (d e lR2

d2 <_ -2dl; d2 <_ 4dl}. The slack variables have the values u3 7 and ua 14.
The new subcones are of the following form: F3 (d F(x*) dl <_ 0; d2 <_
-341} (d IR2 dl <_ 0; d2

_
4dl}, and F4 (d F(x*) dl _> 0, d2

dl} (d IR2 dl _> 0; d2 _< -2dl} (see Fig. 6; compare to Fig. 3).

FIG. 6

The corresponding matrices are

-14 24
and QaQa

24 2 -24 18

2.3. Since Q3 is F3-copositive and Q4 is Fa-copositive, as is easy to show, the vertex
x* is the global solution of our original problem. Note that all vertices of the
polyhedron M are local solutions. Nevertheless, the algorithm described above
does not go from one vertex to an adjacent one. Instead, an improving direction
is found, which enables us to skip inefficient adjacent vertices and go directly to
the global solution.

As mentioned already in the introduction, problem (1.2) is NP-hard from the worst-
case complexity point of view. However, the approach of [10] shows that there is no
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essential difference between the complexities of checking local versus global optimality
[6], despite the fears expressed by [13].

Concerning the proposed procedure, its frequent use of the simplex algorithm,
together with data-driven optimal selection in order to reduce recursional complexity
in the copositivity algorithm, suggests the hope that in the average case (cf. [3]) the
computational costs can be held within reasonable limits. Although the final release of
the implementation is not yet finished, numerical experiments yield quite encouraging
results.

Acknowledegments. The authors want to thank K. A. FrSschl, W. Gutjahr, M.
Hamala, and P. Merav: for stimulating discussion and valuable suggestions, as well
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A QUADRATICALLY CONVERGENT POLYNOMIAL ALGORITHM FOR
SOLVING ENTROPY OPTIMIZATION PROBLEMS*

FLORIAN POTRAt AND YINYU yEt

Abstract. A potential reduction algorithm is developed for solving entropy optimization problems. It is shown
that the algorithm generates an e-optimal solution within at most O(x/’[ log el) iterations, where, as usual, n is
the number of nonnegative variables, and each iteration solves a system of linear equations. Under a computable
criterion, the algorithm is tuned to the pure Newton method in a manner that leads to quadratic convergence
while maintaining primal feasibility at each step. A stopping criterion is derived which ensures that the objective
function approaches its optimal value within any prescribed tolerance. This applies for all entropy optimization
problems having interior optimal solutions.

Key words, entropy function, potential reduction algorithm, polynomiality, quadratic convergence
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1. Introduction. In this paper, we consider the separable convex nonlinear optimiza-
tion problem with linear constraints:

minimize
(EP)

subject to
f(x) -= fj(xj),
x fp {x R Ax b,x >_ 0}.

Here A E Rmn, b Rm, and superscript T denotes the transpose operation. We assume
that fj is a real function fj (0, cx) R for all j, and

(A1) ’p has a nonempty interior.

A dual problem of (EP) is

maximize
(ED)

subject to
g(x, y) bTy (xTVf(x) f(x)),
(x, y) e fd {(X, y)’x e p, Vf(x) ATy >_ 0}.

As usual, we use s to denote the slack vector Vf(x) ATy. We further assume that

(A2) has a nonempty interior.

Based on the two assumptions and the Karush-Kuhn-Tucker conditions, x* is an
optimal solution if and only if the following three optimality conditions hold.

1. Primal feasibility: x* fp;
2. Dual feasibility: There exists y*, such that (x*, y*) fd;
3. Complementary slackness: X* (’f(x* ATy*) O.
Here, the upper-case letter X designates the diagonal matrix whose entries are the

components of the vector x, e is the vector of all ones, and 1[. (without subscript) denotes
the 12 norm.

We call the problem an entropy optimization problem if for all j, fj is an entropy
function defined as

(1.0) +
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for some fixed numbers #j _> 0, qj _> 0, and dj E R. This includes the real functions
x2, x log(x),-V/, log(x), l/x, etc.

The entropy optimization problem is one of the most popular convex nonlinear pro-
grams. Its applications include system equilibrium [3], image reconstruction [1], [5], and
transportation distribution [17], among many others. For the entropy optimization problem,
computational complexity must be treated in a slightly different manner than for linear
programming (LP), and such notions as polynomiality are meaningful in an extended sense
only. At each step of a primal-dual interior-point method for solving (EP), a pair (xk, yk)
Int(f) is produced and the algorithm is terminated when

(1.1) 5k < ,
where 5k is equal to the primal-dual gap (x)Ts (s Tf(x) --ATyk), or to some
other bound on the distance of f(xk) to the optimum. If

(1.2) lim 5 0,

then, by definition, there is an integer K(e) such that (1.1) is satisfied for all k _> K(e). So
far, the best complexity results for interior-point methods have been obtained by proving
that it is possible to take K(e) O(v/ilogel).

For LP with integer data it is known that if (1.1) is satisfied with e 2-L, where
L is the length of a binary coding of the data, then by a rounding procedure requiring
O(n3) arithmetic operations it is possible to obtain an exact solution. Such an algorithm
is commonly called an O(x/-L)-iteration algorithm. Each iteration of the LP interior-
point algorithm requires O(n3) arithmetic operations, so that the overall complexity is
O(n3"SL). By some special update procedure this can be reduced to O(n3L), which is the
best complexity for LP known so far. An algorithm is called polynomial if it requires at
most O(rttLq) (where t and q are positive integers) arithmetic operations to find an exact
solution.

For nonlinear programming the notion of polynomiality described above does not make
sense because, in general, we cannot obtain an exact solution of the problem using a finite
number of arithmetic operations. However, if there is p > 0 and q > 0 such that for any
e > 0 there is an integer

(1.3) K(e) O(nP[ log e[ q)

such that (1.1) is satisfied for all k _> K(e), then we say that we have an O(nPlloge[q)
iteration algorithm. Moreover, if each iteration of the algorithm requires O(n), r > O,
arithmetic operations, then we say that we have a polynomial algorithm.

Several iterative algorithms for the entropy optimization problem have been developed
in the past (see, e.g., [20]). Although performing well in practice, they are not polynomial
in the sense described above. In the area of interior-point algorithms, this problem has
been considered by Ye in [18], where he reported some encouraging numerical results.
However, he gave no theoretical complexity result. Several researchers (den Hertog, Roos,
and Terlaky [4], Jarre [6], Monteiro and Adler [11], and Nesterov and Nemirovsky [12])
developed sufficient conditions to analyze some convex programs solvable with polynomial
complexity. Clearly, our entropy functions satisfy conditions (a) and (c) of Monteiro and
Adler. But some of them, including some popular entropy functions like x log (x) and
-v/-, do not satisfy their condition (b).

The main difficulty for nonlinear optimization is that each iteration of interior-point
algorithms faces a system of nonlinear equations rather than linear equations as in the linear
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or quadratic case. Recently, Kortanek, Potra, and Ye [9] analyzed a conceptual algorithm
for solving general linearly constrained convex programs. They proposed two schemes: a
potential reduction scheme and a path-following one. More importantly, they established
a bound for the residual of the system of nonlinear equations such that the polynomiality
of linear programming is retained. More recently, Zhu [24] showed that for a class of
optimization problems, which contains the entropy optimization problem, one Newton step
will achieve such an accuracy if the so-called centering condition is enforced. Therefore,
the path-following algorithm [7] can solve these problems with polynomial complexity.

The goal of this paper is twofold. First, we will develop a polynomial potential
reduction algorithm for entropy optimization problems. As we know, the linear convergence
ratio for the path-following algorithm is bounded from above and below so that the effective
speed of convergence is of the same order as the guaranteed theoretical rate. This limits
large improvement in every iteration. On the other hand, the potential reduction algorithm
is a function-driven algorithm. We can use a line search procedure at each step to obtain
additional improvement without destroying its global convergence. This feature is especially
useful if the optimization problem is nonlinear, where a line search is commonly used.

Second, while maintaining polynomiality we would also like to develop an algorithm
with fast local convergence. As we mentioned before, for linear and quadratic programming
with integral data, after the distance e to the optimal value becomes small enough, one can
always terminate the algorithm by using a rounding procedure to obtain an exact solution
in finite time. However, this finite termination does not work for nonlinear optimization.
Therefore, fast local convergence is especially important in nonlinear optimization.

An interior-point algorithm with local superlinear convergence for some optimization
problems has been developed by Coleman and Li [2]. Unfortunately, their algorithm does
not have polynomiality. The local convergence behavior of some interior-point algorithms
has been studied by Zhang, Tapia, and Dennis [22] and Zhang, Tapia, and Potra [23], where
several conditions are developed to characterize local supeflinear convergence. Zhang and
Tapia [21 recently developed an algorithm for linear programming with polynomiality and
local quadratic convergence under the assumption of nondegeneracy, or polynomiality and
superlinear convergence under the assumption of the convergence of the iteration sequence.

Motivated by all of these results, we develop an interior-point algorithm for solving
the entropy optimization problem. First, it is a function-driven polynomial algorithm. The
algorithm iteratively generates a feasible pair (xk, sk) with

xk)T8k <(xO)  o

in O(v/-l log [) iterations, where (x, s) is an initial feasible pair. The search direction
is, as usual, a combination of a centering direction and a descent direction. Second, we
develop a computable criterion under which the pure Newton method (without centering)
can be applied for the rest of the iterative process, thus giving local quadratic convergence.
That is, the additional accuracy can be obtained in O(logllog()]) Newton steps. We
show that this faster local convergence is guaranteed for all entropy optimization problems
possessing interior optimal solutions, e.g., z2, x log(z),-x/, log(z), l/z, etc.

2. A polynomial potential reduction algorithm. For simplicity and without loss of
generality, assume that

,! d for all j.fj (xj) xj
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One can easily verify that our results hold for the general entropy function defined in (1.0).
Let Ih/zl _< c < for some hj E R and zj > 0. Then for some 0 < t < 1

and

where

(c) max{l, Idl max((1 + c)d-, (1 c)d-)}.

Note that for any 0 </3 < a < 1, d(/3) is a monotone decreasing function, bounded from
above by d(a) and below by 1. In the following we simply use d to denote d(a), and
choose c such that

1/2.
The above relations imply that for h Rn,x > 0 Rn, and IIX-hll < , we have

(2.0) IIX(Vf(x + h) V/(x)- Vf(x)h)ll <_ 1/2-dhTV:f(x)h
and

(2.1) ( o-d)llXV2f(x)XII IlXV2f(x -t- h)Xll < (1 + od)[lxv2f(x)X[[.

If both X72f(x -Jr- h)X and X72f(x)X are invertible, we also have

(2.2)
(1)+ ce-d [l(XV2f(x)x)-lll <- II(XV2f(x + h)X)-ll

< II(xvf(x)X)-I II.
1

Now consider the primal-dual potential function [16], 19]

n

ok(x, s) plog(xTs) Z log(xjsj),
j=l

where p >_ n + v/-. This potential function can also be written as

n

XjSj)(x, s) (p- n)log(xTs)- Zlog (-s]
j=l
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The inequality between the geometric and arithmetic means yields

n

E >
xT8

j=l

Hence

(p n) og(x) _< (x, ) n og.
This inequality tells the exact amount, -(p- n)l log e I, by which 05 should be reduced to
obtain

xTs<.

Given 0 < xk E fp and sk Vf(xk) ATy > 0, we solve according to [9] the
following system of nonlinear equations for Ax and Ay.

(2.3a) xkAs__ SkAx O < (xk)Tsk XkSk )P

(2.3b) AAx O and As--Vf(x + Ax) Vf(xk) ATAy,

where

p (x)s
e-XSe.

Let

xk+-xk+Ax, yk+ =yk+Ay, and sk+ =Vf(xk+)-ATyk+.

Then, choosing

(2.4) 0
/Smin<j_<n (v/XS )

II(XkS)-/2Pll

for some 0 </3 < 1, we have

(x+, s+) _< (x, s)

for a constant -y > 0.
It turns out that system (2.3a) does not need to be solved exactly. If the norm of the

residual term

[Izkl[ IIxkAs + SkAx Opkll < /min(xak.sak.)
for some 0 < ff O(/) < 1, then the potential function will still be reduced by a constant
for a suitable constant ft. More precisely, we have the following proposition.

PROPOSITION 1. Let n + < p < 2n and let Ax and Ay satisfy (2.3b) together with

XkAs + SAx o ((xk)Tsk XkSke) Zke + Opk + zk,
P
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where 0 is defined in (2.4). If

IIz _< c/32min(xsj

for some constant C, then by choosing/ > 0 such that

and 1-C>O/3(1 + C/3) _<

we have

where

(x+ +) _< (x s) .
/= (-v//2)/(1 Cfl) + fl2(1 + C/)2.

The proof of the above proposition is almost identical to the proof of Theorem 3.2 of
[9] and is presented in the Appendix. In Potra and Ye [15] a similar result is proved for
more general nonlinear complementarity problems.

In this paper we show that the above condition on the residual can be achieved by
applying one Newton step, i.e., by solving the system of linear equations

(2.5a) Xk(V2f(xk)Ax- ATAy) + Sk/kx Opk,

(2.5b) AAx O.

The following lemma is a direct result from Kojima, Mizuno, and Yoshise [8] or
Pardalos, Ye, and Han [13] for convex quadratic programming.

LEMMA 1. Let Ax and Ay be the solution of system (2.5). Then

[[(Xk) -lall ,
Now we have the following lemma.
LEMMA 2. Let Ax and Ay be the solution of system (2.5). Then

’d/2 k kmln(xjsj)

Proof It can be verified that

z Xk(Vf(xk + Ax)- Vf(xk) V2f(xk)Ax).

Thus from (2.0),

Ilzkll 1/2-dAxTV2f(x)Ax.
Let D (xk)-l/2(sk)l/2. Then, from (2.4) and (2.5), we have
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Thus

32min / k(x)IIzll < []
8

The procedure can be stated as follows.

PROCEDURE 1.
Given Az b, z > 0 and so Vf(z) ATy > 0;
set k 0;

while (xk )Tsk
__

do
begin

compute Ax and Ay of (2.5);
xk+ xk + Ax;
yk+l yk + Ay;
sk+ Vf(xk+1) ATyk+l;
6k+l (xk+l)Tsk+l;
k-k+l;

end.

THEOREM 1. Let n+ x/ < p < 2n. Then xk > 0 and sk > O, and they arefeasiblefor
(EP) and (ED). Moreover, Procedure terminates in at most O((x, s) + (p n)l log el)
iterations.

Later we will show how to generate an initial feasible point (x, s) such that (x, s)
is bounded by (p- n)llog(xO)TsO I. In practice, a step size can be selected based on the
line search

arg min (Xk + Ax, s + r/As).
_>o

Then we set

x+l-xk+Ax and yk+l+Ay.

Also, p can be chosen as an integer greater than O(n). For quadratic programming, Parda-
los, Ye, and Han [13] found that p E (n’5,n2) seems to give the best numerical perfor-
mance.

3. Local quadratic convergence. In this section we develop a computable criterion
under which the pure Newton method can be applied so that quadratic convergence for the
entropy optimization problem is guaranteed. At some k, suppose we have

(3.0) II(XkV2f(xk)X)-ll IlXkll < 1,

For simplicity and without loss of generality assume that k 0. We now move to the pure
Newton method for Vf(x) ATy --0, Ax b, by solving the linear system

V2f(x)Ax ATAy -so and AAx O,

and by letting x x + Ax, y yO + Ay, and s Vf(x) ATy. We now show the
following quadratic convergence theorem.
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THEOREM 2. Let 1/2-d < 1/2, and define

d- /((1 a)z(1 c)).

Then, for any/3 <_ ee, the inequality

(3.2) dll(XV2f(x)X)-111 [[Xsl[ <- fl

implies

II(xo)-(x x)ll

and

(3.3) dll(xv2f(xl)x)-[i iix,ll 2.

Before proving Theorem 2, we introduce the following lemma.
LEMMA 3. Let Ax and Ay be the solution of system (3.1) and let

d[[(XV2f(x)X)-’[[ IIX[I e,

Then

and

AxrV2f(x)Ax < II(XV2f(x)x)-’ll IIX8ll.
Proof. Noting that d > >_ 1, from condition (3.2) we have

II(XV2f(x)X)-ll IIX,ll _</.

From system (3.1),

AxTV2f(xO)Ax -Axrs.
Hence

AxrV2f(x)Ax IIzr*ll IlL* (X)-’Xll II(X) -’ *11 IlK11.
Thus

[[(x)-/Xxll ’- [[(XV2f(x)X)-I/2(XV2f(x)X)I/2(X)-I AxI[ 2

<-- [[(XV2f(x)X)-1Jl ]l(XV2f(x)X)l/i(x)-1/Xxll2
II(XV2f(x)X)- IIAxTX72f(x)/Xx

<_ tt(xv:f(x)X)-’ II(x) -1A,xll X08011
Therefore,

II(X)-Axll _< II(XV=f())-ll IIXsll e,

and furthermore

AxTV2f(xO)Ax <_ [[(X)-IAxI[ IIXll II(XV2f(x)X)-’ llllXll 2.
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Proof of Theorem 2. Using (2.0) and Lemma 3, we can write successively

IIX’’ll- II(X + AX)(Vf(x + Ax) AT(y + Ay))l[
II(X -k- AX)(Vf(x + Ax)- Vf(x) V2f(x)Ax)ll

-I1(I / (x)-lAx)x(vf(x + Ax) Vf(x) 2f(x)Ax)ll
<_ III / (x)-/xxII Ilx(vf(x + Ax) Vf(x) V2f(x)Ax)ll
<_ ( //)llX(f(x / Ax) f(x) 2f(x)Ax)ll

1-d(AxTV2f(xO)Ax)<_(+)
<_ -dll(X2f(x)X)- IIXll2.

On the other hand, from Lemma 3 and (2.2),

(3.4)

iI(xlv2f(x)xl)-lll ]l(xl)-lxo(xovf(x’)xo)-lx(x)-lll
<_ II(XV2f(x)X)-lll IlX(X)-ll2

V2< II(X f(x)X)-1

(1 c)2 (1 cd) II.

Thus, we have

< d21l(XV2f(x)X)- 11211gsll 2__
/2. I’-’1

Now we describe the Newton procedure.

PROCEDURE 2.
Given Az b,x > 0 and so Vf(z) ATy > 0;
let z and so satisfy (3.2);
set k 0;

while II(XV2f(x)X)-ll IIXll >_
do

begin
compute Ax and Ay in (3.1) at x and
xk+l xk + Ax;
yk+l y + Ay;
sa+l Vf(xk+1) ATyk+l;
k=k+ 1;

end.

Since d depends only on d and c, Procedure 2 generates a sequence of x > O(Ax
b) and s such that II(X=f(x)X)-lll IIXll converges to zero quadratically. In the
case d -1, we have

This implies that [Iskll also converges to zero quadratically. We will see that this is true
for arbitrary d.
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Now let us elaborate a bit more on condition (3.2). Note that in our case

1 1II(XVf(x)X)-ll
min(XV2f(x)x) min(Xd+2e).

The condition can be further written as

IlXk(Vf(xk) ATyk)l < 7min(Xd+2e)

for some 7 < 1. We note that for d - -1

(xk)d+e+cV-’xk’’f( )--
d+l

for a fixed vector c. Then

(xk)d+2e + Xk(c_ ATyk)
(3.5) II(f(b,,X.V_.x. ATyt.,,)II

d +
<_ ")/min(Xd+2e).

Thus, for d < -1 and 3’ small enough,

Xk(c- ATyk) >0

so that

(c-- ATyk) >0.

In fact, if d-- -2, then condition (3.5) becomes

II- e / Xk(c- ATy)I <_ "/,

which is precisely the so-called centering condition for LP when -’j log (xj) is used as
the barrier function. Therefore, the condition can be viewed as a "centering" condition for
LP when j fj (x) with d < -1 is used as the barrier function. In these cases, the Newton
method will generate a sequence of xk and cT ATy such that

Ax b, x > 0, and cT ATyk > O.

In general, we can prove the following lemma for Procedure 2.
LEMMA 4. Let {xk } be the sequence generated by Procedure 2. Then, for all k,

II(X)-XII < 3 and II(xO)-Xkll <_ 3.

and

Proof. Note that from Theorem 2 we have

< < +/2k

Now using the inequality

2log(1 ) _> -- 2(1 )
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for 0 < < 1, and noting/32 < 1/4, we have

13

36

Hence

(13) 1( 13)H(1-/32’ >_ (1- /3) exp -- _> exp --- > 5"
t=O

Thus

II(X)-lxll II(Xk)-lxk-l(xk-1)-l xl(xl)-lxll
-ii(x)-lx-ll I[(xl)-Xll

k--1

_< ii(/( 2,)) _< 3.
t=O

Also

IIX(X)-’ll iix(x-’)-x- (X)-lx’(x)-’[I
-iix(x-l)-ll IlX(X)-lll

k--1

<_ II(1+/’)
t=O
k--1

_< H(1/(1 -/32*)) _< 3.
t=0

Therefore, we have the desired result. []

Lemma 4 indicates that Procedure 2 generates points zk that are relatively close to the
starting point z. Now we are ready to prove our main result.

THEOREM 3. Procedure 2 generates a sequence of feasible points that converges
quadratically to the optimal solution.

Proof From Lemma 4 and Theorem 2,
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for some constant C- 3Idl+l/d. Similarly, we can derive

(3.6) IIXll 3CIl(X)z+211/2 3cIIxOv2f(xO)xOll2.
By letting k cx, we see that IIXkskll converges to zero quadratically, while zk remains
as a positive feasible point due to Lemma 4. Since II(X)-ll is bounded from above, we
also see that IIsll converges to zero quadratically.

On the other hand, from Lemma 4 and Theorem 2

IIx+ xll- iiX(X)-*(xk+ x)ll
IIXll II(X)-(x+* x)ll

_< IlXkll2
_< IIXII II(X)-Xkll2
_< 31lXll/2,

which indicates that {xk} is a Cauchy sequence and therefore it must converge to the
optimal solution x*. Since

z converges to x* quadratically.
Essentially, we have proved the R-quadratic convergence of {s}, {Xs}, and

With a little more effort one can prove that these sequences are Q-quadratically convergent.
For the difference between R-order and Q-order of convergence, see Potra 14].

4. Further complexity analysis. Let the entropy optimization problem have the in-
terior optimal solution e* and let the Hessian 72f(:r) be positive definite in the interior
of the feasibility region. Now we provide a bound on the number of iterations needed by
Procedure to satisfy condition (3.2).

LEMMA 5. Let c and be generated from Procedure 1, and let

(oe2/2) (1
-ii(x,vef(z,)X,)-l]l"

Then

II(X*)-l( *)[I < o,
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Proof The proof is by contradiction. From the primal-dual theory, we must have

f(c)- f(x*) < (c2/2)(1 c3)
II(X*V2f(x*)X*)-lll"

To obtain a contradiction let us assume that

II(X*)-’(- x*)ll ,
Now consider the minimization problem:

minimize f(z),
subject to Az-b, z>0, and II(X*)-’(x- x*)ll .

Since the function is convex and x* > 0 is outside of the feasibility region, the minimal
solution of the above problem must be on the boundary of the ellipsoid constraint. In
other words,

II(x*)-(-x*)ll-,

However, using Vf(x*)(- x*) 0 and (2.1), we have

which is a contradiction.
Based on Lemma 5 and (3.4), we have

V2 --1

(1 ce)2(1 cea)II(x* f(x*)X*) II.

Thus

II(x*v2f(x*)X*)-’ll IIXll _< II(X*X72f(x*)X*)-ll(x)T, <_ t52
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implies that

which gives condition (3.2) for some constant ,5. Therefore, we can terminate Procedure
when

(4.0) (xk)Tsk

Then we rename (xk, s) as (x, s) and start Procedure 2.
From Lemma 5, we have

(4.1a)

or

(4.1b)

Since x is feasible, f(x) is convex, and oe _< 1/2, from Lemma 4, Theorem 3, (2.1), (3.5),
and (4.1),

f(xk) f(x*) <_ Vf(xk)T(xk

for .some constant C. This indicates that the accuracy f(x) f(x*) < e can be obtained
in log (log(x/-llX*72f(z*)x*[I/e)) Newton steps.

Overall, we have the following complexity result.
THEOREM 4. Let the entropy optimization problem have the interior optimal solution

x* and the Hessian V2f(z) be positive definite in the interior of the feasibility region.
Then Procedure 1 generates x and s satisfying (4.0) in at most

O((x, s) + V/-( + IIg ll(X*V2f(x*)X*)-’lJ I))

iterations. Then Procedure 2 can be applied to generate a feasible point x with

(4.2) f(x) f(x* <_ e

in at most log(log(x/-llX*V2f(x*)X* [I/e)) iterations.
In particular, if d 2, then we have at most O((x, s) + v/-) iterations for Procedure

and log(log(x//e)) iterations for Procedure 2.
Our algorithm can start from any interior points x and y0 without jeopardizing its

convergence for Procedure 1. From a theoretical point of view, the generation of an initial
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solution whose primal-dual potential function value is polynomially bounded is the same
as for linear or quadratic programming. For example, we can generate the approximate
analytic center :co for Ftp, i.e.,

Ax b, x > 0, and X(-AT) ell <_ 0.1

for some . Then we can choose some > 0 such that

IIX(Vf(x) ATy) -((x)Ts/n)e[[ <_ .5(xO)TsO/n,
where so Vf(x) ATy and y0 ff. Now the initial potential value

(x, ) _< 4-o(x) +
In practice, a combined Phase I and Phase II approach has been developed for linear
programming (see, e.g., [10]). It can be also used for the entropy optimization problem.

5. Final remark. In this paper we have restricted ourselves to entropy optimization
problems. However, all the proofs carry over for large classes of problems. The polyno-
miality results of 2 can be proved for all functions f satisfying condition (2.0), which is
the so-called scaled Lipschitz condition in [24]. In general, this condition can be written
as: for h E Rn, x > 0 E/n, and IlX-lh[[ < a,

IlX(f(x / h) f(x) 2f(x)h)ll <_ 2(a)hTV2f(x)h,
where (a) is a monotone increasing function

Appendix. Here we restate and prove Proposition which is used in 2.
PROPOSITION 1. Let n + x/ <_ p <_ 2n and let Ax and Ay satisfy

XAs + SAx O( (x)Tse-XkSke /zk=Opk+z,
P

where

AAx O and As Vf(x + Ax) Vf(x)-ATAy,

kkminl<_j<_, (v/xjsj)

and

(A.O)

for some constant C. Let

x+l-xk+Ax, yk+ =yk+Ay

Then choosing > 0 such that

(A. 1) /( + C) _< g

we have

IIzll c2 min(xjsj)a

and sk+ sk + As Vf(xk+) ATyk+.

and 1- C >_ O,

(x +, + _< (x /,
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where

/-- (-v//2)/(1 C/) -t-/2(1 -t- eft)2.

Proof To simplify formulae, we drop the index k, and let x+ z + Ax, y+ y+ Ay,
and s+ s + As Vf(z+) ATy+. Let D (XS) /2. Note that

(A.2)
liD-ill 1/min(x/-Y),
0=

D-1 Ilo-lpll

and

xT8
(A.) D-p- --D-e- De.

The following standard result is frequently used in interior-point algorithms (see, e.g.,
[18]). If

(A.4) max(llX lAx[Ion, IIS-1A,81[cx)
_

[,

then

(A.5)
(x+, +) (, ) _< _2_ (xrZX + rAx + ZXxrZX)

ET(X-1AxT: s-I A,8) _!_ 2,

where

2 iix-lAxll2 + IIS-IA[[2.

First, we have

(A.6) XAs + SAx Op + z O(p + q),

From (A.0) and (A.2)where q .
(A.7) IID-lqll IID-’II Ilqll- D-11111zll < liD-111 Ce

C/llD-lp[i
0 0 IID-’II

Thus

(A.8)

(2 iiD-2XAslle + I]D-2SAmlI2_
IID-1112(llD-1XAsll 2 + IID-lSAml] 2)
IID-1112(llD-l(xAs / SZXx)II 2 2AxTA8)
IID-111(O=llD-(p / q)ll = 2AxTAs) from (1.6)

< IID-1112(O=(llD-lpll / [IO-lql[) 2AxTA)
<_ IID-all=(O=llD-lpll=(1 / C)- 2Axvas) from (1.7)

02llD-1112llO-lpll2(1 + C/)2 2[[D-I[[2AzTA8
2(1 + C)2 2lID-l[[2AxrAs from (A.2).

The convexity of f(. implies

AxTAs > O.
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Therefore, from (A.1) and (A.8), we have

(5fl(l/fl).
This also implies that the condition (A.4) holds for inequality (A.5).

Now we have

P (xTA8 / 8TAx) --eT(x-1Ax + S-1A8)xT8
xT8

xTs \ P

xT8O eT (D XTSD_I) D_I(XAs /

pTD-1D-I(XAs + SAx) from (A.3)
X.8

4pTD-D-I(p + q) from (A.6)
X8

(A.9) --o(l[D-pll2 +pTD-1D-lq)

<_ Ps (llD-pll2 [[D-P[[ [[D-q[[)

<_ ,-(lIO-pll2 cllO-p[I2) from (a.7)

T:(1 Cfl)[[D-lp[[ 2

< v
---(1 C3)OIID-

2
(1 Cfl)3 from (A.2),

where the last inequality holds since

XT8
D-le P De

for p >_ n + - (see [8] and [131).
Finally, we have from (A.5), (A.8), and (A.9)

(A.10)

(x+, +) (x, )---- (1 -C3)/AxTAs/xT8

C/) 2 P ’112) AxTAs< --if-Z(1 / (1 + Cfl)2 + ( 2110-xTs

2 zTs min(zjsj)
AzrAs"

Since xTs > n min (XjSj), for any p < 2n we have

2 2n p

min(xjsj) xTs xTs

which indicates that the last term in (A.10) is nonpositive. Hence

f 32(x+, s+) (x, s) <_ ---3(1 C3) / (1 / C/)2
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ON MIZUNO’S RANK-ONE UPDATING ALGORITHM FOR LINEAR
PROGRAMMING*

ROBERT A. BOSCH

Abstract. Recently, Mizuno devised a linear programming algorithm that performs at most one rank-one update
ofa certain matrix per iteration. Mizuno’s algorithm is generalized by a variant that allows any fixed number ofupdates
per iteration. This variant also makes use of an explicit Goldstein-Armijo condition to safeguard linesearches of the
potential function, compared to Mizuno’s implicit use of such a condition in his analysis. The variant’s complexity
is O([mn + m:Z]rL) operations, which is the same as that of the original.

Key words, linear programming, interior point algorithms, potential function, modified method, rank-one
updates

AMS subject classification. 90C05

1. Introduction. Since Karmarkar [7], the technique of partial updating has been used
to lower the complexity of interior point algorithms for linear programming. Karmarkar’s
original projective algorithm requires O(nL) iterations and O [mr+m2n]rL) total arithmetic
operations; O(m2z) per iteration for solving weighted least squares problems and O(mn) per
iteration for everything else. (Here n is the number ofvariables, m is the number ofconstraints,
and L is the bit size of a standard form problem with integer data.) Karmarkar’s "modified"
algorithm uses a rank-one update technique to solve the weighted least squares problems.
On average, only O( rank-one updates, each requiring O(m2) arithmetic operations, are
needed per iteration. As a result, a total of O([m2v/- ]nL) arithmetic operations are expended
on weighted least squares problems. The iteration count is the same order as that of the
original, but the overall complexity is lowered to O([mn / m2x/-]nL).

Karmarkar’s two algorithms are potential reduction algorithms, and as such, the faster they
reduce the potential function, the faster they converge. In Karmarkar’s original algorithm, a
linesearch of the potential function is permissible; incorporating a linesearch does not violate
any aspect of the complexity analysis. In the modified algorithm, a simple linesearch is
precluded by Karmarkar’s complexity analysis. Linesearches safeguarded by a Goldstein-
Armijo rule are permissible, however, as demonstrated in Anstreicher 1 ].

Partial updating has since been applied to other algorithms. Gonzaga [5], Vaidya 14],
Monteiro and Adler [13], Kojima, Mizuno, and Yoshise [8], and Ye [15] all incorporate
the technique. (Each of the above algorithms has an O(x/-L) iteration count. The first
four listed are path-following algorithms. Ye’s algorithm is a potential reduction algorithm.)
Anstreicher and Bosch [2] incorporate the safeguarded linesearch of Anstreicher into Ye’s
algorithm, and Mizuno 11 presents other partial updating variants of Ye’s algorithm. Bosch
and Anstreicher [4] apply partial updating and Anstreicher’s safeguarded linesearch to the
O(x/L) potential reduction algorithm of Kojima, Mizuno, and Yoshise [8], and den Hertog,
Roos, and Vial [6] do the same within the context of long-step path following.

All of the partial updating algorithms mentioned thus far perform, on average, O(x/-)
rank-one updates per iteration. Mizuno [12] presented a modified version of Ye’s algorithm
that performs at most one rank-one update per iteration. However, Mizuno’s algorithm has an
O(nL) iteration count. The overall complexity of the method is O([mn + m2]nL).

In this paper we examine Mizuno’s algorithm and generalize it. We present a variant of
Mizuno’s algorithm that allows for up to any fixed number ofupdates per iteration. In addition,
our variant utilizes the safeguarded linesearch of Anstreicher in place of Mizuno’s use of
fixed stepsizes. We assume that the reader is familiar with Mizuno 12], so we omit the details
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of a number of features of our variant that are identical to features of Mizuno’s algorithm
(the entire dual step, for instance). Also, many of our proofs are very similar in structure to
Mizuno’s proofs. To enhance the readability of this paper, we present the proofs in full, even
though doing so necessitates the repetition of a number of arguments originally presented in
Mizuno 12].

Throughout the paper, we use the notation of Mizuno [12] as much as possible. We let
and II1 denote the/2-norm and/-norm, respectively. For any vector v E Rn, V diag(v)
denotes the diagonal matrix whose ith diagonal entry is

2. The algorithm. Both Mizuno’s algorithm and our variant of it work directly on a
standard form linear program and its dual:

min cq-x
(P) Ax b,

x>_O,

(D)
max b-y

A-y + z c,
z>_O,

where A is an m n matrix with independent rows. Both (P) and (D) are assumed to
have nonempty relative interiors. Each algorithm produces a primal interior point xJ, its

approximation 5:j a dual interior point (yJ, zj), and an inverse matrix Bj (A’32.A-v)- on

each iteration. (An alternate approach is to maintain a factorization of Af(A-r-.) To keep
the primal interior point and its approximation close to one another, each index is forced to

satisfy

^j

(1) x <_ x
P

where p > is a fixed number. Whenever the primal interior point changes, (1) must be
checked. If (1) fails to hold for u of the n indices, then those u entries of the approximate
point must be altered. In addition, the inverse matrix (or factorization) must be modified.
This can be accomplished by performing u successive rank-one modifications of the current
inverse matrix (or factorization). Each such rank-one modification, or update, requires O(m2)
arithmetic operations.

Each of the algorithms measures progress in (P) and (D) via the primal-dual potential
function

n

b(x, z) (n + v/-)ln(x-c z) ’ ln(xz) n ln(n).
i--1

The algorithms are initially provided with interior points x and (y0, z0) for which (x, z)
0(x/-L). The algorithms are terminated when (zJ, zJ) < -2x/L. (Given such solutions,
a standard "rounding" procedure will produce exact optimal basic solutions to (P) and (D) in

O(mn2) operations.) On iteration j, the algorithms try to reduce (., .) by taking either a dual
step or a primal step. A dual step involves moving from (y, z) to (y’, z’), where

y, yj / (xJ) -czj BjAfiV(xj zj z’ A-Cy
n+V/__

--C--
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A primal step takes the form

where pJ is the projection of the vector ffjVx(Xj, zJ) onto the nullspace of Af(j. In our
variant, we force the steplength/3 to satisfy a Goldstein-Armijo condition

/_[_<

which, since 4 IZ=0(x(/), zj) -IlpJ 2, may be written as

(GA) (x(), zj) (xJ, zj) < 1/2flllpJ 2.

In Mizuno’s algorithm, three sets are formed: I, the set of primal iterations on which one
update is performed; J, the set of primal iterations on which zero updates are performed; and
K, the set of dual iterations. Here, we let IuP denote the set of primal iterations on which
precisely u updates are performed. We let ID be the set of dual iterations and IP be the set
of primal iterations (hence IF I U I1P ... U I, where g is the maximum number of
updates we allow per iteration). In addition, we let Uj denote the set of indices that correspond
to updates on iteration j. We now describe our algorithm.

ALGORITHM.
Input. A, b, c, m, and n; p > l; < g < n; a primal interior point x and a dual interior point

(y0, z0) for which (x, z) O(Vr-L).
Step 1. Let j O, o xo, and IP U ID . Compute the matrix Bo (AJAm)-lo
Step 2. If (xj, zj) -2V/-dL then stop.
Step 3. Compute y’, z’, and pJ.
Step 4. If lip <- (4P) -1 then go to Step 7. Otherwise, compute

ci max c"
x___ _< x(c) _<
P

for each i. Find the smallest of the ci, fl, and the th smallest, C/max. These two values may
be computed in O(n) arithmetic operations (see Blum et al. [3] for details). If condition
(GA) holds with/3 go to Step 5. Otherwise, go to Step 6.

Step 5. Let (yj+l,zj+l) (yJ,zj) and

/j argmin{(x(/), zJ) ’ < < flmax, (GA) holds, x(fl) > 0}.

Jnt-1 "J /p orLet zj+l z(/j). Let Uj be the set of all indices for which either z

z > z. If lull < , augment Uj by adding to it up to g Uj[ indices for which
Jnt-1 "J /p or j+l ,,j iP IP U {j}. Leteither x x x pxi. Let IUjl -- IUjl

^J if/ Uj,,j+l X
xi xiJ+l ifiUj.

Compute the matrix Bj+l (AJ}+lAn-) -1 from By by means of [Ujl rank-one updates.
Increase j by one and go to Step 2.

Step 6. Let (yJ+ 1, zjn (yj, zj) and

/j argmin{(x(/3), zJ) 0 <_ <_/’, (GA) holds, x(fl) > 0}.
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Let xj+ x(/j), Uj j,l -- loP t2 {j},J+ J, and Bj+ Bj. Increase j by
one and go to Step 2.

Step 7. Let (yJ+,zj+l) (y’,z’),xj+ xJ, Uj J,1D 1D {j},J+ J, and
Bj+ Bj. Increase j by one and go to Step 2.

Steps 5 and 6 are the primal steps. Note that if Step 5 was executed on iteration j, then
at least one update was perfoed on that iteration. If Step 6 was executed instead, then no
updates were perfoed on that iteration. Consequently, if j 1, then condition (GA) did
not hold with ’. (See Step 4.)

Note that Mizuno’s algorithm uses 1. Also, instead ofchecking the Goldstein-Aijo
condition in Step 4, Mizuno’s algorithm checks if < p-4. Finally, Mizuno’s algorithm
uses fixed stepsizes of and p-4 in Steps 5 and 6, respectively, in place of the linesearches.
Although Mizuno never explicitly uses the Goldstein-Aijo condition, an impoant step in
his analysis is his argument that the fixed stepsizes fl and p-4 satisfy the condition (see the
first paa of Mizuno’s Lemma 3).

3. Complexity. In this section we provide worst-case bounds for the number of updates,
iterations, and arithmetic operations required by our variant of Mizuno’s algorithm. Theorem
4 is the main result of the paper. Proposition 1, which we give without proof, is the first pa
of Lemma of Mizuno 12].

PROPOSITION 1. For each fixed xj > 0 and zj > O, we have

(x,zj) (xJ,zj) VxO(XJ, zJ)(x xj) + j(x)llX(x xJD[I 2,

for each x > O, where aj(x) max{1,x/x,,x/x2,. ,xlx}.
LZMM . iz . Assume that Ilffll (4)-’. f0 Z (5311ff11) -’, the

’oitio () ho. ,themoe, if Z (531111) -’, te ((),) (x,z)
-(404) -’.

Proof. Let 0 (5p3llll) -. By Proposition l, (1), and the definitions of x(fl) and

(x(Z), ) (x,) -ZlI + (x(Z))ZpIlff .
Ifp 0, then the choice of , (1), and the assumption that p imply that

J J J J 4xi() xip > l- xipi > >
x x

Ifp < 0, then x()/x > 1. Hence aj(x()) . We thus obtain

() (x(),zj) -(xJ,zj) (-1 + p2Z)ZlI 2.

The choice of fl and I1 (4p)-, imply that p2 (spll I)- q By applying this
last inequality to (2) we obtain condition (GA). Now let fl (5p3llll) From condition
(GA), we obtain

I111(x(Z), z) (x, z) 10p3"

The second pad of the lemma follows from I1 (4P) -.
LEMMA 3. We have

(xJ+I,zj+l) (xJ,zj)
__

-}jllpJll 2 for each j E 1P
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and

(x+, +) (x, z) <_
40p4 for each j E I U ID.

Proof. The first part of the lemma follows from the fact that condition (GA) holds for
each j E IP. (If j I, then (5p3[[pj [[)-I < /3’. Otherwise, Lemma 2 would imply that
condition (GA) holds with/3 /3’, which cannot happen when j I’.) For j I’, the
second part of the lemma follows from Lemma 2. (By Lemma 2, if (5p3 lipj [[)-i were used as
the steplength, condition (GA) would hold and the potential function would be reduced by at
least (40p4) -1. The actual steplength, flj argmin {(x(/3), Zj) :0 fl 3’, (GA) holds,
x(/3) > 0}, must reduce the potential function by at least as much.) For j ID, the second
part of the lemma follows from Lemma 3 of Mizuno 12]. [3

THEOREM 4. The total number of updates performed by the algorithm proposed in the
previous section is uu= u[I[ O(nL). The number of iterations required is IIP U ID[
O(nL). The total number ofarithmetic operations expended is O([mn + m2]nL).

Proof. Assume that the algorithm is terminated at the beginning of iteration k + 1, so that
(xk+l,zk+l) -2/-L and (x, z) > -2/-L. Then, since (x,z) O(v/-L), we
have

(3) (x, z) (xk, z) O(V/--L).

By Lemma 3, (.,.) is reduced by at least a positive constant independent of n and L on each
iteration j E I U ID. From this and (3), we obtain II’l O(v/L) and IIDI O(x/L).
Also by Lemma 3, we have that

k-1

(Xk, Zk) (XO, ZO) Z((Xj+l Zjq-1) (Xj, zJ))
j=O

2
pj 2 -t-

jEIP\{k} jEzD\{k}
40p4

From the above inequality and (3), we obtain

(4) Z &IlPJll O(vL).
jIP\{k}

As in Mizuno [121, let 6 lip and let dj IIf(-fl(xj J)lll for each j. Note that

(5) dj+l dj for each j lD.

Also, if j 1P then

j+l
,X,,
^jx

IIff-1 (xj+
j+l

J/lll xi -1

iu xi

xJ)lll u.
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The above inequality may be written as

(6) 6u <_ dj -dj+l-t-jllplll

By (5) and (6), we have

u=l jEIuP\{k}

for each j E Iff.

where the last inequality follows from do 0, dk >_ 0, and lipj (4p)-1. Therefore, since
at most g updates are performed on iteration k, we obtain

)u=l u=l jeIuP\{k} jeIP\{k}

Consequently, by (4) and g _< n, we have }-=1/l/uP[ O(nL). Note that this implies
that 2=1 IIl O(nL). Since II’l O(V/-L) and IIDI O(vL), it follows that

IIP IDI O(nL). Finally, note that O(m2) arithmetic operations are expended per update,
and that O(mn) arithmetic operations are expended on nonupdating matters per iteration.
Thus, the complexity of the algorithm is O([mn + m2]nL). [3

Theorem 4 has an additional implication, namely, that the number of primal iterations on
which precisely u updates are performed is O(In/u] L), where <_ u <_ g. For instance, if the
algorithm is run with g n, then the number of iterations on which n updates are performed
is O(L).

4. Conclusions. The algorithm presented in 2 is very similar to Mizuno’s rank-one
updating algorithm. Although it allows for up to any fixed number g of updates per iteration,
instead of just g 1, it achieves the same worst-case update count, iteration count, and
complexity. In addition, it incorporates linesearches of the potential function, safeguarded by
a Goldstein-Armijo condition.

Acknowledgment. The author would like to thank Kurt Anstreicher for helpful com-
ments and discussions.
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ACCELERATED STOCHASTIC APPROXIMATION*

BERNARD DELYON AND ANATOLI JUDITSKY

Abstract. A technique to accelerate convergence of stochastic approximation algorithms is studied. It is based on
Kesten’s idea of equalization of the gain coefficient for the Robbins-Monro algorithm. Convergence with probability

is proved for the multidimensional analog ofthe Kesten accelerated stochastic approximation algorithm. Asymptotic
normality of the delivered estimates is also shown. Results of numerical simulations are presented that demonstrate
the efficiency of the acceleration procedure.

Key words, stochastic approximation, accelerated algorithms, optimal algorithms
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1. Introduction. Let us consider the problem of searching for the stationary point x* of
the vector field W(x) RN - RN. The observations Yt of the function p(.) are available at

any point xt_ E RN and contains random disturbance t:

(1) Yt (x_) + (t.

The problem is to find x* under the assumption that a unique solution exists.
The method of stochastic approximation (SA) (which takes its origin from [10]) is well

studied for this problem. To obtain a sequence of estimates of the solution x*, the following
recursive procedure is used:

(2) xt xt- 7tYt,

where ")’t is a gain coefficient and x0 is an arbitrary fixed point in RN. In the study of
this algorithm the main focus of attention was the asymptotic analysis of the method when

7t 7t-. For this case conditions have been obtained under which almost sure convergence
and asymptotic normality take place (see [6] and [15]). Asymptotically optimal versions
(algorithms that ensure the highest asymptotic rate of convergence) of that method have also
been developed in the works of Venter 14], Fabian [3], and Polyak and Tsypkin [9].

On the other hand, nonasymptotic properties of SA algorithms are the main focus of the
interest in applications. Unfortunately, as is well known to engineers (see the discussion in
13]), asymptotically optimal methods behave badly in finite time: the choice of the gain 7t-is too "cautious" if the disturbance (t is small with respect to the initial error x0 x*. Several

heuristic procedures have been suggested in order to accelerate convergence in a finite time
interval (see, for instance, [13, Chap. 5])

In particular, the accelerated SA procedure has been studied in the work of Kesten [4]
for the one-dimensional case. It is based on the idea that frequent changes of the sign of the
difference xt xt-1 7tYt indicate that the estimates are close to the real solution and are
significantly disturbed by noise, whereas few fluctuations of the sign indicate that xt is still
far from x*. In fact, the number st of changes of the sign of y for 1,..., t constitutes
a new time scale. According to this scale, small values of st mean that large gains 7t (in other
words, large magnitudes of correction) should be used at the tth step and, in turn, large values
of st mean that the procedure has "reached" its asymptotic region and 7t 7t-1 should be
used. Almost sure convergence of that procedure has been proved.

Received by the editors on June 17, 1991; accepted for publication (in revised form) on July 25, 1992.
Institut de Recherche en Informatique et Systmes A16atoiresflnstitut National de Recherche en Informatique

et en Automatique, Campus de Beaulieu, 35042, Rennes, France.
As noted in [4], the investigation of this problem had been suggested by Robbins in his first works on SA.
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The principal issue of this paper is a result of the almost sure convergence of the mul-
tidimensional analog of Kesten’s algorithm. Based on that in 3 we obtain conditions for
asymptotic normality for the accelerated version of the usual SA procedure. In 4 we study
Kesten-like modification of the Ruppert-Polyak (see [8] and [12]) SA algorithm. Section 5
contains results of numerical simulations.

2. Kesten’s algorithm. In order to obtain the estimates xt of x* we use the following
algorithm:

(3) xt xt -"YtYt, xo 1N

where the scalar gain 7t is defined by the equations

0)(4) 8t-t-1 st + I(y Yt-1 <
(5) ")/t+l ")/(St+l)

(here 7(t) is a deterministic sequence).
We suppose that we have a probability space (f, .T’, P) with an increasing family of

a-fields -t a(x0, l,..., t). Let us consider the following assumptions on the problem.
ASSUMPTION 1. t is a sequence ofrandom variables such that the conditional distribution

Px(d) of t, knowing the past, depends only on xt-1 x. Furthermore, E(tlxt_l) 0
and for some SM, E(tTt[xt-1) SM. The measures Px satisfy

(6) lim IIP- P.II-0,
X-’-+X*

where [[. denotes the total variation. Moreover, for any hyperplane H containing the origin,
Px* (H) 0. For any R > 0 and > 0,

min Px(l[ _< (5) > 0.(7)
Ixl<R

ASSUMPTION 2. g)(x) is a continuous function of x. There exists p > 0 such that for
any 7* <_ P and any starting point x0, the deterministic sequence

(8) Xt+l Xt *(tg(Xt)

converges to x*. There exists a function V(x) Rg R+, positive/3,/, and a matrix
M > 0 such that

V(x*) =0,
72V(x) M for all x,

P(x)TVV(x) > -((x)TMq(x) + tr(SMM)) +

for any x such that Ix x*] _> R. Moreover,

q(x)TVV(x) > 0 for any x =/= x*.

ASSUMPTION 3. The gain coefficient "7(n) > 0 satisfies

supT(n) <_ p, E’Y(n) cxz, E 3’2(n) <
n=l n=l



870 BERNARD DELYON AND ANATOLI JUDITSKY

Note that Assumption implies that

(9) lim ExT Ex.(T S(x*)
X*

exists, and there is v > 0 such that S(x*) > vI (here Ex denotes the expectation with respect
to Px). Denote P* Px* (R) Px*.

Comment. We present here an example of the procedure when the conditions stated above
are satisfied. Let us consider the following nonlinear algorithm for estimating x*:

xt xt- 7tf(Yt).

Here f(x) tN RN is a nonlinear function. We can rewrite this algorithm in a form
similar to (3):

xt xt_ 7t(xt-) 7tt,

where (x) Exf(99(x) + ) and t f((x) + ) (x). Suppose that Assumption is
satisfied. We require that If(x)l _< K0(1 / Ixl) and f(x) is continuous. This implies that the
functions and X(x) ExttT are correctly defined and there is K such that I (x)l _</el,
Furthermore, if the distribution Px of is absolutely continuous, then Assumption with
respect to t holds true. Given some additional assumptions on f, Assumption 2 can also be
verified.

Moreover, one can study the case of nonadditive disturbances (when yt p(xt-1, t);
see [1 ]) in the same way.

THEOREM 1. Let Assumptions 1-3 hold. Then the process defined by (3)-(5) satisfies

Xt ---+ X* a.8.

lim
st p. T O) 0 a.s.( < -

Comment. A result similar to the first proposition of Theorem has been stated for the
one-dimensional case in [4]. The second proposition of the theorem states that the new time
scale, defined by (4), is asymptotically equivalent (up to a coefficient) to the original scale.

Assumption 3 is typical when dealing with stochastic approximation algorithms. As-
sumption 2 is specific to the Kesten algorithm. It guarantees the stability of the Markov chain,
defined by (3) when 7t 7. As we shall see later, it ensures a cegain regularity in the increase
of st.

Note that we cannot directly utilize classical results on almost sure convergence of SA
procedures (see, for instance, [5, Thm. 2.3.3] and [1, Thm. 2.5.1]). Indeed, the conditions of
these results demand, at least, that 7t 0 as t , which is not obvious for the algorithm
under consideration.

ProofofTheorem 1. In the proofs of the theorems let us adopt the following conventions:
we denote by K, 6, and generic positive constants. All relations between random viables
are supposed to be tree almost surely.

An outline of the proof is as follows. We show first the positive recuency of the process
xt in some vicinity of x*, where the disturbance t forces st to increase regularly, so that

7t 0. Next we prove that (xt) visits any neighborhood of x* infinitely often. We conclude
the proof by showing that xt escapes an arbitrary neighborhood of x* only a finite number of
times.

For the sake of simplicity let us put x* 0. The following lemma will be used to prove
that st tends to infinity; it is actually slightly stronger than we need.
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LEMMA 1. For any starting point zo E 1N and any "7" < P, the Markov chain zt
resultingfrom the equation

(10) ,+ , -7"((,) +

satisfies
(i) P(zt 13([) infinitely often) 1, where B() is a ball {Ix </} and is defined

as in Assumption 2.
(ii) There exist e > 0 and no such that

P/L-o+ < O1o/>

for any zo e B(R).
Proof. Put Vt V(zt) and t (zt). As zt satisfies (10), we have

and from Assumptions and 2

(11)
E(Vt+l Izt) _< Vt 7* WX7Vt -t- ,.y,2 (ggtrMt + tr(SMM))/2

_< Vt 7"2/3/p + KI(Izt < fit).

Define a stopping time u inf{t > lzl /). Then we derive from (11)

Thanks to Assumption 2, Vo _< Klzo] 2. Thus

Eu < K(Iz0l2 / 1)p/(,T*2/) and u < x a, So

Hence

(12) P(zt B([) i.o.)- 1.

Note that

and the distribution Po(d) is nondegenerate. Thus the continuity of the (.) along with
condition (6) implies the existence of 61 > 0 and el > 0 such that

(13) P(z[zl < Oizo) > el

for any z0 B(61). On the other hand, from the convergence of the deterministic counterpart
(8) of the algorithm, condition (7), and, again, the continuity of (.), we obtain that for any
61 > 0 there exist n0 and e2 > 0 such that

(14) P([z,ol <_ 6,) _> e2
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for any zo E B(R). Hence we get from (14) and (13) that

as soon as z0 E B(R). [3

LEMMA 2. st -- x2 almost surely.
Proof. For any integer s*

P(rn s-- s*) _< Z P(si- s* for any/> t)

Z E(P(si s* for any > tl3rt)).

It follows from the strong Markov property that the conditional to the 9rt law of the process
(Yt+, xt+) if st+i remains equal to s* coincides with the law Qx of the Markov chain given
by (10) with 3’* (s*)-I and starting point z0 xt. Consequently,

(15) P(trn st s*) < Z E(Qx(zz_ > 0 for all > 1)).

However, by standard manipulations (see [2, Problem 9, Chap. 5.6]), we get from Lemma
(ii) that for any zo Ru

{ZZi_ < 0 i.o.} {z /3(/) i.o.} a.s.

Hence by Lemma (i), we conclude that Q,o(ZZi_l < 0 infinitely often) for any z0.
This implies

Qx(x/Tz-l >_0 for alli>_ 1)-0 for anyx

and consequently P(limtoo st s*) 0 for any s*. [3

LEMMA 3. For any > O, xt B(e) infinitely often (in other words, xt visits any
neighborhood ofzero infinitely often).

Proof. Define for any 7" > 0 the stopping times

cr --inf(t 7t < 7"),-- inf(t > cr "]xt[ < ).

We have from Assumption 2 that for 7" small enough for all [x[ > e and 7 < 7*

with 6(e) > 0. Thus we obtain from (3) for all t > a (since {t > or) is 9rt_l measurable)

(16)
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with 6(e) > 0. Hence, taking expectation with respect to ’ and summing up to 7-, we obtain
from (16)

i=a+l

Due to Lemma 2, a < cx and hence V < cxz. It is clear that

i=cr+l i=a+l

From the fact that i=l 7(i) cxz, we conclude that 7- <
For e > 0 small enough, let us define the stopping times

(17)
T inf(t’V(xt) >

ak inf(t st k).

LEMMA 4. There exists ,, > 0 such that if V(xo) < el2 then P(7- < cx) <
K(e) ]i1,3,(i)2 for any

Proof. Let us choose 6v such that Iq(x)l < if V(x) < 6(6 has been defined in (14)).
From (3) we obtain by Assumption 2,

(18)

(19)

-r--1 -r--1

P(7- < oc) < P(-Z’y,+lqo(x,)TVV(x)- Z’)/i+lVV(xi)Ti+l
i=o i=o

r-1

i=0

r-1

VV r

i=0

r-I

q_gZ 2 t2 [2 )
i=0

r-1

Z
i=0

+ P 7i+l(l(xi) + Ii+l > Ke/4 11 +I2.
\ i=0

Define the martingale

tAr

Mt 5iVV(xi-1)Ti
i=l

(where t A 7- min(t, 7-)). Then by the Doob inequality, we have

Ii<P(suplMt[>e/4) <32 (217g(xi-1)12 )7E 7 112Z( < r)
i=1
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In an analogous way we get

Hence

(20) P(7" < oc) < KE E72iI(i < 7).
i--1

Now we will show that we can substitute 7(i) for "Yi in (20). When oct is close to zero the
noise {t forces the st to increase regularly. Indeed, due to Assumption there is # > 0 such
that for all x small enough

(21) # max Px(( + u)Tv < 0), lul < 6.

Since the function q(.) is continuous, we conclude from (21) that

max Px(( + p(x))Tv < O)

as soon as V(x) < 6,. In other words,

P((, + (x,_))v(,_ + (x_:)) < olJ:,-) _>

for Ixt_ll such that V(xt_) < 6,. Hence

(22)

Define uk min(crk, -). Then we have

Next, for any n > 0 we obtain from (22)

P(-+ - >
P({there is no change of the gain coefficient on n steps}

<_ ( )",

which implies that E(uk+ uk) _< #- 1. Therefore,

oc

E
i=1

,.),2 < k:0")/2(])E(/]k+l- b’k) < ;
k=0
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hence

P(T < 00) K() Z’)/2(]). [-]
/ k=0

LEMMA 5. zt ---+ 0 almost surely.
Proof. Denote

(23) A- {Ixtl > i.o.t.

Define the stopping time rk inf(t >_ rk zt E B(e/2)) with rk defined in (17). From
Lemmas 2 and 3, we have that the sequence - is strictly increasing and finite. The Markov
property then implies that for all k

P(A)- P(A f {r < x})_< E(I(7 < x)P- (A)) <_ K(e) Z
--k

Thus P(Ac) 1. Due to the arbitrary choice of e in (23), we obtain the desired pro-
position. [3

The objective of the following proposition is to obtain an estimate of the speed of con-

vergence of st/t to its limit.
PROPOSITION 1. st/t -- P* (T2 < O) almost surely.
Proof. Put

x(a)- max Px(luT[ < a).

Note that tPx(a) is the highest probability of a stripe of width 2a "centered in 0" under the
conditional law of . We use the decomposition

t-1 t-1

o)8t Si-F1 ’Si I(i i--I < -It- Z I < 0),
i--1 i--’l

and setting q g)(xi), we obtain the following bound for the first term:

lSt+l St I( t-1 <
I(t t- <[/((t--1 -Jr- t, t--2 q- t--1) < 0) r 0)

5 II((,-1 + ,- + ,-l) < 0) I((,,
_

+ ,-l) < o)1
+ II((,- + ,-l) < 0) I(,_1 < 0)

I, -,1 < I -1).5 Z(l(,,- + -,)1 < I(,-1,- + ,-1)) + I(

From the Neveu martingale theorem [7], we have

t-1 t-1 t-1

i=1 i=1 i=1

t-1

i=I
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Let us estimate

E(vtlt-2) E(Pzt_, @ Pxt_2( T TI(, (,-,I < I(,

Substituting the law P0 for Px,_,, we get

/I/xt_2(}t--2l) -t--(E(llPx,_ P0ll[.T’t-2) --IIP,_, n011)/ IIP,_, P011.
Using again the Neveu theorem, we obtain

Summing up, we have

t--1

st o(t1/2+c) + 2 qx_, (Ig)t-1 I)
i=1

t--2 t--1

/ IlPx_, Poll / 1(i_1 < o)
i=1 i=1

t--1 t--1

o(t1/2+) + 2 o(Iqi_, l) + 3 IIPx_, P011 + tP* (1T2 < 0).
i=1 i=1

Note that since zt -- 0 and the function p(.) is continuous, we derive that

t-1 t-

7 II/o(I(Xi--1)I) -t- IIPx_, Poll --+ o.
i=1 i=1

Hence stir P*(TI (a < 0). U

3. Asymptotic normality of the SA procedure. Consider algorithm (3)-(5) with the
special choice of the gain sequence" 7(t) 7t-1. Denote if-1 p,(2 < 0). We shall
show that the accelerated algorithm is asymptotically equivalent to the usual SA procedure
with the gain % 7fit-1 Let us consider the following assumptions.

ASSUMPTION 2. Assumption 2 holds. Moreover,

I(x) (x*)(x x*)l o(Ix

The matrix 1/2 7ffVp(z*) is Hurwitz, i.e., has all strictly negative eigenvalues.
ASSUMPTION 3. 7(t) "/t-1 with 7 < P for p defined in Assumption 2.
THEOREM 2. Let assumptions 1-3 hold. Then

xt --* x* a.s.,
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where matrix V is a unique positive definite solution of the Lyapunov equation

(24)

In other words, normalized errors of algorithm (3)-(5) are asymptotically normal with zero
mean and covariance matrix V.

Proof. Put x* 0. Note that as soon as all conditions of Theorem hold

xt O, st -t O,

which means that tTt ’y O. The following simple lemma will be useful in further
developments.

LEMMA 6. Let P (vt) be a random sequence of real numbers, such that vt - 0 almost
surely as t -- x. Then there exists a deterministic sequence (at) such that

at -- O and vt/at -- Oa.s.

Proof Let us construct the sequence wt max{[vii, >_ t}. Obviously, (wt) is de-

creasing and wt O. Thus there exists a sequence (t) such that et > 0, et --+ 0, and

P(wt > et) < t as t -- x. So, wt/v/- O. This means that there is a subsequence t of
times such that wt/ 0 almost surely. Let us define a sequence (a) in the following
way:

aj for t j < tk+l.

Then we have for all j

[vjl/aj wjlaj wtl 0 as j .
Theorem 1, along with Lemma 6, yields that there exists a sequence (at) of nonrandom

positive numbers such that

(25) at 0 and (7 tyt)/at O, xt/at 0 a.s.

Let us define the stopping times

(26) inf{t 17- tytl R[atl}, aR inf{t [xtl Rlat}

for a > 0 and u min(R, a). From Lemma 6 and (25) we conclude that for any e > 0
one can choose R < such that

(27) p(. ) .
Consider along with the process (3)-(5) a new linearized process zt, which is defined by the
equation

(28) z, z,_ (’(0),_ + ,), 0 x0.

Asymptotic properties of this process have been completely studied. For example, all of the
conditions of the Nevel’son-Khasminskij theorem [6] are satisfied; thus

zttl/2-a 0 for all > 0 and Ezt[2 < K

(29) z & (0, v),
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where the matrix V is defined in (24). Hence to prove the assertion of the theorem, it suffices
to show asymptotic equivalence of the processes (xt) and (zt).

Denote At oct zt.
PROPOSITION 2. x/At 0.

Proof. For At, we have from (3) and (28)

At t-1 (0)t-1 + t t(0)Zt-1

(31) At-1 ’(0)At_ + IZt_ll + --7t t,

where ut is an Ut measurable random variable satisfying

]utl max{ Ip’(O)]Rat’(7+Rat) IlaSUp
Note that limtbt 0. From Assumption 2 and the Lyapunov theorem, we conclude that
there is a solution A AT > 0 of the Lyapunov equation

ff’(0) A + A g 7’(0) -.
Thus we obtain

(32) 7(ATp’(O) + p’(o)TA) >_ (1 + fl)A

for some/3 > 0. Let us put Vt AtAAt. Using the inequality

(a + b + c+ d)2 <_ a2 + 3(b2 + e2 + d2) + 2a(b + c+ d),

we obtain from (31) for any t < u

12 2 2t-2 RZa2tt-2 12Wt Vt_l -Jl- 31Al(72ffet-21g)’(O)121At_l / IXt-ll lUt-ll + Isct

t-2 -2 12<_ v_ + K(t-V_ + a_ + a_t I
+ t-’(-(1 + fl)Vt-i -- 4(IAt-1 + IZt-lla)bt-1 nt- 2(7ff t%){TtAAt-1)

< Vt, (1 _1+ fl/2 + Kat_lt_2 +at-1 I1t-2 2

\ t

12 /t + 2(7/t 7t)gTt AAt-1+ 21zt- bt-

if t is large enough. And now, taking expectations on both sides, we obtain

< EVtI(t- < u) < (1 + fl/2 EVt_,I(t- 1 < ) + o(t-2).EVtI(t
k t

Therefore, we get for Wt tVtI(t < u)

Hence EWt -+ 0 and v/-[AtI(t < u) e_+ 0 for any value of R. Due to the arbitrary choice of
e in (27) we obtain the desired proposition.
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4. Algorithm with averaging of trajectories. Let us consider the Polyak-Ruppert al-
gorithm [8], [12] for the stochastic approximation problem:

Xt Xt--1 tYt,
x-t-- RN(33)

2t 2-=o x, xo

Yt (Xt-1) -+- t

with the sequence of scalar gain coefficients % defined by (4) and (5).
The first equation of (33) along with (4) and (5) constitutes an accelerated stochastic

approximation algorithm that is analogous to that considered in 2. The averaging in (33) en-
sures the asymptotical optimality of the method (see [8] for details). We impose the following
assumptions:

ASSUMPTION 5. There exists a function U(x) RN -- R+ such that for some >
0, c > 0, e > 0, L > 0 and any x, y E RN, the following conditions hold:

U(x*) -O, VU(x)(x) > 0 for x x*,
VU(x)Tq(x) >_ e;U for Ix- x* < .

ASSUMPTION 6. There exists a matrix (x*) 0 and Ko oo, 0 A

_
such that

I (x) x*)l <_ x*l
ASSUMPTION 7. /(t) ")/t-t with 7 > 0 and (1 + A) -1 < # < 1.
Comment. In fact, Assumptions 2 and 5 declare the existence of two Lyapunov functions

for the system. The probe function U in condition 5 describes the local properties of the
function q(.) in the neighborhood of x*, and V declared in Assumption 2 is, in turn, a
"global" one that guarantees the global stability of the system.

THEOREM 3. If conditions 1-7 are satisfied then

2t - x* a.s.,

x*) v),

where

v

Proof. We will verify the assumptions of Theorem 2 in [8]. Assumptions 1, 5, and 6
ensure that conditions 3.1-3.4 of Theorem 2 in [8] hold. It suffices to show that

(34) E "Y}I+A)/2t-I/2 < 0(3.

i--1

Note that all of the conditions of Theorem are satisfied; thus

8t
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This means that there are a > 0 and t < oc such that st >_ at for t >_ t. Thus we obtain
by Assumption 7

<_ I( + E (iCt)-"(l+X)/2i-1/2
i=t+l

<_K+K E i-1+’
i=t+

for some c > 0. Hence the series (34) is summable. [3

5. Numerical examples. Consider a stochastic approximation problem for the vector
field in R2

Xl X 8(X2 X)q(X)--
I+V/iX--X*]’ l+v/lc x*

with disturbances t E R2 that are independent and identically distributed Gaussian random
variables with zero mean and covariance

0 1.0

The initial error is xo x* (20, 20)7.
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The trajectories of the logarithm of the error variance averaged by 10 samples for the
ordinary SA algorithm, the Polyak-Ruppert algorithm (P), and their accelerated versions (K
and P + K, respectively) are presented in Fig. 1. First we compare algorithm (3)-(5) with
(t) t-1 to the ordinary stochastic approximation algorithm

In this example the accelerated algorithm (K) significantly outperforms the ordinary one (SA).
Next we can compare this behavior to that of the Ruppert-Polyak algorithm. (-),(t) t-’6

was arbitrarily chosen for the first equation of the Ruppert-Polyak method (33).) We can see
that the Ruppert-Polyak algorithm (P) and its Kesten-like modification (P + K) asymptotically
outperform their ordinary counterparts (algorithms without averaging of the trajectories).
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PARALLEL PROJECTED AGGREGATION METHODS FOR SOLVING THE
CONVEX FEASIBILITY PROBLEM*

UBALDO GARCA-PALOMARESt

Abstract. Convergence conditions are established for new sequential and parallel projected aggregation methods
(PAMs) that find a feasible point of a large system of convex inequalities and linear equations. To formulate a
multiprocessor method suitable for solving a nonstructured convex system, block iterative methods are used and all
system constraints are simultaneously processed. Each processor is assigned the task of finding closer points to one
block subsystem, so that at every iteration each processor proposes a point closer (in some norm) to a group of the
system constraints, and a head processor combines the proposals and generates a point closer to the original system.
These parallel versions appear amenable to multiprocessing. Numerical results are reported that give hints on how to
code these methods in a multiprocessor environment.

Key words, convex systems, convex feasibility problem, parallel processing, projected aggregation methods

AMS subject classifications 52A41, 52A40, 65A05

1. Introduction. We consider the convex feasibility problem of finding a real vector of
n components in a set S defined as

(1.1a)
i--1

where

(1 lb) Si { {x E nnlgi(x) < b} if/=l,...,m,
{xeRnlg(x)=bi} if/=m+l,...,p,

g(x), 1,..., m are convex subdifferentiable functions and g (x) := a x, m +
1,..., p are linear functions. We always assume that the first m constraints defining the set S
are convex (or linear) inequalities, and that the last p-m constraints are linear equalities.

Our concern is to propose sequential and parallel methods to solve the convex feasibility
problem, when both the number of constraints p and the number of variables n are large. We
mainly report on mathematical, not experimental, results. Conclusive computational assess-
ments of the methods presented here require the solution of the convex feasibility problem on
different multiprocessor architectures, a subject that remains open for future research.

A good review ofiterative methods for solving 1. l) can be found in [5], [6], and references
therein. Many of these methods coincide when they solve a system of linear (in)equalities,
and can be considered as an outgrowth of the wealth of research stemming from work by
Cimmino [10] and Kaczmarz [26], who proposed iterative algorithms for solving a linear
system of equations by cyclically projecting on the hyperplane defined by one equation.
Agmon 1 and Motzkin and Schoenberg [28] used the same approach for solving a system of
linear inequalities. They proposed an algorithm that successively projects on the supporting
hyperplane of the convex set defined by one inequality. Apparently these algorithms are
robust but sometimes very slow, and many researchers have analyzed block iterative versions
to improve convergence [3], [4], [6], [13], [14], [17]-[20], [22], [24], [27], [33].

Our objective is to apply and analyze the projected aggregation methods (PAMs) in
the solution of the convex feasibility problem. These methods generate a new iterate as the
(under/over) projection ofthe previous iterate on a hyperplane defined by a suitable aggregation
of linearizations of appropriate constraints. To our knowledge, Householder and Bauer [24]

Received by the editors June 26, 1991; accepted for publication (in revised form) August 25, 1992.
Universidad Sim6n Bolfvar, Departmento de Procesos y Sistemas, Apartado 89000, Caracas, 1086 A, Venezuela.
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were the first researchers who proposed a PAM for solving a linear system of equations, but
it seems that their method went unnoticed. Garcia-Palomares [20] gave conditions to enable
parallel processing for PAMs on structured linear systems and extended those results for
systems of convex inequalities 19]. In this paper we complement these and previous results
on PAMs 17], [18] and apply these methods to the problem of finding a feasible point of a
convex system defined by the intersection of convex subdifferentiable inequalities and linear
equalities. We show that the proposed algorithms for solving this convex feasibility problem
inherit most of the properties of the PAM for the linear case, and fit nicely into a parallel
processing procedure for solving structured convex systems. In addition, we show that under
appropriate conditions our algorithms become a particular instance of an underlying scheme
proposed by Aharoni, Berman, and Censor [2], who use projections onto hyperplanes that
separate an iterate from the convex system.

We also present novel methods that allow a high degree of parallelism even for nonstruc-
tured convex systems. Instead of trying to find a feasible point to a large system directly, we
split it into smaller subsystems and devise a block-iterative projection method. We then assign
one processor to each block. To ensure convergence to a feasible point of the large system,
a head processor reconciles all processors’ actions. We present some preliminary numerical
experiments for linear systems with the mere purpose of providing some ways of coding these
methods in a multiprocessing environment.

In our notation lowercase Greek (un)subscripted letters denote real numbers, lowercase
Latin (un)subscripted letters denote vectors, and uppercase Latin unsubscripted letters denote
matrices or sets: a is the ith component of the vector a; a b is the inner product of vectors
a, b; AT is the transpose of the matrix A; 09(.) denotes a subgradient ofthe function 9(.); v+ E

R_, represents a vector point (or a vector function) whose p components are given as

max{O, v } if/= 1,...,m,
ifi rn+ 1,...,p.

We denote a(x, S) as a distance from the point x E Rn to the set S. We assume that
a(x, S) satisfies the triangle inequality, that is, a(x, S) < a(x, y) +a(y, S) for any x, y E R’.
An infinite sequence will be represented by {. }=0, but to simplify the notation {. } 0 means
that the sequence {.}=0 converges to 0. The rest of the notation is rather standard and we
hope that it can be understood from the context.

The paper is organized as follows. Section 2 describes some variants of the sequential
PAMs that include practical ways to aggregate constraints and to reduce the computational
work required. Section 3 describes variations of PAMs for solving structured systems. We
also introduce novel methods that are quite amenable to parallel processing. Section 4 shows
preliminary numerical experiments with some methods presented here.

2. PAMs. Householder [24, p. 100] gives the following iterative PAM for solving the
problem of finding z E (x E RnlAx b), where A is a nonsingular real n n matrix, and
bER

Choose x0
Until convergence do

Choose some no-null vector uk E R

uk * (Axk b) ATukXk+i xk ATuk , ATuk
k=k+l
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End Do

Householder obtained that

(2.1) IlXk+l zll 2 --Ilxk zll 2 (uk * (Axk -b)) 2

ATuk ATuk
and proved that the choice of {uk}=0 is crucial in determining the rate of convergence of the
algorithm. Specifically, he obtained that

/,i;- )2
(2.2a) [IXk+l zll/llxk zll _<

( / /--1)2
if Uk AXk b,

(2.2b) if Uk max I(Axk b)l
l<i<n

where t is the condition number ofA. Below, we state general convergence conditions (mainly
on (uk)=0) for the more general convex feasibility problem (1.1). Surprisingly, we obtain
formulas similar to (2.1).

Let g(x) E Rp be a vector of p components whose ith component is g (x). Let A(x)T
be the n p matrix

A(x)T .= (Og(x), OgP(x)).

With a minor abuse of notation and when no confusion is possible, we denote A A(x).
Given 0 < r/< 1 and a symmetric real positive definite n n matrix M, the PAM’s iterative
procedure is as follows.

GENERAL SCHEME FOR PAMs. Choose x E Rn.
Iteration

Until convergence do
Choose u Rp to ensure convergence ((C3)-(C5) below)

(2.3a) d "= --M-1ATu

(2.3b) )
u (9(x) b)

d. Md
(2.3c) /<_ w _< 2 /

(2.3d) x x + wad

end do
End of the scheme for PAM

In the remainder, {xk, Uk,Wk, d, "k}k=0 is a sequence generated by the iteration loop
of the general scheme for PAMs and we assume that conditions (C1)-(C6) given next hold,
where p is a scalar that generally depends on the initial estimate x0, and where 0 < r/< 1.

(C2) 09i(.), 1,... ,p, are uniformly bounded in

No’- {x Rnlllx-zll 2, z X},
where

x {x s I1o xll p2},
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(C3) {uk)-0 is a uniformly bounded sequence.
(C4) Vk’u >_0fori<m.
(C5) Vk u (g(xk) b) >_ O.
(C6) V "0 < r/_< cok _< 2- 7.
It is easy to deduce that the expressions for d and A, given by (2.3a) and (2.3b), respectively,

are nothing but the explicit evaluations of the projection of x on the hyperplane H(u,x)
defined by (2.4) below; therefore, PAMs are methods where the new point is the (under/over)
projection ofthe point x on the hyperplane H(u, x) defined by the aggregation of the linearized
constraints, namely,

(2.4a) Zui(g(x)+Og(x)*(Y-X))--uib}
or, equivalently,

(2.4b) H(u, x)"- {y Rnlu (g(x) + A(x)(y x)) u b}.

At the kth iteration PAMs solve the easy problem

(2.5) min Ily-x ll ,
yEH(uk,Xk)

where xk is the estimate of some feasible point, uk are weights that satisfy (C3)-(C5), Ily
xll (y x,) M(y x), and M is a symmetric strictly positive definite n n matrix.

If 79x is the solution to 2.5, the next estimate x+ is given as

(2.6) X+ X + (79Xk Xk) for<<2--r/,

and, as we shall prove,

Ilxk+, zlI2M Ilxk ZlI2M wk(2   )ll xk xkll2M for all z X.

It is pertinent to point out [20] that the PAM is an underlying scheme for well-known
methods (Craig’s conjugate gradient [11], Polyak [31], Oettli [29], and others) that differ
from each other in the choice of the sequence {u}--0. Likewise, block-iterative procedures,
which have been successfully used for solving large linear systems (see [3], [4], and references
therein), belong to the family of PAMs [18] and their convergence is easily deduced from 19,
Thm. 3.2]. Illustrative applications and experiments on linear systems reveal that convergence
improves with a suitable choice of the sequence of weights {u }=0, which aggregates several
constraints at every iteration; even finite termination can be achieved in some cases 18]. In
Fig. the dashed line shows the well-known zigzag effect of Agmon [1] and Motzkin and
Schoenberg’s [28] projection method (AMS) when the set S is defined by the intersection of
two inequalities that shape a small angle wedge. The method forces the alternate projection on
the supporting hyperplanes that originates the zigzag. The PAM prevents the zigzagging by
projecting on the hyperplane H. We should note that the primal-dual projection method due
to Spingarn [32] possesses a natural acceleration feature through the use of "dual" variables
when the iterates get caught in small angles; however, for large problems the amount of storage
required is prohibitive. It needs to keep p dual vectors in R’.

Another significant feature of the PAM for the convex feasibility problem is that the
projection 2.5 is performed on a hyperplane H(u, x), as opposed to previous methods that
converge if the projection is performed on the convex sets S, 1,..., p [21 ], or if boundary
points of the convex sets are computed [2], [5].
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... H

FIG. 1. AMS projection versus aggregation.

We now turn our attention to the convergence of PAMs.
Condition (C 1), the nonemptiness of S, implies that given any initial point :c0, there exists

some p2 (generally dependent upon :co) such that

x :- { s[ Ilxo 11 92} O.

In our convergence analysis we look at PAMs as methods of variational type. IfX 13, PAMs
generate a Fejer minimizing sequence with respect to the set X of the quadratic functional

f Rn X -- R defined as

(2.7) f(:c, z) --I1- zll (- z) M(- z), /, X,

We now show that for one iteration ofthe PAM given by (2.3), we obtain that f(:ck+l, z) <
f(zk, z) for all z E X; that is, the next iterate :c+1 is closer to all z E X than the previous
iterate :c. We start with the following lemma.

LEMMA 2.1. Let :c R and u Rp. If u >_ O for <_ m, if u (9(:c) b) >_ O, if
0 < w < 2, ifd- -M-1ATu, if

u , (g(x) b)
>0

d,Md

then

and x x +wAd,

IlXl zllt IIx zll co(2 co),u (g(x) b) for all z e X.

Proof Let z X. By straightforward algebraic manipulation, we have

[IXl zll -IIx- co,XM-1ATu- zll 2M
IIx zll 2wAATu * (x z) + w2A2d Md

IIx zll// 2w,u (g(x) + A(z x)) 2wAu g(x) + cd2/2d * Md.

As z E S we deduce by convexity and by the definitions of , u that

Ilx z[IZM <_ IIx zlIZM + 2W,U g(Z) 2WAU * g(X) + co2/2d * Md

(2.8a) _< IIx z[[t 2wAu (9(x) b) + co2,2d Md

IIx zll, w(2 co),ku (g(x) b),

which shows the validity of the lemma.
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The last inequality can be rewritten as

(2.8b)

(2.8c)

(2.8d)

(2.8e)

Relation (2.8a) for the convex feasibility problem resembles relation (2.1) derived by House-
holder [23] for a linear system of equations; therefore, we should expect that the choice of
{uk}=0 will influence the rate of convergence of the PAM. Some suggestions for {uk}k=O
are given by [19], [30], and [33]. Lemma 2.2 below gives an interpretation of the PAM when
the system lacks inequalities (m 0). In this case, given x E R and d E R’, the PAM will
locate the minimum of f (., z), starting at x, and along the direction d. In other words, the
PAM will locate the closest point to z.

LEMMA 2.2. If m O, that is, S {x RIAx b}, then given x Rn, d
--M-1ATu, and z S

arg in IIx + ,d- zll 2M--
, (a(x) )
d,Md

Proof Let x Rn and d Rn be given and define

(D "-IIx + ,d- zll2M Ilx- zllt + 2)d, M(x z)+ A2d, Md,

so that 0(,) is a convex function and zg’(,) 0 if and only if -(d M(x z))/d Md.
The conclusion follows whenever d -M-ATu.

LEMMA 2.3. Given xo let {xk}-0 be the sequence generated by the PAM, and let

So {x Rn llx- zll p2, z

If(C1)-(C2) hold, then {xk}=O C_ Xo and Xo is a compact convex set.

Proof. By assumption, x0 X0. Besides, Lemma 2.1 shows that Ilxk/ zll _<
Ilxk zll; thus, by induction, {Xk}k=O C_ Xo. The compactness and the convexity of X0
are obvious from its definition.

THEOREM 2.1 (convergence theorem). Let {Xk, Uk, Wk, dk, }=0 be generated by the
PAM. If(C1)-(C6) hold, if {xk}=O S, and

(2.9a) {Uk * (g(xk) b)} ---+ 0 ==> {a(xk, S)} --+ 0,

or

(2.9b) Vk uk (g(xk) b) >_ ccr(xk, S) for some c > 0,

then {llx+, xll) -+ 0, {(x, s)) --+ O, and {xk} a e S.
Proof Since (2.9b) => (2.9a), we assume that (2.9a) holds. Let z X. The sequence

{ [[xk zll2M }c=o is nonnegative and by (2.8) monotonically decreasing; therefore, it converges
and

{C0k(2 COk)AkUk * II(g(xk) b)} - 0;
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TABLE

Typical choices ofuk. (The sign ofu is chosen such that u(g(xk) b) >_ 0.)
a(x,S) u

II(g(xk) b)+ll

II(g(Xk)

II(g(xk) b)+l12

4-1 if (g(xle) b)+ a(xk,S),u { 0 otherwise.
4-1 if(g(xk)--b)>0,u { 0 otherwise.

+((x) b).

therefore, by (C6) and the definition of {A}=0, we obtain that

(2.10) (uk * (g(xk) b))2 O.
d * Md

By construction, we also have that

2A2kdk * Mdk 2 (u (g(xk) b))
IlXk+l XklI2M 03k 0.)k dk * Mdk

so we immediately conclude by (C6) and (2.10) that { I[X+l x ll ) 0, or equivalently,
{llz / z ll) 0. Moreover, from (C2) and (C3) we deduce that {u (g(x) b)) 0,
and (2.9) implies {a(x,S)} 0. Since {xk}=0 is a Fejer sequence, we conclude by
continuity that {x}__0 converges to some : E X C_ S.

It is known [2] that the sequence {x}=0 generated by (2.6) converges if the projection
7)xk is performed on any hyperplane that separates S and a ball of center x and radius
6cr(x, S) with 0 < 6 < 1. We now prove that under assumption (2.9b), the hyperplane
H(u, x) is a separation hyperplane. In this case, PAMs become a special instance of the
(6, 7) algorithm.

LEMMA 2.4. Under conditions (C1)-(C6) and under assumption (2.9b), the sequence
{xk }=o converges to some point in S.

Proof Let x B(xk, 6a(Xk, S)), a ball centered at x, and radius 6cr(xk, S). Let
SUpxxollA(x)ll and "7 sup IIll.
We have

(2.11) uk * (g(Xk) + A(xk)(X Xk)) >_ Uk * b + aO(Xk, S) y60"(Xk, S) > u * b

for 6 sufficiently small.
On the other hand, if x S, then

Uk * (g(xk) + A(xk)(x Xk)) < Uk * g(x) < U b.

The last inequality and (2.11) show the separation property ofH(u, xk) and the convergence
follows from [2, Thm. 1]. When the sequence {u}=0 is chosen such that u (g(x) b)
becomes a predefined distance a(x, S), we identify several known methods for solving
linear systems as instances of PAMs. In the convex case we can choose {uk}=0 with the
same feature, and the theoretical convergence results are clear from Theorem 2.1. Table
shows different definitions of a(Xk, S) and typical choices of uk.

All of the choices for u depicted in Table 1 aggregate violated inequalities. These
choices present at least two drawbacks: the possibility of zigzag and of costly evaluations
of the distance function a(xk, S) at all iterations. To prevent zigzag and hopefully enable
a better performance of the algorithm, it should be advantageous to aggregate nonviolated
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inequalities. It is evident that we can aggregate any number of constraints, that is, u 0
for several values of i, as long as (2.9) and conditions (C3)-(C6) are fulfilled. To prevent the
costly evaluation of the distance function, we split the system into subsystems. We prove that
convergence is preserved under similar conditions if at every iteration we only evaluate the
distance function to a particular subsystem. Theorem 2.2 below and succeeding remarks give
an outline on how to implement these ideas.

Hereafter, we assume that P1,..., Pq are q index sets that exhibit a row splitting of the
system S, and that Y1,..., Yq are the induced subsystems; that is,

q

f’l
i--1 jeP

Following Censor and Lent [8], we define a control {i(k)}=0 to be almost cyclic on { l,..., q}
if < (k) < q for all k >_ 0, and if

Vj, <j_<q (a finite t) Vksuchthat i(k’)-j fork’<k+t.

For any given k, and a control i(k), let u be a (bounded) vector with the following properties:

(2.12a) u>0 forj<m,

(2.125) u 0 if (g(xk) b)j < --(ct/p)ff(Xk, Yi(k)),
(2.12c) Z uJk (g(xk) b)J > oa(xk, Y(k)).

iGPi(k)

THEOREM 2.2 Let uiq=_lPi P := {1,...,p}, let {i(k)}=0 be almost cyclic on
{1,...,q}, and let {Uk}k=O be a set of(uniformly bounded) vectors chosen by (2.12). If
{xk}=0 is the sequence generated by the PAM and if(C1)-(C3) and (C6) hold, then {xk }k__0
converges to some c E X.

Proof. It is evident from (2.12) that {uk}k__0 satisfies condition (C4). Condition (C5)
also holds because

(2.13) uk , (9(Xk) b)>_ [c p-1 ] (x, ()) (c/p),,(z, ()) >_ o.
P

If we mimic the convergence proof of Theorem 2.1, we deduce from (C 1)-(C6) that

{ua (g(xk) b)} 0,

{llXk/l- xll} --,0.

(2.14a)

(2.14b)

Also, by definition,

(2.15) o _< _< +
Let j i(k). By hypothesis, given any r E {1,..., q} there exists a finite t, k + t _> U > k
such that r i(k’). From (2.14b) we obtain that a(x, x,) 0. From (2.13) and (2.14a) we
also deduce that a(xk,, Y(,)) --, 0. Therefore, from (2.15) we obtain that a(x, Y(,) 0,
that is, cr(x, Yr) 0; but since r was arbitrary we infer that

lim a(xk,Yr)=O forr= 1,...,q.

By continuity arguments we infer that a(xk, S) 0, which shows that any accumulation
point of {x}=0 belongs to S. But a Fejer sequence has a unique accumulation point k;
therefore, {Xk } c X. The proof is complete.
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Before we end this section, it is useful to state the following remarks.
Remark 2.1. The theorem remains valid with no modification even if cr (zk, Y(k)) 0

for several values of k.
Remark 2.2. A particular case of the theorem is the cyclic subgradient projections method

due to [8], where Y & "= {x Rnlx satisfies the ith constraint}, i(k) k mod(p) + 1,
and

( 0 ifj#i(k),
u- / ifj=i(k), j<m,

sgn(g(xk) b)j otherwise.

If S is a linear system, this choice for {uk }k__0 gives rise to the well-known method of Agmon
[1] and Motzkin and Schoenberg [28].

Remark 2.3. We can aggregate all the constraints; for instance, we may choose u for
j =fi i(k) as

-(c/p)cr (x, Y())
if / either (g(xk) b)j < 0 and j < m,uk (g(xk) b)J or j > m.

To ensure uniform boundedness, we reject the value given by the previous equality when a
pre-established bound foru is exceeded. It is not prudent, however, to enforce the aggregation
of all the constraints. It seems intuitively relevant to aggregate only those constraints that are
violated or nearly satisfied at xk. It also seems convenient to enforce that

uk (g(xk) b)j > 0 for j > m.

Remark 2.4. Convergence of the block-splitting approach can be proved if {uk}=O is
defined as follows:

(2.16a) Vk’u >0 forj<m,

(2.16b) Vk u (g(xk) b) > O,
(2.16c) {uk (g(x) b)} 0 =v {cr(Xk, Y/(k))} 0.

The definition of {uk }k__0 by (2.1 l) was merely a convenient way to explicitly state a scheme
to aggregate violated as well as nonviolated constraints.

Remark 2.5. Theorem 2.2 is valid for any block-splitting (not necessarily a partition)
P,..., Pq with the property

q

U P P {1,. ,p}.
i=1

It is therefore permissible that P Pj, j, which means that we can apply a finite number
of consecutive iterations of the PAM to the same subsystem.

Remark 2.6. If we look carefully at the proof of Theorem 2.2, we observe that a dynamic
block choice is allowed without impairing convergence. Let {Pk}=0 be a sequence ofblocks;
we say that {P}=0 is almost cyclic by row if

Vk, O#PC_P={1,...,p}, and

Vj, l_<j_<p, (a finite t) Vksuchthat jPk’ fork’<_k+t.

In our numerical experiments with PAMs we make use of this dynamic block choice. For
completeness we state the convergence proposition and sketch its proof.
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PROPOSITION 2.1. Let {Pe }%o be a sequence ofblocks, which is almost cyclic by a row,
and let {Ye}e__0 be the sequence of its respective induced subsystems. Let (C1)-(C6) hold.
Assume that

{, (a(x) )} o {(x, v)} o.

If {xk, ue,wk,de,/ke}-o is the sequence generated by the PAM, and {xe}-o S, then

{llxk/ xkll} --’ O, {(x, s)} -- 0 and {xk} Yc E S.

Proof As in Theorem 2.1, we deduce that

{ue * (9(ze) b)} ---* 0, {llXe+l :cell} --+ 0.

Given k, let j E Pe. Given any r {1,...,p} take k + t >_ k’ >_ k, such that r Pe,. By
definition,

o <_ (x,S) <_ (x,x,) +(x,,s).

Since cr(xe,, Ye’) 0 and r Pe,, then a(xe,, St) -- O. From the previous inequality
a(xe, Sr) -- O. Because r was arbitrary, we have

a(xe,S) -- 0 for r 1,...,p,

and by continuity we obtain the convergence result.
Remark 2.7. We require neither (2.16a) nor (2.16b) to prove convergence of the PAM for

solving a system of linear equations. The basic assumption will be

(2.16c) {ue * (9(xe) b)} -- 0 = {or (xe, Y(e)) } -- O.

Therefore, it is not convenient to treat equalities as two inequalities.

3. Parallel algorithms. In this section we describe and analyze two types of PAMs that
are useful in a multiprocessor environment: structured PAMs (SPAMs), that are well suited
for the solution of structured and sparse systems [19], [20], and parallel PAMs (PPAMs) that
exhibit per se a high degree of parallelism and are therefore suitable for the solution of dense
and nonstructured systems.

To develop SPAMs we need the following definition.
Uncoupled subsystems. Assume that the index sets P1,..., Pq define a row block, that

is, Pi f Pj 0, and uiq=lPi C_ P { 1,..., p}. The subsystems Y,. Niep Si and
Yt := C3iep Si are uncoupled if

(3.1a) P, j Pt,
_<0 ifi_<m,

(3.1b) ai Maj 0 otherwise,
j<_m,

where ai is the ith row of A(x).
Let P1,..., Pq be index sets of uncoupled subsystems Y1,..., Yq. Given xe R’, let

uei, 1,..., q, be q (bounded) vectors in Rp that satisfy (3.2) below. To simplify the
notation we substitute ui for uei as follows:

(3.2a)

(3.2b)

(3.2c)
(3.2d)

J>0 ifj<m and jPi

J-0 ifj Pi,u

ui (g(xe) b) > O,
{ ((x) b)} 0 {(x, )} 0.
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LEMMA 3.1. Given z E Rn, z X, and 62 { 1,..., q}, let P1,..., Pq be uncoupled
subsystems, let (3.2) hold, and let zl z + -]ic2 wi)idi with

0 < w 2 , d -m-ATu and u (g(x) b)
for Q.

d Md
Under these conditions

(3.3a) IIx zll IIx zll wi(2 wi)Aiui (9(x) b),
iQ

(3.38) [[x- zl [Ix- z wi(2- wi)di . Mdi.
Proof By definition, (3.3a) and (3.3b) are equivalent, so we only wove (3.3a).

2

IIx,- zl15 x- AM-’ATu z

IIx- zll (2.,A. (x z)- :
W iATui * M- ATui)

iGQ

+ 2iiWjjATui * M-ATuj.
i,jGQ,ij

The last te is nonpositNe by (3.1) and (3.2); therefore,

llx. zll x- z. (2A, (x- z) : :
wi Ai di Mdi ).

iGQ

Now we follow Lemma 2.1 to deduce that

llx. zll llx- zll .(2- ,). ((x)- ).

Lemma 3.1 and (3.2d) allow us to state the following proposition.
PROPOSITION 3.1. Let {Qk}=0 be a block sequence which is almost cyclic by row, where

for any k, Qk is either the union of index sets of uncoupled subsystems or the index set of a
coupled subsystem. Let { k }=0 be the sequence of its respective induced subsystems. Let
(C1)-(C6) hold. Assume that (3.2) holdsfor any set ofuncoupled subsystems, and (2.9a) holds
for any block Qk ofcoupled subsystems.

ff {xk, uk,wk, dk, Ak}=o is the sequence generated by PAMs, and {xk}=O S, then

{[[x+ x} 0. {(x. )} 0 .d {x} e .
Proof We follow Theorem 2.2 (or Proposition 2.1) to prove that (2.9a) holds when Qk

is the union set of uncoupled subsystems, and the result follows, using the same theorem once
more.

Because of this proposition, we can have individual processors working simultaneously
on uncoupled subsystems. The results generated by each processor are then added up (see
Fig. 2). It is pertinent to point out that after performing q sequential projection steps ofPAMs,
that is, q iterations, we obtain by (2.8a) that

(3.4) IlXq zllzM <_ IIx- zllzM Z wi(2- co)Aiu (9(x) b),
iQ
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--’> e)lXldl

(OqXqdq

q
Xk+ Xk +

i=I

FIG. 2. For uncoupled subsystems, q processors work simultaneously.

P3
94 F-----]

FIG. 3. Block angular structure.

which resembles (3.3); yet, they have a sensible practical difference. The subgradients 09(.)
must be computed q times to generate xq by (3.4), whereas inequality (3.3) holds after per-
forming q simultaneous projections and one addition of weighted directions. This means that
the subgradients are computed only once while generating c+. The rest of the work required
to generate cq in a sequential process is almost the same as the work required to generate c+
in a parallel process.

Summarizing, we can always use parallel processing on uncoupled portions of the system
and sequential processing on the rest ofthe system. For example, we may partition thep rows of
the block angular system shown in Fig. 3 in blocks/9,...,/95, and define the following block
sequence: Q {P U/92 U/93 U/94}, (2 /95. We generate :rk+ working simultaneously
on blocks P,/92,/93, and/94; then we generate :ok+2 working on block Ps. Another common
system possesses the staircase structure given in Fig. 4. We define Q {P to P3} and
Q2 {P2 to P4} and generate :r+ working simultaneously on P1 and P3, and z+2 working
simultaneously on/92 and/94.

The PPAMs to be described next are quite useful for solving large, dense, unstructured,
convex systems in a multiprocessor architecture. If we have q processors p,..., pq that can
work simultaneously, we may split the linearized system A:r b into subsystems Az
b,..., Aqz bq, not necessarily disjoint. Given the estimate z, the processor Pi generates
i, hi, u, and di under the general scheme for PAMs for solving Ai:r bi; thus each processor
pi generates a weighted direction co,idi aimed at finding a closer point to the subsystem
Ai:e bi. We are essentially using a "divide and conquer" approach, where the task of
finding a feasible point of a large and nonstructured system S is simplified into the lenient
tasks of solving the feasibility problem of q small subsystems. The weighted directions
generated ai/kd, 1,..., q, are proposed to a coordinating processor which defines the
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FIG. 4. Staircase structure.

direction d :-- -]q ziAidi and generates , A, and u to get the minimum along d of the
function f (., z) defined by (2.7); that is, we get the closest point to the set X starting at x and
along the direction _d. It is rather trivial to generate ,, and u; indeed,

q q

i:1 i=1

where _u ’iq__ i,u. If

_
is given by (2.3b) and 0 < 7 < < 2 r/, all the conditions

of Lemma 2.1 hold; therefore,

 3,5) IIx + IIx zll w__(2 w__.),___u_u (9(x) b) for all z E X,

and convergence can be proved similarly. For the sake of completeness, let us state the general
framework for the PPAMs and sketch their proof of convergence.

PPAM ALGORITHM.
qP,..., Pq Index sets describing the row block splitting with the property t2=P

{1,... ,p)
Y := fqjEpSj, 1, q
a(., .) :-- a predefined point to set distance
0<r/_< 1,0<e
Let k 0
Choose xk E R’ as an estimate of a feasible point of S
While o(xk, S) > e do
Step 1

For 1,..., q do in parallel
Define Uki Rp satisfying (3.2)
Compute k, and d according to Lemma 3.1.

End For
Step 2

Let u_ q=i)ku
Define 0 < /< w__k < 2-
Let dk -M-iATu__
Let k (Uk * (9(Xk) b)) / (dk Mdk)
Let xk xk + O.)kkdk
Let k k +

End While
End of PPAM Algorithm
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FIG. 5. Cimmino vs "closest." Cimmino is "shorter" than closest.

We let {xk, u_k, k, -dk, -Ak }=0 be the sequence generated by the PPAM above, and for-
mulate the following proposition.

PROPOSITION 3.2. If(C1)and (C2)hold, then {xk} --+ E X.
Proof Equation (3.5) holds by assumption; therefore,

{w__k (2 W__k)_kU_k (9(Xk) b)} -- O,

which implies

(3.6) {u_k (g(xk) b)} O.

We prove convergence if we show that (3.6) implies r(xk, S) 0. This follows because

and (3.6) implies in turn, using (C2), (3.2), and Lemma 3.1,

o
o

s)} 0,

for/-- 1,...,q,
for/=l,...,q,
for/=- 1,...,q,

where the last implication follows by continuity and S Y fq... N Yq. A remarkable
feature of the PPAM is that the new direction _d is not a convex combination of the projected
directions, as it is required to be by Cimmino 10] and recent researchers (Elfving 14], Censor
and Elfving [7], De Pierro and Iusem 12], Flim 16], Bramley and Sameh [3] and Yang and
Murty [33]). Figure 5 gives insight into the improvement that can occur in badly conditioned
systems. Cimmino generates a "short" distance, and so has slow convergence, because the
iterates remain caught in the region of small angle. PPAMs, on the other hand, project on the
hyperplane H(_u, x) to locate the closest point to X along the same direction, escaping from
that region. Numerical experiments carried out by Bramley and Sameh [3] show that a variant
of Cimmino’s method is not the best algorithm for solving a system of equations derived from
discretization of elliptic partial differential equations.

Getting "the minimum along the line" can be used in sequential algorithms for solving
linear systems. After we generate the weighted directions oak+l, Ak+l, dk+l, 1,..., q, we
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FIG. 6. d is the direction ofsearchfor a minimum.

make a correction step and find the minimum value of f (., z) along the combined direction _d
as before. Figure 6 illustrates the behavior of a sequential method, which suggests the search
of a minimum along _d after we project on all blocks.

Remark 3.1. If each processor proposes a direction -M-1ATu, 1,..., q, with ui
satisfying (3.2), the convergence proof still holds if the head processor generates u, d, A, w,
and xk+ as follows:

Remark 3.2. We recall that Cimmino defines a direction as a linear combination of the
directions proposed by the q processors, namely,

q q

d=#),d with/z>_0 and /zi--1,
i=1 i=1

xk+ x + cod, rl < co <_ 2

4. Numerical experiments. In this section we report some preliminary numerical re-
sults. The main purpose of our experiments is to compare the behavior of parallel versions of
the PAM with some sequential versions and to give some hints on ways for coding PPAMs on
a multiprocessor environment. We carried out all the numerical tests on a Macintosh SE/30
and coded all programs in the compiled Microsoft Quick Basic version 1.0.

We solved the system Ax < b with 500 inequalities and 50 unknowns, where A was a
matrix of constant integer values randomly generated between -10 and + 10 and b Ae +
(1.E 07)e to ensure feasibility of e (1,..., 1). The starting point was the same random
integer vector with all of its components between -5 and 5, M was the identity matrix, and
co 1. The problem generated was not particularly easy to handle; in fact, a subset of 100
constraints and 20 variables could not be solved by either the Hildreth method as reported by
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TABLE 2
Sequential versus parallel procedures.

Sequential Parallel
x is given
P:--{1,...,p}--PUP2U...UPq
While a(x, S) > e do
Step 1
Let w x
Let d 0
Let u 0
For 1,...,qdo
Choose u
Let (w, A, d) be generated by one or more
iterations of PAM on the set defined by Pi
Let d d + wiAidi

x is given
P := {1,...,p} P1U P2 U... U Pq
While a(x, S) > e do
Step 1
For 1,..., q do IN PARALLEL

Choose u
Let (w, A, d) be generated by one or more

iterations of the PAM on the set defined by P
End For
Let d 0
Let u 0
For l,...,qdo

Let u u + wi Aiui
Let x x + d

End For
Step 2

If A(x) is constant then
Compute (w, A) by one iteration of the PAM

Let x w + wad
End if

End While

Let d d + wiAidi
Let u u + wi,ki di

End For
Step 2

Compute (w, A) by one iteration of the PAM
Let x x + wad
End While

Iusem and De Pierro [25], or the projection method of Agmon 1] and Motzkin and Schoen-
berg [28]. Neither method gave a solution in fewer than 10,000 projections. Nonetheless,
convergence was always obtained when more than five constraints were aggregated at every
iteration.

Among the myriad algorithms that belong to the PAM, we report in Table 3 the results
obtained with the choices of {uk } shown in Table and a dynamic splitting of the index set
P "= { 1,..., p}. To start the kth iteration we are given the index ik, which represents the
first index that may belong to Pk, and an integer r, which represents the maximum number
of violated constraints that might be present in P. We assembled Pk using the following
procedure.

PROCEDURE ASSEMBLING Pk
Let Pk : Card (Pk) 0 (Cardinality of Pk).

total 0
j --ik

While Card(Pk) < r and total < p do
If (g(xk) b)J+ > e then

Pk Pa U {j }
Card(Pk Card(Pk) + 1

end if
total total +
j=j+l
ifj>pthenj=l

end while

ik+l =j
end of procedure

The first column of Table 3 shows the value of r, the second column gives the number of
directions to be combined in step 2 of the procedures shown in Table 2, the third column shows
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TABLE 3
Sequential versus parallel procedures.

Violated Combined
constraints directions Version

20

100

X
5 sequential
5 parallel

20 sequential
20 parallel
100 sequential
100 parallel

X
5 sequential
5 parallel
20 sequential
20 parallel
100 sequential
100 parallel

X
5 sequential
5 parallel
20 sequential
20 parallel

X
5 sequential
5 parallel

Number of projecting directions
(Az <_ b, 500 x 50)

Norm chosen as or(z,
Infinity 1-norm 2-norm
1898 * *
2271 * *
2343 * *
1981 * *
2384 * *
1868 * *
4013 * *
725 553 415
895 675 478
1043 794 597
720 577 428
1237 1043 821

491 480 363
1001 3152 1879-
484 183 124
608 216 133
807 329 244
529 183 116
554 372 622
458 56 44
458 90 69
764 612 130

500 X 445 43 37
*Same values of the cx-norm.
1Best value for the x-norm.
2Better value for the parallel version compared with the sequential version.

TABLE 4
PPAM algorithm. (Number ofprojecting directions with 2-norm.)

Minor Precting directions genered
Rows/Block iterations All processors Head processor

6673 37
5 3016 38

5 6384 35
20 877

100

5OO

5
20

5
20

5
20

35
3057 30
5063 30
205 35
474 20
1359 17
74 37
45 8
44 4

the version used, and the last three columns give the number of directions generated when

uk * (Azk b) cr(z, S). The 2-norm gave the best results, except for some anomalous
cases. The minimum along the line (step 2 of the sequential procedure) did not reduce the
number of projecting directions; it was, for this problem and/or the methods chosen, a useless
step. The parallel version took more projections, but we should expect good speedup in a

multiprocessor environment.

Table 4 gives the results of the same problem using PPAMs, but only with the 2-norm,
because this norm returned the best results in the sequential version. The system was parti-
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tioned into subsystems with the same number of rows r given in the rows/block column. The
minor iterations column shows t, the number of loops of the general scheme of PAMs that
the processor Pi must perform. We found that the number of projecting directions always in-
creased with t, which suggests that it is not worthwhile to strive for feasibility at all iterations;
however, we should point out that the numerical experiments carried out by Garca-Palomares
18] reveal that exact projections might decrease the total time spent by the algorithm, as long

as the number of rows per block is not too big. If we assume that the number of processors
equals p/r, the time for parallel processing seems to improve with the number of processors.

We carried out experiments using (2.12) for {zk}k__0, but we noticed no significant
changes in the number of projecting directions.

To claim conclusive statements about the practical parallel capabilities of the PAM, nu-
merical experiments must be carried out on different parallel architectures. It is reasonable to
expect that we must adapt particular methods to particular architectures.
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A CENTRAL CUTTING PLANE ALGORITHM FOR CONVEX SEMI-INFINITE
PROGRAMMING PROBLEMS*

K. O. KORTANEKf AND HOON NOt

Abstract. The central cutting plane algorithm for linear semi-infinite programming (SIP) is extended to nonlinear
convex SIP of the form min {f(x)lx H, g(x, t) < 0 all E S}. Under differentiability assumptions that are
weaker than those employed in superlinearly convergent algorithms, a linear convergence rate is established that has
additional important features. These features are the ability to (i) generate a cut from any violated constraint; (ii)
invoke efficient constraint-dropping rules for management of linear programming (LP) subproblem size; (iii) provide
an efficient grid management scheme to generate cuts and ultimately to test feasibility to a high degree of accuracy,
as well as to provide an automatic grid refinement for use in obtaining admissible starting solutions for the nonlinear
system of first-order conditions; and, (iv) provide primal and dual (Lagrangian) SIP feasible solutions in a finite
number of iterations.

Numerical tests are provided on a collection of problems that have appeared in the literature including some
moderately sized problems from complex approximation theory.

Key words, semi-infinite programming, convex programming, central cutting plane, constraint-dropping rules,
computational experiments

AMS subject classification. 49D20, 49D39, 49D45, 52A40, 65D15, 65K99, 90C25

1. Introduction. Nonlinear semi-infinite programs. In this paper the following non-
linear semi-infinite program is considered.

PROGRAM D. Find

subject to the constraints

VD min f(x)

g(x, t) <_ o, for all t E S,

xEH.

Here the index-set S is fixed, and the following assumptions about the data in Program D are
made.

ASSUMPTION 1.1. (i) H is a compact, convex, and nonempty subset of Rn;
(ii) S is a compact and nonempty subset of R’;
(iii) f R R is convex and continuously differentiable on H;
(iv) 9 Rn Rm R is continuous on H S, g(., t) is convex for all t and continuously

differentiable on H, and Vx9(x, t) is continuous on H S;
(v) there is an H for which g(:, t) < 0 for all t G S, and which is not optimal for

Program D, referred to as a Slater point.
Applications of problems of this type are abundant; see [7], [12], [17]-[19], and [22].
In this paper we extend Gribik’s 11 linear SIP central cutting plane algorithm to Program

D. Gribik’s algorithm is an extension of the Elzinga-Moore [5] algorithm for finite convex
programming and all of these, including ours, are interior point cutting plane methods, because
certain spheres are inscribed within the region determined by all of the cuts generated up to
the current iteration. As with the linear case, the algorithm does not depend on a starting

Received by the editors June 11, 1990; accepted for publication (in revised form) September 23, 1992.
Department of Management Sciences, University of Iowa, Iowa City, Iowa 52242.
Korea Institute for Defense Analysis, P.O. Box 250, Cheong-Ryang, Seoul 130-650, Korea.
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solution and, under appropriate assumptions, converges. Hence it is a global algorithm. We
are able to retain the key features of the central cutting plane approach in our extension.
These features are the ability to (i) generate a cut from any violated constraint; (ii) invoke
efficient constraint-dropping rules for management of convex subproblem size; (iii) provide
an efficient grid management scheme to generate cuts and ultimately test feasibility to a high
degree of accuracy; (iv) provide primal D and dual Lagrangian feasible solutions in a finite
number of iterations, and with arbitrary tolerance (hence convergence to zero) of primal-dual
duality gap; and (v) provide a linear convergence rate between primal feasible points.

For the cases of linear and convex semi-infinite programming, Gustafson 14] and Gustaf-
son and Kortanek 16] developed a system of nonlinear equations in the primal and dual vari-
ables that are necessary and sufficient for primal and dual feasible solutions to be optimal.
Typically, Newton-type methods were used to solve these equations. The earliest implementa-
tion (of which we are aware) for solving the nonlinear system arising from linear semi-infinite
programming with a convex objective function is Fahlander’s 1973 Technical Report [6].
Given an adequate starting solution and continuing to solve the nonlinear system provides the
location of the local maxima

max g(Y, t), t E S,

which greatly reduces the need to use uniform or other highly meshed grids. Recent appli-
cations of this approach also appear in Glashoff and Roleff [9] and Tang [31]. An extensive
survey of efficient methods for solving general SIP problems that intrinsically use local re-
duction procedures appears in the recent survey by Hettich and Kortanek 18].

In this paper we present the algorithm in 2 and give a convergence analysis in 3. The
study ofLagrangian duality and the convergence rate is done in 4, but under the restriction that
the convex set H is to be a polytope. In 5 we test the algorithm on some examples appearing
in the literature, which include some complex approximation problems. In addition, we test
the combined procedure involving the nonlinear equations problem solver of Brown and Saad
[3], taking as starting points the primal-dual feasible points that the algorithm delivers. We
then compare the accuracy of the solutions we obtained with those of other methods, including
some alternative cutting plane algorithms that have appeared recently. Finally, our conclusions
appear in 6.

2. Specification ofthe algorithm. The assumption ofa linear objective function involves
no loss of generality. For if the objective function f(x) is convex, then obviously f(x) z is
convex, and Program D is equivalent to the following.

Find

min z

subject to the constraints

f(x) z <_ 0,
g(x,t)<O for alltES,
x H, min f(x) < z < max f(x).

We substitute the scalar variable z with the extended component xn+ of the vector x. More
formally, let f0 denote the original f with x (x,... ,x,). Redefine f on Rn+,x
(x, Xn+) by f(x) f(x) Xn+l, and simply set g(x, t) g(x, t).

One can also specify lower and upper bounds for each component of x, since H is com-
pact. The equivalent problem we consider for algorithmic development is then the following
program.
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PROGRAM DI. Find

V, min n+

subject to the constraints

f(x) <_ 0,
g(x,t)<O for alltES,

where

x e H [min f(x), max f(x)] H’(a subset of Rn+l).

Let f be a strict upper bound of VD, and let I]xll be the Euclidean norm; that is,

Then the algorithm is as follows (where we define Program SD recursively).

Step O. Choose a constant/3 in (0,1). Let f be strictly greater than VD,. Let SDo be the
program

max r

subject to

x+l + r <_ f, x H.
Choose y(0) G H. Let k 1.

Step 1. Let (x(k),a(k)) Rn+l R be a solution to SDk_. If a() 0, stop.
Otherwise go to Step 2.

Step 2. Delete constraints from SD_ according to either or both of the deletion rules,
or do not delete constraints. Call the resulting program SDk_ again.

Step 3. If x() is infeasible for the first constraint of Program D, that is, f(x()) > O,
go to (ii). Else if x() is infeasible for the infinite constraint system of Program Dt, that is,
g (x() t) > 0 for some t E S, set that t to t(k) and go to (iii). Otherwise go to (i).

(i) Add the constraint

xn+l + cr < (k)
n+

to Program SDk_i and set y(k) x(k)

(ii) Add the constraint

to Program SDk_I and set y() y(k-1)
(iii) Add the constraint

g (x(k) t(k)) + rxg (x(k) t(k)) (x- x(k)) + [lTxg (x(k) t(k)) [lr
to Program SDk_ and set y(k) y(k-1). Note Vxg (x() t()) =/= O.
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In either case, call the resulting Program SDk. Set k k / and return to Step 1.
Deletion Rule 1. Delete the constraint Xn+l / cr <_ f or any constraint generated by Step

3(i) in a previous iteration if x(k) is feasible for Program Dt.
Deletion Rule 2. Delete a constraint from SDk_ if
(a) the constraint was generated by Step 3(ii) or (iii) at the jth iteration where j < k,
(b) a() _< /O"(j),
(c) the constraint was not tight in SDk_I at (x(k) a(k)).
In practice, both Deletion Rule and Deletion Rule 2 are applied. We will show here that

the algorithm coverges with either rule, both rules, or neither rule used in Step 3.

3. A convergence analysis ofthe algorithm. The proof of convergence closely parallels
the convergence proof given in Gribik 11 for his linear semi-infinite programming algorithm,
and in some cases, we have retained some of his original wording and phrases.

LEMMA 3.1 Using either, both, or neither of the deletion rules, if the algorithm does not

terminate, the sequence {a(k) } converges to O.
Proof. Since the set of feasible points for Program D is compact and nonempty, there

exists a point that is optimal for Program D. Let Y E Rn+l be optimal for Program D; then
(, 0) is obviously feasible for SD for all k. Hence a() > 0 for all k. Deletion Rules and
2 only drop constraints that are not binding. Therefore, a() _> a(k+l) for all k. Hence

lima() 6- >_ 0, where is finite.

Assume that is positive. Then there exists a k such that

since 0 </3 < 1. Hence for k >_ j >_ k,

Thus/3a(J) <_ cr() for all k _> j _> . Consequently, condition (b) of Deletion Rule 2 is never
satisfied for j > k. These constraints are never deleted. Three cases must be considered.

Case 1. x(J) is infeasible for the first constraint of Program D.
In this case, Step 3(ii) is used to generate a cut, and so for all k > j, we must have

From (3.1), we have

Invf -f (x(j)) Vf (x(J)) (x() x(j))
(3.2) -Vf (x()) (x(a) x(j))

II f (x<J))ll -x<J)ll,
where the first inequality is due to f (x(J)) > 0, and the second inequality is due to the
Cauchy-Schwarz inequality.

Thus (3.2)implies (since Vf (xj) O)

Case 2. x(J) is infeasible for the continuous constraints of Program D; that is,

maxg(x(j) t) > O.
tES
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In this case, Step 3(iii) is used to generate a cut, and so for all k > j _> k,

(3.3)

Since (x(J), t(J)) is infeasible,

(3.4) g(x(J),t(j)) >0 and Vxg(x(J),t(j)) 0.
Subtracting (3.4) from (3.3) yields

7xg (x(j)’ t(J)) (x(k) --x(J))--IITM (x(j)’t(j)) II if(k)<_ O.

But, by the Cauchy-Schwarz inequality, this implies that

Consequently, this inequality yields

IIx(k) x(j)

_
if(k)_, forallk > j.

Case 3. x(j) is feasible for Program D’.
In this case,

x(a) a(a) -(J)
n-t-I + < n-t- for all k > j.

Hence this implies that

11 (k),n+ Xn+--(J) [I >a()- >#_ for all k > j.

Therefore, in any case,

]Ix(k)_ x(j) ll
_

if(k)

This contradicts the fact that {x(k) } k must have limit points since H is a compact set. Thus

the sequence { cr (k) } converges to 0. [3

LEMMA 3.2 Ifc isfeasiblefor Program D’ and f(c) < O, 9(c, t) < Ofor all t E S, there
exists a ?r > 0 such that (c, ?r) satisfies any cut generated by Step 3(ii) or Step 3(iii).

Proof of Case 1. The cut generated by Step 3(ii) has f (z()) > 0. If x E H and
f(z) > 0, then by convexity of f, V/(:)( z) <_ f(c) f(z) < 0, implying V/(x) = 0.
Let us check the conditions that 5 must satisfy. First,
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and so for all subproblems this constraint is satisfied if

f(:)<- -Ilvf 1,2,

Setting

Ml max{[[Vf(x)ll Ix H- {z[f(x) <_ 0}}

gives a finite positive number, and fulfills the requirement that 0" _< -f(Yc)/M1.
ProofofCase 2. The cut generated by Step 3(iii) has 9 (z(k), t(k)) > 0. From convexity

of g (’, t(a)),

in particular, Vzg (x(k) t()) =/= O. Thus, by the same arguments as in Case 1, letting

M2 max {max llVx9(z t)ll ]zE H-{z19 (z t()) < 0}}tES

leads to the requirement that r2 --0 (5:, t(k))/M2. Simply take & min{&l, &2}, which is

positive. []

LEMMA 3.3 If the algorithm terminates at iteration k*, 1(*-1) is feasible for Program
D. If the a(gorithm does not terminate, there exists k such that y(k) is feasible for Program
Dfork >_ k.

Proof. Assume that for all k, t() is infeasible for Program D. Then for each k, z() is
infeasible for Program D. Hence Step 3(i) is never used to generate a constraint, and Deletion
Rule is never used to drop a constraint. Let : be optimal for Program D and let 5: be the
point in Assumption 1.1(v). Then z(a) as: + (1 -a): is feasible for0 < a <_ and

f(x(a)) < O,
(3.5) g(x(a), t) < 0 for all t E S, 0 < a _< 1.

Since ,+ < f, we can choose & E (0, 1) sufficiently small such that 2:n+ () < f.
Hence there exists cr > 0 such that

By Lemma 3.2 and (3.5), there exists a" > 0 such that (z(), a") satisfies any cut generated
by Step 3(ii) or Step 3(iii). Choosing a* min(a’, a") > 0, (z(&), a*) is feasible for
for all k. Thus lima() > a* > 0. This contradicts Lemma 3.1.

THEOREM 3.1. If the algorithm terminates at iteration k*, then 1(*-) is optimal for
Program D. Otherwise limit points exist to the sequence {](k)} k

and they are optimal for
Program D.

Proof. Suppose that the algorithm does not terminate. By Lemmas 3.1 and 3.3 there
exists a c such that (k) is feasible for Program D for all k >_ k. Since the feasible region for
Program D is compact, limit points exist to {t() } and they are feasible. Let 9 be a limit

point and {t() } now denote a subsequence converging to z3. Suppose that 3 is not optimal.
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Let be optimal for Program D and d: be the point specified in Assumption 1.1 (v). Then,
defining x(c) c + (1 c),

f(x(a))<O for0<a< 1,
g(x(a),t) <0 for alltES and 0_<c< 1,

and

frmax ( 0n+fn+ --n+l0)--Xn+- __6t< 1.

Choose

& E (max (Y--n+ n+l O)’l)xn+Xn+-
and set or’ 9n+ Xn+ () > O. Then (Xn+ (), O’t) satisfies

Xn+ + O" < 0n+l < (k) fork > kYn+l

By Lemma 3.2, there exists a a" > 0 such that (x(&), a’) satisfies any cut generated by Step
3(ii) or Step 3(iii). Thus (x(), a*), where a* min(a’, a") > 0 is feasible for SDk for all
k. Hence limka(k) >_ a* > 0, which contradicts Lemma 3.1.

If the algorithm terminates at iteration k*, y(k*-l) is feasible for Program D by Lemma
3.3. If y(k*-l) is not optimal, an argument similar to the above shows that if(k*) > 0. Hence
the algorithm could not have been terminated. ]

4. Dual program and convergence rate. For the derivation of a convergence rate of
the algorithm, and hence for the development of a dual program, we will assume that H is a
polyhedral set defined by a set of linear inequalities; that is,

H’= {xlajx < bj,j J}, whereJ={1,2,...,m}.

We assume that the matrix A whose jth row is denoted aj has full rank; for example, "box"
constraints could be typical.

In this section we shall also denote a limit point of a nonterminating sequence generated
by the algorithm by Y E Rn+l

Used in the construction of a dual program to D’, let R(s) denote the linear space of all
real-valued functions on S having only finite support, termed the generalized finite sequence
space of S over R. Thus, if E R(S), then the number of elements in the set {tiC(t) 0) is
finite, while ( >_ 0 shall mean pointwise. We consider a Lagrangian form of the dual of D;
see Gol’stein [10] and Rockafellar [26].

PROGRAM P.

Vp-sup { ie, L(, , x) )ER(S) ,fitER x

where

(4.1)

L(, , x) f(x) + (t)g(x, t) + Z j(ajx by)
j

subject to inf L(, , x) > -,
and and _> 0.
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For convenience in the analysis to follow, let us repeat program SD_ as the following
linear program and use its duality properties next.

(SDk-1) maxr

subject to the constraints

for/ Gk,

where F/c, G/c are the sets of indices of subprogram constraints which were generated from
f(x) and g(x, t), respectively.

LEMMA 4.1. Let (X(/C),O’(/C)) be optimal for SD/c_l and let #(0
(/c) G/c} and alljz all {A/c) J} be optimal dual variables to

befeasible for D and assume #/c) > O. Then

f(x) >_ Y+l

In this case, the right-hand side is a lower boundfor VD.
Proof. It follows from LP duality that

(4.3) #/c) + uk)IIVf (x(i)) II + E //C)I[ Vxg (x(t)’ t(t)) II 1,
iF lGk

and

(4.4)

(/c-- l)or() > r #)(x+ + r- y+
E’ u}/c) (f(x(i))

+ Vf (x(i)) (x x()) + [Ivf(/(*))ll )
lG l

A)
for all x E Rn+and all a R.

The next step will be to convert (4.4) into a Lagrangian type inequality by using convexity,
i.e.,

s/x)

_
s (x)/s (x)(x-x),

(,)
_
(,) +x(,) (- x),

and simplifying via (4.2) and (4.3); in paicular, a vanishes from the right side of (4.4)"

(k) [ (k--l) f0(4.5)
jAk)(ajT_bj) for all eRn.
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Now for all feasible x E Rn, g (x, t(t)) _< 0 for all l, and ajx bj <_ 0 for all j. Hence
(-) ()/)f(x) > Yn+

LEMMA 4.2. Any sequences of optimal LP dual vectors, {)}, {u})lfor all Fa },
p, for all Gk}k, and {@)lfor all j J} are bounded. Moreover, { ,o

is also bounded.
Proof. From (4.3) we have ) [0, 1], which together with (4.2), shows that

all F}k is bounded. Refeing back to a Slater point R (Assumption 1.1), set
x’ (, f0 ()), and let be D’-optimal. Then, from (4.5) for all k,

using f(x’) 0 and -,jAk) (aj2-bj) >_ O. But for all/ E Gk,9(k,t(t)) _<

maxt 9 (k, t) < 0. Since cr (k) converges to 0 and #}k) [0, 1] for all l, it follows from (4.6)
that { -zak #}k)} k is bounded. In particular, {#}k)}k" is uniformly bounded.

the boundedness of {Ak) IJ J}a follows from the full rank assumption of theFinally,
matrix A.

LEMMA 4.3. Assume that the algorithm does not terminate, and let #o limk inf #0
and #o limk sup #k). Then 0 < tzo <_ rio < +x. If the algorithm terminates at stage k,

then #o > O.
Proof. Let: (5 max{maxxH, IIVf(x)ll,maxts(maxxeH, IIVxg(X,t)ll)} > o. Then

from (4.2) and (4.3), for each k l, 2,...,

(4.7) Z#}k) >_ (1-/zk) (1 + 5))/5.
For a Slater point , let - denote maxt 9(, t), which is negative. We return to (4.6) with the

(k-l) and using (4.7),knowledge that VD _< Y+I

o(k) >_ -#k)(f(5:) VD) -(1 #k)(1 + 5))/5,

to immediately obtain

(4.8)

If the algorithm does not terminate, there is no restriction against writing limk #k)
/z0 and limk z #}k) M, M limk supz #}k)., see (4.7). Since limk crk O, (4.8) yields

(4.9) Po >- (--) (f(yc) VD (1 + (5)) > 0.

For finite termination, r 0, and so (4.8) permits/to on the left side of (4.9) to be

replaced with #k). [3

THEOREM 4.1 Let lZ *tui alli F}, and {#}k)l all G} be optimal LP duals

for SD_ 1. For #) 7 0 define

0 otherwise,
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and

Then (t) ()(t) and j ) is feasible for the Lagrangian dual P. Moreover,

lim L (c(), ff(), y) f0(y:), where now E Rn denotes an optimal solution to Program
D.

Proof The result will follow from (4.5) and Lemma 4.3. Since/zk) > 0, we have

(4.10)
j

>_ Y+(-) cr()/)
Thus the consistency condition (4.1) is satisfied.

Now, given any e > 0, there exists K such that k > K implies

(k-l) O.(k)/k) fo(4.11) y+ >_ (Y) -e,

(k-l) f0(y) and limk cr() 0. Bythe standard duality inequality,using Lemma 4.3, lim Yn+l
f0 (:) is at least as great as the left side of (4.10). Combined with (4.11) we obtain

inf L((k) (a) x] >f(Y)--e fork>K. Clf()
xR \ /

Remark. Consistency of the Lagrangian dual can also be expressed in differential Wolfe-
dual form; see [26].

Let us consider the convergence rate of the algorithm, determined with the help of duality.
THEOREM 4.2. Betweenfeasible points, the algorithm has a linear rate of convergence.
Proof. CombiningLemmas3.3 and 4.3 yields that there exists K such that for k >_ K,ziis positive and

_
is feasible for Program D. Now with respect to an optimal solution

for SD_ 1, complementary slackness of its first constraint yields

(4.12) or(k) (k-) (a) .(k) f0y,+ Xn+, ,+ (X).

Setting x y, a D-optimum, in (4.5) yields

Hence there exists p E (0, 1) such that for k sufficiently large,

{ (a-) )(-l) ( > Po ,+ VD(4.13) Yn+l n+l ;n+l VD.

Now when x(a) becomes feasible for Program D, y(k) X(k) and from (4.12),

(a) (-1)
nW1 Yn+l
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Thus, for k sufficiently large, (4.13) becomes (with subtraction and addition of if?n-t-l)

Hence

y(a)n+l Xn+ < l-p#0 fork>it and p (0,1).(k-l)
Yn+l n+

(k) is the objective functionSince the objective function value of Program D is Yn+l and Yn+l
value of Program D at iteration k, the algorithm has a linear rate of convergence in the
objective function value.

5. Implementation and numerical examples.

5.1. Computational realization of the algorithm. Note that (z(k), t) does not need
to satisfy stronger assumptions such as concavity or differentiability. We usually use a dis-
cretization method for index set S. That seems reasonable with reference to modeling of
semi-infinite programming problems in practice.

The index set S is replaced by a finite subset S, of S with the density

max man
tS t’S

Generally, a uniform fixed grid is used for any cutting plane algorithm to get the most
violated cut within one iteration procedure. In the central cutting plane algorithm, however,
we can apply a grid refinement procedure within one iteration because we only need to find
one of the violated cuts. We initially determine e0 by 16 uniform intervals and increase these
to 46 intervals for el and so on, if we cannot find an infeasible point within one iteration. The
smallest e value, say e, is predetermined to check the feasibility of the constraints, and the
accuracy of the final solution is dependent on the e value, ez. It is obvious that the feasibility
checking procedure is more efficient if we choose e 1,. e corresponding to mutually disjoint
discretizations. Even though we can get an accurate solution for very small et, this is inefficient
because it takes much computational time, and because singularity of the constraint matrix of
a linear programming subproblem may occur. To get a more accurate solution, we adjoin the
following phase to the central cutting algorithm itself.

For Program D the rather well-known nonlinear system which is necessary and sufficient
for feasible primal and dual solutions to be optimal is of the following form (see 14]-[ 17]
and 19]).

q

Vf(x) + Z (ti)Vxg(X, ti) O,
i--1

(5.2) (ti)g(x, ti) 0 fori 1,...,q

and

(5.3) 9(x, ") has a local maximum at each ti if (ti) > 0,

where q < n, and where at most n variables need to be nonzero.



912 K. O. KORTANEK AND HOON NO

Note that (5.3) corresponds to solving the Karush-Kuhn-Tucker system for max {9(x, t)It
G 5’}; see [19, pp. 96-97]. Much progress has been made recently in solving this system
in such a way that t can be formed independently and efficiently. Until now, however,
additional differentiability assumptions and constraint qualifications have been required, e.g.,
see the Hettich and Kortanek survey [18]. This system of nonlinear equations has n + 2q
variables and + 2q equations if all of ti lies in the interior of S.

To avoid including additional conditions arising from the case that a t could be a boundary
point of S, we have performed experiments with a simple approximation. If a computed t
value (from the cutting plane algorithm) lies within a fixed tolerance of a boundary point, we
reassign to t the particular boundary value that is closest to it. Typically, the tolerance chosen
was 1.D 6 to 1.D 9. Thus the system we solve is

(5.4) Vxg(X, t) 0 only for t in the interior of S,

and the fixing, if necessary, of some t at boundary points (a or b in one dimension, or
(al, b,), (a2, b2) in two dimensions).

In Step 3(i) of the algorithm, if we get the new feasible point x(k) and its dual (t (k),
(tq) (k), then we solve the system of nonlinear equations (5.1)-(5.3) by an iterative method

using x() tl1) tk) (tl) (k) (tq) (k) as the starting point. If the iterative method
for the system of nonlinear equations (5.1)-(5.3) converges, then we check to see if the results
are feasible for the program, in which case they are optimal.

Combining a discretization with the system ofnonlinear equations to the algorithm permits
the following realization of the algorithm that we have inplemented.

Step 0. Choose {S0,... S } from S and apply Step 0 of the algorithm.
Step 1. Same as Step of the algorithm.
Step U. Same as Step 2 of the algorithm.
Step 3’. (a) Set 0.

(b) Check feasibility of x() for t E S,,.
(c) If x(k) is infeasible, then go to Step 3(ii) or (iii).
(d) If < l, then set + and go to (b).
(e) Solve the nonlinear system of equations (5.1)-(5.3)with the current pri-

mal and dual (x() and A()) as a starting point. If the resulting solution is
feasible, then stop. Otherwise go to Step 3(i) of the algorithm.

5.2. Implementation details. In Step 0, it is not necessary to specify an initial feasible
point. As indicated in [5] and [11 ], the discretized central cutting plane algorithm will find a
feasible point after a finite number of iterations. Thus an initial feasible point was not required
in the implementation.

Instead of using {S,0,... S, } in Step 0, we used uniform grid increment methods. In
this case all we need are three parameters such as the maximum number of points in a grid,
initial number of points, and increments. We typically chose 301 points, starting with 16
points, and incrementing with 30 points.

To solve the linear programming subproblems in Step of the algorithm, LINOP by
Hettich et al. was used. Georg and Hettich [8] have shown that the most stable simplex
method implementation occurs when the orthogonal Q-matrix is retained and updated through
successive iterations. The LINOP program is an application of this concept.

Like most convex cutting plane algorithms, the solution of linear programming subprob-
lems can be accomplished by adding or dropping columns in the dual linear programming
subproblems. Since only one column needs to be added per iteration and only inactive cuts are
dropped, few pivots are required to solve these dual linear programming subproblems. We,
however, did not make this simplification in our current implementation.
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To keep the size of the linear programming subproblems within manageable dimensions,
all deletion rules were applied in Step 2 of the algorithm.

To solve the nonlinear system equations in Step 3’, the recent development of a nonlinear
Krylov solver NKSOL by Brown and Saad [3] was used, as just one possible choice made, in
part, for convenience. This program uses an inexact Newton method as the basic nonlinear
iteration, where the Newton equations are solved only approximately by a linear Krylov
iteration coupled with either a linesearch or dogleg global strategy. We applied the software
to (5.4) using the approximation for the case of ti near the boundary of S.

We programmed a FORTRAN code implementation and used double precision. Some
BLAS subroutines are included to handle the vector operations. We ran experiments on the
VAX 6000-410 under the VMS 5.3 operating system.

5.3. Numerical examples. The following problems were used in numerical experiments
of the proposed algorithm. If a starting point was given, then it was used; otherwise, a simple
LP solution from Step 0 was used. In all examples, the fl used in Deletion Rule 2 was 0.75.

Example (Tichatschke and Nebeling [32]).

f(x) (Zl 2)2 + (z2 -0.2)2;
9(z, t) ((5 sin Try/t)/(1 + t2))z2 z2;

H {w R21- w 1,0 z2 0.2};
S- {t RIO t 8}.

Input parameters.
Maximum number of grid points: 301;
Tolerance for the boundary of S: 10-2;
Stopping tolerance for NL system equations: 10-l0
Results. Primal solution:

x 0.205236774, x2 0.2.

Dual solution:

(t) 1.84175707 if t 0.213412466,
0 otherwise.

Objective function value: 3.22117504;
Norm of NL system equations: 0.2 10-12;
Number of iterations" 3;
Number of NL system equations applied: 1;
Elapsed CPU time (seconds)" 0.37.
Using 1024 uniform grid points, the ordinary cutting plane solution given in [32] is

z2) (0.205143, 0.199808) after 12 iterations.
Example 2 (Polak and He [23]; Tanaka, Tukushima, and Ibaraki [30]).
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Input parameters.
Maximum number of grid points: 301,
Tolerance for the boundary of S: 10-2,
Stopping tolerance for NL system equations: 10-10
Results. Primal solution.

Zl ---0.213312578, 372--1.36145045, 373- 1.85354733.

Dual solution.

(t) 0.426625155 ift 1.0,
0 otherwise.

Objective function value: 5.33468728;
Norm of NL system equations: 0.4 10-12;
Number of iterations" 27;
Number of NL system equations applied: 9;
Elapsed CPU time (seconds): 2.71.
For Example 2 the set H was artificially constructed. On the other hand, most of the

examples used the initial starting point that was specified in the literature.
Example 3 (Tichatschke and Nebeling [32]).

Input parameters.
Maximum number of grid points: 16 16;
Tolerance for the boundary of S: 10-2,
Stopping tolerance for NL system equations: 10-
Results. Primal solution

Dual solution.

371 0.585786438, 372 0.585786438.

(t) 6.62741700 if t (0.0625, 0),
0 otherwise.

Objective function value: 0.686291501;
Norm of NL system equations: 0.5 10-13;
Number of iterations: 9;
Number of NL system equations applied: 1;
Elapsed CPU time (seconds): 0.30.
The exact solution of this problem is (371,372) (2 ,, 2 /).
5.4. Complex approximation. A linear Chebyshev complex approximation problem

that we study is the following convex program (CP). Given complex valued functions uj, j
1,..., r, and f defined on the complex plane C, let r(37, z) f(z) j=, zjuj(z), where
37, z E C. Let/3 be a compact set in the complex plane.
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TABLE

Primal solutions

Kortanek and No From [27, Table 6]

Xl

X

X3

X4

X5

X6

W-"

0.368117039

0.888713155

-1.98904455

-1.98904456

2.63132741

1.08993150

1.470768E-02

0.3682810

0.8891080

-1.989632

-1.989632

2.6317190

1.0900940

1.47063E-02

Find

+ minmax{Ir(x,z)l IzxGC

As recognized by Barrodale, Delves, and Mason [2] and others, CP is equivalent to a

program like Program D in 1.
Convex dual (CD):

min w

s.t. w + (Re(r(x, z)))2 + (Im(r(x, z)))2 _< 0

for all z E B,

where Re and Im denote real and imaginary parts of a complex number.
In the numerical results to follow we omit the dual solution and other outputs, but we

compare our primal solutions (to nine digits) to those of others.
Example 4 (Streit [27], Streit and Nuttall [28]).

f(z) exp(i3t), uj(z) exp(i(j- 1)t), j 1,2,3; i- v/S-l,
B [0, rr/4], H- {x E/i6l- 4 < Xj 4,j 1,2,..., 6}.
xj complex variable identified with the real pair Xz(j-1)+, Xz(j-1)+2

forj- 1,2,3.

Input parameters.
Maximum number of grid points" 301;
Tolerance for the boundary of S" 10-10;
Stopping tolerance for NL system equations: 10-12.
Results. See Table 1.
Norm of NL system equations: 1.5 10-11;
Number of iterations: 139;
Elapsed CPU time (seconds): 90.63.
Example 5 (Barrodale, Delves, and Mason [2]; Glashoff and Roleff [9]).

f(z) 1/(z 2), uj(z) Zj-l,
j-- 1,2,...,n withz-cost+isint,

t e B [0, 2rr].
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TABLE 2

Primal solutions

Kortanek and No From [9]

Xl

X2

X3

X4

X5

W--

-0.500000000

-0.250000000

-0.125000000

-0.625000000E-01

-0.416666666E-01

2.08333333E-02

-0.499999

-0.25001

-0.125001

-0.062499

--0.041667

0.020833

TABLE 3

Primal solutions

Kortanek and No From [9]

Xl

X2

X3

X4

X5

X6

X7

W--

-0.500000000

-0.250000000

-0.125000000

-0.625000000E-01

-0.312499999E-01

-0.156250000E-01

-0.104166666E-01

5.2083333333E-03

-0.500003

-0.249999

-0.124996

-0.062505

-0.031249

-0.015622

-0.010419

0.005208

In these examples all xj’s are real, and H {x E Rnl- 3.1 < xj < 3.1,j
1,2,..., n}. Our computed N’s are about the same as in [2].

For n 5 in Example 5.

Input parameters.
Maximum number of grid points: 301;
Tolerance for the boundary of S: 1.0 x 10-4;
Stopping tolerance for NL System Equations: 1.0 x 10-12
Results. See Table 2.
Norm of NL system equations: 5.0 x 10-13;
Number of iterations: 123;
Elapsed CPU time (seconds)" 201.30.
For n 7 in Example 5.
Results. See Table 3.
Norm of NL system equations: 5.5 x 10-13;
Number of iterations: 437;
Elapsed CPU time (seconds): 603.62.
Remark. For Example 4, Streit [27] determined a closed form solution given 101 uni-

formly spaced gridpoints. The solution has OV (objective value) z 1.47063E-02, which
Streit recovered in Table 6 [27] and which is given above. Over the continuum, this solution
is slightly infeasible. For Example 4, an objective value is reported in Table 3(b) in Reemtsen
[25] as

1.470768026(30)E-02.

This agrees with our solution to a high degree, where we obtained

z- 1.470768029E-02.
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6. Conclusions. The assumptions for the nonlinear SIP in are clearly weaker than
those typically found for guaranteeing superlinearly convergent algorithms. When addressing
only convex problems, the assumptions that f itself and 7(’, t) are convex for all t are the
usual ones. A Slater point basically insures bounded Lagrange multipliers in a dual program.
However, requiring second-order derivatives in :c, together with additional constraint qualifi-
cations, leads to more efficient methods of local reduction, particularly in locating the local
maxima in (5.3).

In this paper the main differentiability assumptions are that 9(c, t) is continuously differ-
entiable on H for each t, and that Vxg(X, t) is continuous on H S. There is no assumption
of differentiability with respect to t or, say, concavity with respect to t (for fixed x).

The cutting plane algorithm here also uses the Slater assumption because it is an interior
point algorithm. A favorite description of Gribik [11] for the linear case applies here also
with an appropriate linearization. A finite LP problem gives the largest sphere that can be
drawn within all of the cuts added so far and the upper bound on the linearized cost function
whose center lies in H. Another interior point cutting plane method (see Bahn et al. ]) uses
the concept of an analytic center, which can be defined by means of a logarithmic potential
function.

Typical of cutting plane methods including ], [11 ], and 13], our algorithm also has
linear convergence between primal feasible points (not just between all iterates generated by
the algorithm). It also has useful and easily implementable constraint-dropping schemes, just
as in the linear case. In our view, a more remarkable result is the attainment of primal and
Lagrangian dual feasibility in a finite number of iterations, analogous to the linear SIP case
with a generalized finite sequence space dual. This property reinforces the subjective view
that a cutting plane method can have an important role in obtaining a good starting solution
(as a Phase I method), to which a more efficient method could then be applied when suitable
differentiability and constraint qualification assumptions are present.

Acknowledgments. This paper benefitted from considered observations made by two
referees. Initially, the duality section was incomplete and the numerical implementation
procedures required a clearer presentation.

REFERENCES

[1] O. BAHN, J. L. GOFFIN, J. P. VIAL, AND O. DUMERLE, Implementation and Behavior of an Interior Point
Cutting Plane Algorithm for Convex Programming: An Application to Geometric Programming, D6p.
d’Economie Commerciale et Industrielle, Univ. de G6nve, Switzerland, March 1991.

[2] I. BARRODALE, L. M. DELVES, AND J. C. MASON, Linear Chebyshev approximation ofcomplex-valuedfunctions,
Math Comp., 32(1978), pp. 853-863.

[3] P.N. BROWN AND Y. SAAD, Hybrid Krylov methods for nonlinear system of equations, SIAM J. Sci. Statist.
Comput., 11 (1990), pp. 450-481.

[4] U. ECKHARDT, Semi-infinite quadratic programming, OR-Spektrum, 1(1979), pp. 51-55.
[5] J. ELZINGA AND T. G. MOORE, A central cutting plane algorithm for the convex programming problem, Math.

Programming, 8(1975), pp. 134-145.
[6] K. FAHLANDER, Computer Programs for Semi-Infinite Optimization, TRITA NA-7312, Dept. of Numerical

Analysis and Computer Sciences, Royal Institute of Technology, S-10044, Stockholm 70, Sweden, 1973.
[7] A. V. FIACCO AND K. O. KORTANEK, EDS., Semi-Infinite Programming and Applications, Lecture Notes in

Economics and Mathematical Systems 215, Springer-Verlag, New York, 1981.
[8] K. GEORG AND R. HETTICH, On the Numerical Stability ofthe Simplex Algorithm, Univ. Trier, Germany, 1985;

also in the LINOP Software Package.
[9] K. GLASHOFF AND K. ROLEFF, A new methodfor Chebyshev approximation ofcomplex-valuedfunctions, Math.

Comp., 36( 1981 ), pp. 233-239.
10] E.G. GOL’STEIN, Theory ofConvex Programming, Transl. Math. Monographs, American Mathematical Society,

Providence, RI, 1972.



918 K. O. KORTANEK AND HOON NO

[11] E R. GRIBIK, A central cutting plane algorithm for semi-infinite programming problems, in Semi-Infinite
Programming, Lecture Notes in Control and Information Sciences 15, R. Hettich, ed., Springer-Verlag,
New York, 1979.

[12] Selected applications of semi-infinite programming, in Constructive Approaches to Mathematical
Models, C. V. Coffman and G. J. Fix, eds., Academic Press, New York, 1979, pp. 171-188.

13] E R. GRIBIK AND D. N. LEE, A comparison of two central cutting plane algorithms for prototype geometric
programming problems, in Methods of Operations Research 3 l, W. Oettli and E Steffens, eds., 1978,
Verlag Anton/Hain/Mannheim, Germany, pp. 275-287.

[14] S.-/. GUSTAFSON, On the computational solution ofa class ofgeneralized momentproblems, SIAM J. Numer.
Anal., 7(1970), pp. 343-357.

[15] ,A three-phase algorithmfor semi-infinite programs, in Semi-Infinite Programming and Applications,
Lecture Notes in Economics and Mathematical Systems 215, A. V. Fiacco and K. O. Kortanek, eds.,
Springer-Verlag, New York, 1981, pp. 138-157.

16] S.-. GUSTAFSON AND K. O. KORTANEK, Numerical treatment ofa class ofsemi-infinite programmingproblems,
Naval Research Logistics Quart., 20(1973), 477-504.

[17] Semi-infinite programming and applications, in Mathematical Programming: the State of the Art
1982, A. Bachem, M. Grotschel, and B. Korte, eds., Springer-Verlag, Berlin, 1983.

18] R. HETTICH AND K. O. KORTANEK, Semi-infinite programming: Theory, methods, and applications, Univ. Trier,
Germany, 1992; SIAM Rev., 35(1993), pp. 380-429.

19] R. HETTICH AND P. ZENCKE, Numerische Methoden der Approximation und Semi-Infiniten Optimierung, Teub-
net, Stuttgart, 1985.

[20] K.O. KORTANEK, Vector-supercomputer experiments with the primal affine linear programming scaling algo-
rithm, SIAM J. Sci. Comput., 14(1993), pp. 279-294.

[21] G. OPFER, Solving complex approximation problems by semi-infinite optimization techniques: A study on
convergence, Numer. Math., 39(1982), 411-420.

[22] E. POLAK, On the mathematical foundations of nondifferentiable optimization in engineering design, SIAM
Rev., 29(1987), pp. 21-89.

[23] E. POLAK AND L. HE, A Unified Steerable Phase I-Phase H Method of Feasible Directions for Semi-Infinite
Optimization, Dept. Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, 1990.

[24] R. REEMSTEN, OuterApproximation Methodsfor Semi-infinite Optimization Problems, Fach. Math., Technische
Univ. Berlin, Germany, 1991.

[25] A cutting plane method for solving minimax problems in the complex plane, Numer. Algorithms,
2(1992), pp. 409-436.

[26] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[27] R.L. STREIT, Solutions ofsystems ofcomplex linear equations in the lo norm with constraints on the unknowns,

SIAM J. Sci. Statist. Comput., 7(1986), pp. 132-149.
[28] R. L. STREIT AND A. n. NUTTALL, A general Chebyshev complex function approximation procedure and an

application to beamforming, J. Acoust. Soc. Amer., 72(1982), pp. 181-190.
[29] ,A note on the semi-infinite programming approach to complex approximation, Math. Comp., 40(1983),

pp. 599-605.
[30] Y. TANAKA, M. TUKUSHIMA, AND T. IBARAKI, A comparative study of several semi-infinite nonlinear program-

ming algorithms, European J. Oper. Res., 36(1988), pp. 92-100.
[31] E T. E TANG, A fast algorithm for linear complex Chebysev approximations, Math. Comp., 51(1988), pp.

721-739.
[32] R. TICHATSCHKE AND V. NEBELING, A cutting-plane methodfor quadratic semi-infinite programming problems,

Optimization, 19(1988), pp. 803-817.
[33] G.A. WATSON, Numerical methodsfor Chebyshev approximation ofcomplex-valuedfunctions, in Algorithms

for Approximation II, J. C. Mason and M. G. Cox, eds., Chapman and Hall, London, New York, 1990,
pp. 246-264.


	SJOPE_V03_i1_p0001
	SJOPE_V03_i1_p0025
	SJOPE_V03_i1_p0043
	SJOPE_V03_i1_p0060
	SJOPE_V03_i1_p0081
	SJOPE_V03_i1_p0118
	SJOPE_V03_i1_p0134
	SJOPE_V03_i1_p0155
	SJOPE_V03_i1_p0164
	SJOPE_V03_i2_p0223
	SJOPE_V03_i2_p0236
	SJOPE_V03_i2_p0248
	SJOPE_V03_i2_p0268
	SJOPE_V03_i2_p0298
	SJOPE_V03_i2_p0322
	SJOPE_V03_i2_p0359
	SJOPE_V03_i2_p0382
	SJOPE_V03_i2_p0398
	SJOPE_V03_i2_p0413
	SJOPE_V03_i2_p0423
	SJOPE_V03_i3_p0443
	SJOPE_V03_i3_p0466
	SJOPE_V03_i3_p0489
	SJOPE_V03_i3_p0503
	SJOPE_V03_i3_p0516
	SJOPE_V03_i3_p0538
	SJOPE_V03_i3_p0544
	SJOPE_V03_i3_p0564
	SJOPE_V03_i3_p0582
	SJOPE_V03_i3_p0609
	SJOPE_V03_i3_p0630
	SJOPE_V03_i3_p0637
	SJOPE_V03_i3_p0654
	SJOPE_V03_i4_p0669
	SJOPE_V03_i4_p0688
	SJOPE_V03_i4_p0696
	SJOPE_V03_i4_p0726
	SJOPE_V03_i4_p0734
	SJOPE_V03_i4_p0751
	SJOPE_V03_i4_p0784
	SJOPE_V03_i4_p0800
	SJOPE_V03_i4_p0826
	SJOPE_V03_i4_p0843
	SJOPE_V03_i4_p0861
	SJOPE_V03_i4_p0868
	SJOPE_V03_i4_p0882
	SJOPE_V03_i4_p0901

